A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes

Page: [340 - 356] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes is a multifactorial disease and a major cause for many microvascular and macrovascular complications. The disease will ultimately lead to high rate mortality if it is not managed properly. Treatment of diabetes without any side effects has always remained a major challenge for health care practitioners.

Introduction: The current review discusses the various conventional drugs, herbal drugs, combination therapy and the use of nutraceuticals for the effective management of diabetes mellitus. The biotechnological aspects of various antidiabetic drugs are also discussed.

Methods: Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was sorted in terms of various approaches that are used for the treatment of diabetes.

Results: More than 170 papers including both research and review articles, were included in this review in order to produce a comprehensive and easily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose, mechanism of action and possible side effects. The article also focuses on combination therapies containing synthetic as well as herbal drugs to treat the disease. The role of pre and probiotics in the management of diabetes is also highlighted.

Conclusion: Oral antihyperglycemics which are used to treat diabetes can cause many adverse effects and if given in combination, can lead to drug-drug interactions. The combination of various phytochemicals with synthetic drugs can overcome the challenge faced by the synthetic drug treatment. Herbal and nutraceuticals therapy and the use of probiotics and prebiotics are a more holistic therapy due to their natural origin and traditional use.

Keywords: Diabetes, combination therapy, probiotics, herbal drugs, synthetic drugs, phytopharmaceuticals.

[1]
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656-62.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[2]
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. Phytomedicine 2019; 56: 229-45.
[http://dx.doi.org/10.1016/j.phymed.2018.10.026] [PMID: 30668344]
[3]
Egan AM, Dinneen SF. What is diabetes? Medicine (Baltimore) 2019; 47: 1-4.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.002]
[4]
Carris NW, Magness RR, Labovitz AJ. Prevention of diabetes mellitus in patients with prediabetes. Am J Cardiol 2019; 123(3): 507-12.
[http://dx.doi.org/10.1016/j.amjcard.2018.10.032] [PMID: 30528418]
[5]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[6]
Zamora-Kapoor A, Fyfe-Johnson A, Omidpanah A, Buchwald D, Sinclair K. Risk factors for pre-diabetes and diabetes in adolescence and their variability by race and ethnicity. Prev Med 2018; 115: 47-52.
[http://dx.doi.org/10.1016/j.ypmed.2018.08.015] [PMID: 30144482]
[7]
American Diabetes Association.Standards of medical care in diabetes-2019 abridged for primary care providers. Clin Diabetes 2019; 37(1): 11-34.
[http://dx.doi.org/10.2337/cd18-0105] [PMID: 30705493]
[8]
Sreedharan R, Abdelmalak B. Diabetes mellitus: preoperative concerns and evaluation. Anesthesiol Clin 2018; 36(4): 581-97.
[http://dx.doi.org/10.1016/j.anclin.2018.07.007] [PMID: 30390780]
[9]
Prabhakar PK, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 2008; 4(4): 291-308.
[http://dx.doi.org/10.2174/157339908786241124] [PMID: 18991598]
[10]
Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Intern Med 2001; 249: 17-26.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00625.x] [PMID: 10762445]
[11]
Visekruna S, McGillis Hall L, Parry M, Spalding K. Intersecting health policy and the social determinants of health in pediatric type 1 diabetes management and care. J Pediatr Nurs 2017; 37: 62-9.
[http://dx.doi.org/10.1016/j.pedn.2017.06.001] [PMID: 28683888]
[12]
Melvin A, O’Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev 2018; 50: 60-7.
[http://dx.doi.org/10.1016/j.gde.2018.02.002] [PMID: 29477938]
[13]
Simpson S, Smith L, Bowe J. Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus. Curr Opin Pharmacol 2018; 43: 59-65.
[http://dx.doi.org/10.1016/j.coph.2018.08.004] [PMID: 30199758]
[14]
Owen KR. Monogenic diabetes in adults: what are the new developments? Curr Opin Genet Dev 2018; 50: 103-10.
[http://dx.doi.org/10.1016/j.gde.2018.04.006] [PMID: 29734081]
[15]
Mishra R, Hodge KM, Cousminer DL, Leslie RD, Grant SFA. A global perspective of latent autoimmune diabetes in adults. Trends Endocrinol Metab 2018; 29(9): 638-50.
[http://dx.doi.org/10.1016/j.tem.2018.07.001] [PMID: 30041834]
[16]
Schmidt S, Vistisen D, Almdal T, Hommel E, Nørgaard K. Exploring factors influencing HbA1c and psychosocial outcomes in people with type 1 diabetes after training in advanced carbohydrate counting. Diabetes Res Clin Pract 2017; 130: 61-6.
[http://dx.doi.org/10.1016/j.diabres.2017.05.021] [PMID: 28570925]
[17]
Stolf AM, Campos Cardoso C, Morais H, et al. Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed Pharmacother 2018; 108: 232-43.
[http://dx.doi.org/10.1016/j.biopha.2018.09.042] [PMID: 30219681]
[18]
Katz L, Barrett B. Chapter 7 -Dyslipidemia and Type II Diabetes. In: Kim G. Pediatric Type II Diabetes. Elsevier 2019; pp. 47-53.
[19]
Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr 2019; 13(2): 1165-72.
[http://dx.doi.org/10.1016/j.dsx.2019.01.040] [PMID: 31336460]
[20]
Varghese S. Noninsulin Diabetes Medications. Nurs Clin North Am 2017; 52(4): 523-37.
