Expression of Thanatin in HEK293 Cells and Investigation of its Antibacterial Effects on Some Human Pathogens

Page: [41 - 47] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Thanatin is the smallest member of Beta-hairpin class of cationic peptide derived from insects with vast activities against various pathogens.

Objective: In this study, the antimicrobial activity of this peptide against some species of human bacterial pathogens as well as its toxicity on NIH cells were evaluated.

Methods: Thanatin DNA sequence was cloned into pcDNA3.1+ vector and transformed into a DH5α bacterial strain. Then the recombinant plasmids were transfected into HEK-293 cells by calcium phosphate co-precipitation. After applying antibiotic treatment, the supernatant medium containing thanatin was collected. The peptide quantity was estimated by SDS-PAGE and GelQuant software. The antimicrobial activity of this peptide was performed with Minimum Inhibitory Concentration (MIC) method. In addition, its toxicity on NIH cells were evaluated by MTT assay.

Results: The peptide quantity was estimated approximately 164.21 µmolL-1. The antibacterial activity of thanatin was estimated between 0.99 and 31.58 µmolL-1 using MIC method. The result of cytotoxicity test on NIH cell line showed that the peptide toxicity up to the concentration of 394.10 µmolL-1 and for 48 hours, was not statistically significant from negative control cells (P>0.05). The antimicrobial assay demonstrated that thanatin had an antibacterial effect on some tested microorganisms. The results obtained in this study also showed that thanatin had no toxicity on mammalian cell lines including HEK293 and NIH.

Conclusion: Antimicrobial peptides such as thanatin are considered to be appropriate alternatives to conventional antibiotics in treating various human pathological diseases bacteria.

Keywords: Antimicrobial peptides, recombinant, antibiotic resistant, bacteria, Thanatin, pathogens.

Graphical Abstract

[1]
Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. (Tokyo), 2013, 66(10), 571-591.
[http://dx.doi.org/10.1038/ja.2013.86] [PMID: 24002361]
[2]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem., 1994, 269(16), 11956-11961.
[PMID: 8163497]
[3]
Laxminarayan, R.; Brown, G.M. Economics of antibiotic resistance: a theory of optimal use. J. Environ. Econ. Manage., 2001, 42(2), 183-206.
[4]
Vizioli, J.; Salzet, M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci., 2002, 23(11), 494-496.
[http://dx.doi.org/10.1016/S0165-6147(02)02105-3] [PMID: 12413797]
[5]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[6]
Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[7]
Liu, Y.; Luo, J.; Xu, C.; Ren, F.; Peng, C.; Wu, G.; Zhao, J. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol., 2000, 122(4), 1015-1024.
[http://dx.doi.org/10.1104/pp.122.4.1015] [PMID: 10759497]
[8]
Dimarcq, J.L.; Bulet, P.; Hetru, C.; Hoffmann, J. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers, 1998, 47(6), 465-477.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<465:AID-BIP5>3.0.CO;2-#] [PMID: 10333738]
[9]
Fehlbaum, P.; Bulet, P.; Chernysh, S.; Briand, J.P.; Roussel, J.P.; Letellier, L.; Hetru, C.; Hoffmann, J.A. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1221-1225.
[http://dx.doi.org/10.1073/pnas.93.3.1221] [PMID: 8577744]
[10]
Ma, B.; Niu, C.; Zhou, Y.; Xue, X.; Meng, J.; Luo, X.; Hou, Z. The disulfide bond of the peptide thanatin is dispensable for its antimicrobial activity in vivo and in vitro. Antimicrob. Agents Chemother., 2016, 60(7), 4283-4289.
[http://dx.doi.org/10.1128/AAC.00041-16] [PMID: 27161645]
[11]
Sinha, S.; Zheng, L.; Mu, Y.; Ng, W.J.; Bhattacharjya, S. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci. Rep., 2017, 7(1), 17795