[http://dx.doi.org/10.1016/j.cnur.2017.07.003] [PMID: 29080575]
[21]
Milligan S. Combination therapy for the improvement of long-term macrovascular and microvascular outcomes in type 2 diabetes: Rationale and evidence for early initiation. J Diabetes Complications 2016; 30(6): 1177-85.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.03.010] [PMID: 27149916]
[22]
Molugulu N, Yee LS, Ye YT, et al. Systematic review of metformin monotherapy and dual therapy with sodium glucose co-transporter 2 inhibitor (SGLT-2) in treatment of type 2 diabetes mellitus. Diabetes Res Clin Pract 2017; 132: 157-68.
[http://dx.doi.org/10.1016/j.diabres.2017.07.025] [PMID: 28797524]
[23]
Inzucchi SE. Personalizing glucose-lowering therapy in patients with type 2 diabetes and cardiovascular disease. Endocrinol Metab Clin North Am 2018; 47(1): 137-52.
[http://dx.doi.org/10.1016/j.ecl.2017.10.011] [PMID: 29407048]
[24]
Ismail-Beigi F, Moghissi E, Kosiborod M, Inzucchi SE. Shifting paradigms in the medical management of type 2 diabetes: reflections on recent cardiovascular outcome trials. J Gen Intern Med 2017; 32(9): 1044-51.
[http://dx.doi.org/10.1007/s11606-017-4061-7] [PMID: 28550608]
[25]
Jain S, Saraf S. Type 2 diabetes mellitus- Its global prevalence and therapeutic strategies. Diabetes Metab Syndr 2010; 4: 48-56.
[http://dx.doi.org/10.1016/j.dsx.2008.04.011]
[26]
DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016; 65(2): 20-9.
[http://dx.doi.org/10.1016/j.metabol.2015.10.014] [PMID: 26773926]
[27]
Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem 2018; 77: 548-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[28]
Ochman AR, Lipinski CA, Handler JA, Reaume AG, Saporito MS. The Lyn kinase activator MLR-1023 is a novel insulin receptor potentiator that elicits a rapid-onset and durable improvement in glucose homeostasis in animal models of type 2 diabetes. J Pharmacol Exp Ther 2012; 342(1): 23-32.
[http://dx.doi.org/10.1124/jpet.112.192187] [PMID: 22431203]
[29]
Sola D, Rossi L, Schianca GPC, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 11(4): 840-8.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[30]
Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci 2013; 9(5): 936-43.
[http://dx.doi.org/10.5114/aoms.2013.34991] [PMID: 24273582]
[31]
Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother 2015; 16(13): 1959-81.
[http://dx.doi.org/10.1517/14656566.2015.1070827] [PMID: 26255950]
[32]
Cervera A, Wajcberg E, Sriwijitkamol A, et al. Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 2008; 294(5): E846-52.
[http://dx.doi.org/10.1152/ajpendo.00030.2008] [PMID: 18334612]
[33]
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013; 56(9): 1898-906.
[http://dx.doi.org/10.1007/s00125-013-2991-0] [PMID: 23835523]
[34]
Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 2004; 53(Suppl. 3): S233-8.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S233] [PMID: 15561917]
[35]
Pecoits-Filho R, Perkovic V. Are SGLT2 inhibitors ready for prime time for CKD? Clin J Am Soc Nephrol 2018; 13(2): 318-20.
[http://dx.doi.org/10.2215/CJN.07680717] [PMID: 28893920]
[36]
Guo H, Fang C, Huang Y, Pei Y, Chen L, Hu J. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2016; 121: 184-91.
[http://dx.doi.org/10.1016/j.diabres.2016.08.022] [PMID: 27741478]
[37]
Ghadge AA, Kuvalekar AA. Controversy of oral hypoglycemic agents in type 2 diabetes mellitus: Novel move towards combination therapies. Diabetes Metab Syndr 2017; 11(Suppl. 1): S5-S13.
[http://dx.doi.org/10.1016/j.dsx.2016.08.009] [PMID: 27578618]
[38]
Bailey CJ. Thiazolidinediones. In: Reference Module in Biomedical Sciences. Elsevier 2015.
[39]
Elte JWF, Blicklé JF. Thiazolidinediones for the treatment of type 2 diabetes. Eur J Intern Med 2007; 18(1): 18-25.
[http://dx.doi.org/10.1016/j.ejim.2006.09.007] [PMID: 17223037]
[40]
Oz Gul O, Cinkilic N, Gul CB, et al. Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: a cross-sectional, observational pilot study. Mutat Res 2013; 757(1): 31-5.
[http://dx.doi.org/10.1016/j.mrgentox.2013.04.024] [PMID: 23859957]
[41]
Mirmiranpour H, Mousavizadeh M, Noshad S, et al. Comparative effects of pioglitazone and metformin on oxidative stress markers in newly diagnosed type 2 diabetes patients: a randomized clinical trial. J Diabetes Complications 2013; 27(5): 501-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.05.006] [PMID: 23891275]
[42]
Day C, Bailey CJ. Troglitazone. In: Reference Module in Biomedical Sciences. Elsevier 2016.
[43]
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168: 75-97.
[http://dx.doi.org/10.1016/j.pharmthera.2016.09.007] [PMID: 27598860]
[44]
Ziyadeh N, McAfee AT, Koro C, Landon J, Arnold Chan K. The thiazolidinediones rosiglitazone and pioglitazone and the risk of coronary heart disease: a retrospective cohort study using a US health insurance database. Clin Ther 2009; 31(11): 2665-77.
[http://dx.doi.org/10.1016/j.clinthera.2009.11.003] [PMID: 20110009]
[45]
Jorsal A, Wiggers H, McMurray JJV. Heart failure: epidemiology, pathophysiology, and management of heart failure in diabetes mellitus. Endocrinol Metab Clin North Am 2018; 47(1): 117-35.
[http://dx.doi.org/10.1016/j.ecl.2017.10.007] [PMID: 29407047]
[46]
Liu L, Aronson J, Lecka-Czernik B. Rosiglitazone disrupts endosteal bone formation during distraction osteogenesis by local adipocytic infiltration. Bone 2013; 52(1): 247-58.
[http://dx.doi.org/10.1016/j.bone.2012.09.038] [PMID: 23069375]
[47]
Khunti K, Chatterjee S, Gerstein HC, Zoungas S, Davies MJ. Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol 2018; 6(10): 821-32.
[http://dx.doi.org/10.1016/S2213-8587(18)30025-1] [PMID: 29501322]
[48]
Ashcroft FM. New uses for old drugs: neonatal diabetes and sulphonylureas. Cell Metab 2010; 11(3): 179-81.
[http://dx.doi.org/10.1016/j.cmet.2010.02.004] [PMID: 20197050]
[49]
Furman BL. Sulfonylureas. In: Reference Module in Biomedical Sciences. Elsevier 2016.
[50]
Yu O, Azoulay L, Yin H, Filion KB, Suissa S. Sulfonylureas as initial treatment for type 2 diabetes and the risk of severe hypoglycemia. Am J Med 2018; 131(3): 317.e11-22.
[http://dx.doi.org/10.1016/j.amjmed.2017.09.044] [PMID: 29032229]
[51]
Kathuria D, Bankar AA, Bharatam PV. “What’s in a structure?” The story of biguanides. J Mol Struct 2018; 1152: 61-78.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.100]
[52]
Moin T, Schmittdiel JA, Flory JH, et al. Review of metformin use for type 2 diabetes prevention. Am J Prev Med 2018; 55(4): 565-74.
[http://dx.doi.org/10.1016/j.amepre.2018.04.038] [PMID: 30126667]
[53]
Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother 2018; 106: 1227-35.
[http://dx.doi.org/10.1016/j.biopha.2018.07.085] [PMID: 30119191]
[54]
Rada P, Mosquera A, Muntané J, et al. Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice. Food Chem Toxicol 2019; 123: 470-80.
[http://dx.doi.org/10.1016/j.fct.2018.11.019] [PMID: 30414960]
[55]
Rogacka D, Audzeyenka I, Rychłowski M, et al. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864(1): 115-25.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.014] [PMID: 29032153]
[56]
Sánchez-Díaz JS, Monares-Zepeda E, Martínez-Rodríguez EA, et al. Metformin-related lactic acidosis: Case report. Colombian Journal of Anesthesiology 2017; 45: 353-9.
[57]
Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem 2015; 103: 133-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.043] [PMID: 26344912]
[58]
Xie H, Zhao Q, Zhang X, Kang Q, Bai L. Comparative functional genomics of the acarbose producers reveals potential targets for metabolic engineering. Synth Syst Biotechnol 2019; 4(1): 49-56.
[http://dx.doi.org/10.1016/j.synbio.2019.01.001] [PMID: 30723817]
[59]
Kumar A, Bharti SK, Kumar A. Therapeutic molecules against type 2 diabetes: What we have and what are we expecting? Pharmacol Rep 2017; 69(5): 959-70.
[http://dx.doi.org/10.1016/j.pharep.2017.04.003] [PMID: 28822958]
[60]
Furman BL. Meglitinide. In: Reference Module in Biomedical Sciences. Elsevier 2017.
[61]
Hossain MA, Pervin R. Chapter 34 -Current Antidiabetic Drugs: Review of Their Ef-ficacy and Safety. In: Bagchi D, Nair S, EdsNutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition). Academic Press 2018; pp. 455-73.
[62]
Meglitinides Aronson JK Meyler’s Side Effects of Drugs(Sixteenth Edition). Elsevier: Oxford 2016; pp. 800-7.
[63]
Meglitinides Aronson JK Meyler’s Side Effects of Drugs: The International Encyclope-dia of Adverse Drug Reactions and Interactions. (Fifteenth Edition). Elsevier: Amsterdam. 2006; pp. 2238-43.
[64]
Salgueiro ACF, Folmer V, Bassante FEM, Cardoso MHS, da Rosa HS, Puntel GO. Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complement Ther Med 2018; 41: 1-9.
[http://dx.doi.org/10.1016/j.ctim.2018.08.009] [PMID: 30477823]
[65]
Surya S, Salam AD, Tomy DV, Carla B, Kumar RA, Sunil C. Diabetes mellitus and medicinal plants-a review. Asian Pac J Trop Dis 2014; 4: 337-47.
[http://dx.doi.org/10.1016/S2222-1808(14)60585-5]
[66]
Shivavedi N, Kumar M, Tej GNVC, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res 2017; 1674: 1-9.
[http://dx.doi.org/10.1016/j.brainres.2017.08.019] [PMID: 28827076]
[67]
Cho YK, Kang YM, Lee SE, et al. Efficacy and safety of combination therapy with SGLT2 and DPP4 inhibitors in the treatment of type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab 2018; 44(5): 393-401.
[http://dx.doi.org/10.1016/j.diabet.2018.01.011] [PMID: 29449146]
[68]
Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS. Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 2018; 101: 833-41.
[http://dx.doi.org/10.1016/j.biopha.2018.02.137] [PMID: 29635892]
[69]
Sabiu S, Madende M, Ajao AA-n, Aladodo RA, Nurain IO, Ahmad JB. Chapter 9 - The Genus Allium (Amaryllidaceae: Alloideae):Features, Phytoconstituents, and Mechanisms of Antidiabetic Potential of Allium cepa and Allium sativum. In: Watson RR, Preedy VR, Eds. Bioactive Food as Dietary Interventions for Diabetes (Second Edition). Academic Press 2019; 137-54.
[70]
Peter EL, Kasali FM, Deyno S, et al. Momordica charantia L. lowers elevated glycaemia in type 2 diabetes mellitus patients: Systematic review and meta-analysis. J Ethnopharmacol 2019; 231: 311-24.
[http://dx.doi.org/10.1016/j.jep.2018.10.033] [PMID: 30385422]
[71]
Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci 2017; 24(6): 1294-305.
[http://dx.doi.org/10.1016/j.sjbs.2015.06.026] [PMID: 28855825]
[72]
Lone AH, Ahmad T, Anwar M, Sofi G, Imam H, Habib S. Perception of health promotion in Unani herbal medicine. J Herb Med 2012; 2: 1-5.
[http://dx.doi.org/10.1016/j.hermed.2012.02.003]
[73]
Sathasivampillai SV, Rajamanoharan PRS, Munday M, Heinrich M. Plants used to treat diabetes in Sri Lankan Siddha Medicine - An ethnopharmacological review of historical and modern sources. J Ethnopharmacol 2017; 198: 531-99.
[http://dx.doi.org/10.1016/j.jep.2016.07.053] [PMID: 27448453]
[74]
Chávez-Silva F, Cerón-Romero L, Arias-Durán L, et al. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. J Ethnopharmacol 2018; 212: 1-7.
[http://dx.doi.org/10.1016/j.jep.2017.10.005] [PMID: 29031783]
[75]
Ekar T, Kreft S. Common risks of adulterated and mislabeled herbal preparations. Food Chem Toxicol 2019; 123: 288-97.
[http://dx.doi.org/10.1016/j.fct.2018.10.043] [PMID: 30339960]
[76]
Ahmad Khan MS, Ahmad I. Chapter 1 - Herbal Medicine: Current Trends and Future Pro-spects. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D, Eds. New Look to Phytomedicine. Academic Press 2019; 3-13.
[77]
Green RR, Santoro N, Allshouse AA, Neal-Perry G, Derby C. Prevalence of complementary and alternative medicine and herbal remedy use in hispanic and non-hispanic white women: results from the study of women’s health across the nation. J Altern Complement Med 2017; 23(10): 805-11.
[http://dx.doi.org/10.1089/acm.2017.0080] [PMID: 28915061]
[78]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[79]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2017; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[80]
Najm W, Lie D. Herbals used for diabetes, obesity, and metabolic syndrome. Prim Care 2010; 37(2): 237-54.
[http://dx.doi.org/10.1016/j.pop.2010.02.008] [PMID: 20493334]
[81]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[82]
Samad KA, Zainol N. Effects of agitation and volume of inoculum on ferulic acid production by co-culture. Biocatal Agric Biotechnol 2017; 10: 9-12.
[http://dx.doi.org/10.1016/j.bcab.2017.01.010]
[83]
Wu H, Li H, Xue Y, et al. High efficiency co-production of ferulic acid and xylooligosaccharides from wheat bran by recombinant xylanase and feruloyl esterase. Biochem Eng J 2017; 120: 41-8.
[http://dx.doi.org/10.1016/j.bej.2017.01.001]
[84]
Rodriguez A, Chen Y, Khoomrung S, Özdemir E, Borodina I, Nielsen J. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metab Eng 2017; 44: 265-72.
[http://dx.doi.org/10.1016/j.ymben.2017.10.013] [PMID: 29101089]
[85]
Wang J, Mahajani M, Jackson SL, et al. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metab Eng 2017; 44: 89-99.
[http://dx.doi.org/10.1016/j.ymben.2017.09.011] [PMID: 28943460]
[86]
Nam S-H, Ko J-A, Jun W, et al. Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties. Enzyme Microb Technol 2017; 107: 15-21.
[http://dx.doi.org/10.1016/j.enzmictec.2017.07.011] [PMID: 28899482]
[87]
Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 2015; 31: 181-8.
[http://dx.doi.org/10.1016/j.ymben.2015.08.003] [PMID: 26292030]
[88]
Bartley GE, Avena-Bustillos RJ, Du W-X, Hidalgo M, Cain B, Breksa AP. Transcriptional regulation of chlorogenic acid biosynthesis in carrot root slices exposed to UV-B light. Plant Gene 2016; 7: 1-10.
[http://dx.doi.org/10.1016/j.plgene.2016.07.001]
[89]
Wu C-H, Murthy HN, Hahn E-J, Paek K-Y. Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension cultures of Echinacea purpurea by the manipulation of incubation temperature and photoperiod. Biochem Eng J 2007; 36: 301-3.
[http://dx.doi.org/10.1016/j.bej.2007.02.024]
[90]
Kim D-I, Pedersen H, Chin C-K. Two stage cultures for the production of berberine in cell suspension cultures of Thalictrum rugosum. J Biotechnol 1990; 16(3-4): 297-303.
[http://dx.doi.org/10.1016/0168-1656(90)90043-B] [PMID: 1366939]
[91]
Kim D-I, Pedersen H, Chin C-K. Development of process strategies for berberine production in plant cell suspension cultures. J Biotechnol 1991; 21: 201-7.
[http://dx.doi.org/10.1016/0168-1656(91)90041-S]
[92]
Kim S-W, Park M-K, Bae K-S, Rhee M-S, Liu J-R. Production of petroselinic acid from cell suspension cultures of Coriandrum sativum. Phytochemistry 1996; 42: 1581-2.
[http://dx.doi.org/10.1016/0031-9422(96)00223-3]
[93]
Galata M, Sarker LS, Mahmoud SS. Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry 2014; 102: 64-73.
[http://dx.doi.org/10.1016/j.phytochem.2014.02.016] [PMID: 24636455]
[94]
Jun C, Xue-Ming Z, Chang-Xiao L, Tie-Jun Z. Structure elucidation of metabolites of swertiamarin produced by Aspergillus niger. J Mol Struct 2008; 878: 22-5.
[http://dx.doi.org/10.1016/j.molstruc.2007.07.031]
[95]
Piatczak E, Wielanek M, Wysokinska H. Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci 2005; 168: 431-7.
[http://dx.doi.org/10.1016/j.plantsci.2004.08.013]
[96]
Shigematsu T, Furukawa N, Takaoka R, et al. Effect of high pressure on the saccharification of starch in the tuberous root of sweet potato (Ipomoea batatas). Biophys Chem 2017; 231: 105-10.
[http://dx.doi.org/10.1016/j.bpc.2017.04.012] [PMID: 28506613]
[97]
Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). J Plant Physiol 2008; 165(16): 1726-35.
[http://dx.doi.org/10.1016/j.jplph.2007.11.009] [PMID: 18242774]
[98]
Nakajima N, Ishihara K, Hamada H, Kawabe S, Furuya T. Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cells of Ipomoea batatas. J Biosci Bioeng 2000; 90(3): 347-9.
[http://dx.doi.org/10.1016/S1389-1723(00)80095-X] [PMID: 16232870]
[99]
Jiwanit P, Pitakpornpreecha T, Pisuchpen S, Leelasuphakul W. The use of Aloe vera gel coating supplemented with Pichia guilliermondii BCC5389 for enhancement of defense-related gene expression and secondary metabolism in mandarins to prevent postharvest losses from green mold rot. Biol Control 2018; 117: 43-51.
[http://dx.doi.org/10.1016/j.biocontrol.2017.08.023]
[100]
He C, Zhang J, Chen J, et al. Genetic transformation of Aloe barbadensis Miller by Agrobacterium tumefaciens. J Genet Genomics 2007; 34(12): 1053-60.
[http://dx.doi.org/10.1016/S1673-8527(07)60120-9] [PMID: 18155617]
[101]
Gupta M, Kiran S, Gulati A, Singh B, Tewari R. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 2012; 167(6): 358-63.
[http://dx.doi.org/10.1016/j.micres.2012.02.004] [PMID: 22417676]
[102]
Álvarez-Robles MJ, López-Orenes A, Ferrer MA, Calderón AA. Methanol elicits the accumulation of bioactive steviol glycosides and phenolics in Stevia rebaudiana shoot cultures. Ind Crops Prod 2016; 87: 273-9.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.054]
[103]
Yücesan B, Mohammed A, Büyükgöçmen R, et al. In vitro and ex vitro propagation of Stevia rebaudiana Bertoni with high Rebaudioside-A content—A commercial scale application. Sci Hortic (Amsterdam) 2016; 203: 20-8.
[http://dx.doi.org/10.1016/j.scienta.2016.03.008]
[104]
Gupta P, Sharma S, Saxena S. Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. Journal of Applied Research on Medicinal and Aromatic Plants 2016; 3: 160-7.
[http://dx.doi.org/10.1016/j.jarmap.2016.03.004]
[105]
Praveen N, Thiruvengadam M, Yang YS, Kim SH, Murthy HN, Chung IM. Production of gymnemic acid from hairy root cultures of Gymnema sylvestre R. Br. as influenced by polyunsaturated fatty acids (PUFAs) and their antioxidant activity. Ind Crops Prod 2014; 54: 54-61.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.008]
[106]
Praveen N, Murthy HN, Chung IM. Improvement of growth and gymnemic acid production by altering the macro elements concentration and nitrogen source supply in cell suspension cultures of Gymnema sylvestre R. Br Ind Crops Prod 2011; 33: 282-6.
[http://dx.doi.org/10.1016/j.indcrop.2010.12.015]
[107]
Thiruvengadam M, Rekha K, Chung I-M. Induction of hairy roots by Agrobacterium rhizogenes-mediated transformation of spine gourd (Momordica dioica Roxb. ex. willd) for the assessment of phenolic compounds and biological activities. Sci Hortic (Amsterdam) 2016; 198: 132-41.
[http://dx.doi.org/10.1016/j.scienta.2015.11.035]
[108]
Satdive RK, Fulzele DP, Eapen S. Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 2007; 128(2): 281-9.
[http://dx.doi.org/10.1016/j.jbiotec.2006.10.009] [PMID: 17109981]
[109]
Prakash G, Srivastava AK. Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochem Eng J 2008; 40: 218-26.
[http://dx.doi.org/10.1016/j.bej.2007.12.017]
[110]
Bhuvaneshwari K, Gokulanathan A, Jayanthi M, et al. Can Ocimum basilicum L. and Ocimum tenuiflorum L. in vitro culture be a potential source of secondary metabolites? Food Chem 2016; 194: 55-60.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.136] [PMID: 26471526]
[111]
Pavlov A, Bley T. Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochem 2006; 41: 848-52.
[http://dx.doi.org/10.1016/j.procbio.2005.10.026]
[112]
Hara Y, Yoshioka T, Morimoto T, Fujita Y, Yamada Y. Enhancement of berberine production in suspension cultures of coptis japonica by gibberellic acid treatment. J Plant Physiol 1988; 133: 12-5.
[http://dx.doi.org/10.1016/S0176-1617(88)80077-4]
[113]
Rozpądek P, Rąpała-Kozik M, Wężowicz K, et al. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiol Biochem 2016; 107: 264-72.
[http://dx.doi.org/10.1016/j.plaphy.2016.06.006] [PMID: 27318800]
[114]
Télessy IG. Chapter 24 - Nutraceuticals. In: The Role of Functional Food Security in Global Health. Academic Press 2019; pp. 409-21.
[115]
Garg RC. Chapter 12 -Nutraceuticals in Glucose Balance and Diabetes. In: Nutraceuticals. Boston: Academic Press 2016; pp. 145-60.
[116]
Teixeira-Lemos E, Oliveira J, Teixeira-Lemos LP, Reis-Lima MJ, Pinheiro JP. 17 - New trends in food science: the use of nutraceuticals as an antiinflammatory therapeutic tool in exercise. In: Nutraceuticals. Academic Press 2016; pp. 669-714.
[117]
McCarty MF. Nutraceutical resources for diabetes prevention--an update. Med Hypotheses 2005; 64(1): 151-8.
[http://dx.doi.org/10.1016/j.mehy.2004.03.036] [PMID: 15533633]
[118]
Baeeri M, Bahadar H, Rahimifard M, et al. α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol Res 2019; 141: 214-23.
[http://dx.doi.org/10.1016/j.phrs.2019.01.003] [PMID: 30611855]
[119]
Lee WJ, Song K-H, Koh EH, et al. α-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun 2005; 332(3): 885-91.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.035] [PMID: 15913551]
[120]
Dworacka M, Chukanova G, Iskakova S, et al. New arguments for beneficial effects of alpha-lipoic acid on the cardiovascular system in the course of type 2 diabetes. Eur J Pharm Sci 2018; 117: 41-7.
[http://dx.doi.org/10.1016/j.ejps.2018.02.009] [PMID: 29427700]
[121]
Sahebkar A, Serban M-C, Gluba-Brzózka A, et al. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition 2016; 32(11-12): 1179-92.
[http://dx.doi.org/10.1016/j.nut.2016.04.007] [PMID: 27324061]
[122]
Wang S, Wu S, Liu S. Integration of (+)-catechin and β-sitosterol to achieve excellent radical-scavenging activity in emulsions. Food Chem 2019; 272: 596-603.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.098] [PMID: 30309587]
[123]
Itsiopoulos C, Marx W, Mayr HL, et al. The role of omega-3 polyunsaturated fatty acid supplementation in the management of type 2 diabetes mellitus: A narrative review. J Nutr Intermed Metab 2018; 14: 42-51.
[http://dx.doi.org/10.1016/j.jnim.2018.02.002]
[124]
Chang C-J, Lin T-L, Tsai Y-L, et al. Next generation probiotics in disease amelioration. Yao Wu Shi Pin Fen Xi 2019; 27(3): 615-22.
[http://dx.doi.org/10.1016/j.jfda.2018.12.011] [PMID: 31324278]
[125]
Thiennimitr P, Yasom S, Tunapong W, et al. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition 2018; 54: 40-7.
[http://dx.doi.org/10.1016/j.nut.2018.03.005] [PMID: 29705500]
[126]
Ahmadi S, Nagpal R, Wang S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem 2019; 67: 1-13.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.011] [PMID: 30831458]
[127]
Westfall S, Lomis N, Prakash S. A polyphenol-rich prebiotic in combination with a novel probiotic formulation alleviates markers of obesity and diabetes in Drosophila. J Funct Foods 2018; 48: 374-86.
[http://dx.doi.org/10.1016/j.jff.2018.07.012]
[128]
Zhang Q, Wu Y, Fei X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina (Kaunas) 2016; 52(1): 28-34.
[http://dx.doi.org/10.1016/j.medici.2015.11.008] [PMID: 26987497]
[129]
Nongonierma AB, FitzGerald RJ. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Curr Opin Food Sci 2016; 8: 19-24.
[http://dx.doi.org/10.1016/j.cofs.2016.01.007]
[130]
Nongonierma AB, FitzGerald RJ. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends Food Sci Technol 2016; 50: 26-43.
[http://dx.doi.org/10.1016/j.tifs.2016.01.022]
[131]
Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 2015; 54(6): 863-80.
[http://dx.doi.org/10.1007/s00394-015-0974-2] [PMID: 26154777]
[132]
Oseguera-Toledo ME, González de Mejía E, Reynoso-Camacho R, Cardador-Martínez A, Amaya-Llano SL. Proteins and bioactive peptides. Nutrafoods 2014; 13: 147-57.
[http://dx.doi.org/10.1007/s13749-014-0052-z]
[133]
Xia E-Q, Zhu S-S, He M-J, Luo F, Fu C-Z, Zou T-B. Marine peptides as potential agents for the management of type 2 diabetes mellitus-a prospect. Mar Drugs 2017; 15(4): 88-103.
[http://dx.doi.org/10.3390/md15040088] [PMID: 28333091]
[134]
Howes M-J. Phytochemicals as Anti-inflammatory Nutraceuticals and Phy-topharmaceuticals 2018; 363-88.
[135]
Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 2010; 15(11): 7792-814.
[http://dx.doi.org/10.3390/molecules15117792] [PMID: 21060289]
[136]
Omar EA, Kam A, Alqahtani A, et al. Herbal medicines and nutraceuticals for diabetic vascular complications: mechanisms of action and bioactive phytochemicals. Curr Pharm Des 2010; 16(34): 3776-807.
[http://dx.doi.org/10.2174/138161210794455076] [PMID: 21128894]
[137]
Prabhakar PK, Kumar A, Doble M. Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine 2014; 21(2): 123-30.
[http://dx.doi.org/10.1016/j.phymed.2013.08.020] [PMID: 24074610]
[138]
Nanjappan S, Paul D, Bolla L. Chapter 9 - Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives. In: Studies in Natural Products Chemistry. Elsevier 2018; pp. 283-322.
[139]
Cicero AFG, Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 2016; 23(11): 1134-44.
[http://dx.doi.org/10.1016/j.phymed.2015.11.009] [PMID: 26778479]
[140]
Guldiken B, Ozkan G, Catalkaya G, Ceylan FD, Ekin Yalcinkaya I, Capanoglu E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem Toxicol 2018; 119: 37-49.
[http://dx.doi.org/10.1016/j.fct.2018.05.050] [PMID: 29802945]
[141]
Fong JC, Kao Y-S, Tsai HY, Chiou Y-Y, Chiou G-Y. Synergistic effect of endothelin-1 and cyclic AMP on glucose transport in 3T3-L1 adipocytes. Cell Signal 2004; 16(7): 811-21.
[http://dx.doi.org/10.1016/j.cellsig.2003.12.004] [PMID: 15115660]
[142]
Chiou G-Y, Fong JC. Prostaglandin F2α increases glucose transport in 3T3-L1 adipocytes through enhanced GLUT1 expression by a protein kinase C-dependent pathway. Cell Signal 2004; 16(4): 415-21.
[http://dx.doi.org/10.1016/j.cellsig.2003.09.001] [PMID: 14709331]
[143]
Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes 2008; 57(6): 1463-9.
[http://dx.doi.org/10.2337/db07-1515] [PMID: 18314419]
[144]
Prabhakar PK, Doble M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine 2009; 16(12): 1119-26.
[http://dx.doi.org/10.1016/j.phymed.2009.05.021] [PMID: 19660925]
[145]
Prabhakar PK, Doble M. Interaction of cinnamic acid derivatives with commercial hypoglycemic drugs on 2-deoxyglucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2011; 59(18): 9835-44.
[http://dx.doi.org/10.1021/jf2015717] [PMID: 21870829]
[146]
Nichols GA, Reynolds K, Olufade T, et al. Effect of combination cholesterol-lowering therapy and triglyceride-lowering therapy on medical costs in patients with type 2 diabetes mellitus. Am J Cardiol 2017; 119(3): 410-5.
[http://dx.doi.org/10.1016/j.amjcard.2016.10.029] [PMID: 27890243]
[147]
Maiorino MI, Chiodini P, Bellastella G, Capuano A, Esposito K, Giugliano D. Insulin and glucagon-like peptide 1 receptor agonist combination therapy in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2017; 40(4): 614-24.
[http://dx.doi.org/10.2337/dc16-1957] [PMID: 28325801]
[148]
Saad B, Zaid H, Shanak S, Kadan S. Prevention and treatment of obesity-related diseases by diet and medicinal plants in Anti-diabetes and Anti-obesity Medicinal Plants and Phytochemicals. Switzerland: Springer 2017; pp. 95-128.
[http://dx.doi.org/10.1007/978-3-319-54102-0_4]
[149]
Ghosh N, Ghosh RC, Kundu A, Mandal SC. Chapter 17 - Herb and Drug Interaction. In: Mandal SC, Mandal V, Konishi T, Eds. Natural Products and Drug Discovery. Elsevier 2018; 467-90.
[150]
Yuan Y-M, Gao J-W, Shi Z, et al. Herb-drug pharmacokinetic interaction between radix astragali and pioglitazone in rats. J Ethnopharmacol 2012; 144(2): 300-4.
[http://dx.doi.org/10.1016/j.jep.2012.09.012] [PMID: 23026308]
[151]
Borse SP, Singh DP, Upadhyay D, Nivsarkar M. Potential synergistic effects of quercetin with other phytoconstituents of Costus pictus (insulin plant) extract in the control of hyperglycemia and prevention of NSAID-induced gastroenteropathy in diabetic rats. Food Chem Toxicol 2018; 120: 448-61.
[http://dx.doi.org/10.1016/j.fct.2018.07.036] [PMID: 30055312]
[152]
Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010; 145(2): 275-6.
[http://dx.doi.org/10.1016/j.ijcard.2009.09.553] [PMID: 19913311]
[153]
Coman C, Rugina OD, Socaciu C. Plants and natural compounds with antidiabetic Action. NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA 2012; 2012(40): 12.
[154]
Padalia H, Trivedi A, Chanda S. Antimicrobial activity of some medicinal plant extracts and its synergistic interaction with some antibiotics. J Pharm Res 2016; 10: 211-20.
[155]
Purohit P, Mishra B. Systematic review on interaction studies of synthetic antidiabetic drugs and herbal therapies. J Pharm Res 2017; 16(2): 86-94.
[http://dx.doi.org/10.18579/jpcrkc/2017/16/2/116431]
[156]
Nankar RP, Doble M. Hybrid drug combination: Anti-diabetic treatment of type 2 diabetic Wistar rats with combination of ellagic acid and pioglitazone. Phytomedicine 2017; 37: 4-9.
[http://dx.doi.org/10.1016/j.phymed.2017.10.014] [PMID: 29103827]
[157]
Nankar R, Prabhakar PK, Doble M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 2017; 37: 10-3.
[http://dx.doi.org/10.1016/j.phymed.2017.10.015] [PMID: 29126698]
[158]
Eitah HE, Maklad YA, Abdelkader NF, Gamal El Din AA, Badawi MA, Kenawy SA. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol Appl Pharmacol 2019; 365: 30-40.
[http://dx.doi.org/10.1016/j.taap.2018.12.011] [PMID: 30576699]
[159]
Ganesan D, Holkar A, Albert A, Paul E, Mariakuttikan J, Sadasivam Selvam G. Combination of ramipril and rutin alleviate alloxan induced diabetic nephropathy targeting multiple stress pathways in vivo. Biomed Pharmacother 2018; 108: 1338-46.
[http://dx.doi.org/10.1016/j.biopha.2018.09.142] [PMID: 30372836]
[160]
Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013; 2013801457
[http://dx.doi.org/10.1155/2013/801457] [PMID: 24062792]
[161]
Tabatabaei-Malazy O, Larijani B, Abdollahi M. A novel management of diabetes by means of strong antioxidants’ combination. J Medical Hypotheses Ideas 2013; 7: 25-30.
[http://dx.doi.org/10.1016/j.jmhi.2012.12.002]
[162]
Reusch JEB, Manson JE. Management of type 2 diabetes in 2017: getting to goal. JAMA 2017; 317(10): 1015-6.
[http://dx.doi.org/10.1001/jama.2017.0241] [PMID: 28249081]
[163]
Rizvi M, Ahmed J, Khan F, Shukla I, Malik A. Assessment of combination therapy by time kill curve analysis and chequerboard assay for treatment of multi-drug resistant Pseudomonas aeruginosa isolates. J Glob Antimicrob Resist 2013; 1(2): 103-8.
[http://dx.doi.org/10.1016/j.jgar.2013.04.001] [PMID: 27873576]
[164]
Costa RA, Ortega DB, Fulgêncio DLA, Costa FS, Araújo TF, Barreto CC. Checkerboard testing method indicates synergic effect of pelgipeptins against multidrug resistant Klebsiella pneumoniae. Biotechnology Research and Innovation 2019.
[http://dx.doi.org/10.1016/j.biori.2018.12.001]
[165]
Liu Y, Liu S, Zhang H, et al. Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera. Chemosphere 2017; 184: 806-11.
[http://dx.doi.org/10.1016/j.chemosphere.2017.06.045] [PMID: 28645084]
[166]
Chou T-C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 2018; 7: 49-50.
[http://dx.doi.org/10.1016/j.synres.2018.04.001]
[167]
Rodea-Palomares I, Petre AL, Boltes K, et al. Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res 2010; 44(2): 427-38.
[http://dx.doi.org/10.1016/j.watres.2009.07.026] [PMID: 19683324]
[168]
Prabhakar PK, Doble M. Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. Phytomedicine 2011; 18(4): 285-91.
[http://dx.doi.org/10.1016/j.phymed.2010.06.016] [PMID: 20724125]
[169]
Hasan MN, Begum AA, Rahman M, Haque Mollah MN. Robust identification of significant interactions between toxicogenomic biomarkers and their regulatory chemical compounds using logistic moving range chart. Comput Biol Chem 2019; 78: 375-81.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.020] [PMID: 30606695]
[170]
Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 2004; 10(23): 7994-8004.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1087] [PMID: 15585635]
[171]
Zarvandi M, Rakhshandeh H, Abazari M, Shafiee-Nick R, Ghorbani A. Safety and efficacy of a polyherbal formulation for the management of dyslipidemia and hyperglycemia in patients with advanced-stage of type-2 diabetes. Biomed Pharmacother 2017; 89: 69-75.
[http://dx.doi.org/10.1016/j.biopha.2017.02.016] [PMID: 28214690]
[172]
Srinivasan BT, Davies M. Glycaemic management of type 2 diabetes. Medicine (Baltimore) 2019; 47: 32-9.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.009]
[173]
Mahajan S, Chauhan P, Subramani SK, et al. Evaluation of “GSPF kwath”: A Gymnema sylvestre-containing polyherbal formulation for the treatment of human type 2 diabetes mellitus. Eur J Integr Med 2015; 7: 303-11.
[http://dx.doi.org/10.1016/j.eujim.2015.01.003]
[174]
Tiwari AK, Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr Sci 2002; 83: 30-8.
[175]
Kumari Y, Singh SK, Kumar R, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol 2020. 15; 149: 976-988
[176]
Drugs.com. Available from: https://www.drugs.com/actoplus_met.html (accessed on 13/02/19)
[177]
Drugs.com. Available from: https://www.drugs.com/avandaryl.html (accessed on 13/02/19)
[178]
Drug Bank. Metformin. Available from: https://www.drugbank.ca/drugs/DB00331 (accessed on 13/02/19)
[179]
Drug Bank. Glimepiride. Available from: https://www.drugbank.ca/drugs/DB00222 (accessed on 13/02/19)
[180]
Drug Bank. Pioglitazone. Available from: https://www.drugbank.ca/drugs/DB01132 (accessed on 13/02/19)
[181]
Dawabazar. Available from: www.dawabazar.in/glista_m1/cadila_pharmaceuticals_limited/ (accessed on 13/02/19)
[182]
Dawabazar. Available from: www.dawabazar.in/glista_pm2/cadila_pharmaceuticals_limited/ (accessed on 13/02/19)
[183]
Drugs.com. Available from: https://www.drugs.com/pro/glucovance.html (accessed on 13/02/19)
[184]
Cadila Pharmaceutics. Available from: Cadilapharma.com/cadila_products/glyloc-m-tab/ (accessed on 13/02/19)
[185]
Drugs.com. Available from: https://www.drugs.com/cdi/metaglip.html (accessed on 13/02/19)
[186]
Drugsupdate. Available from: www.drugsupdate.com/brand/generic/Pioglitazone/2712 (accessed on 13/02/19)
[188]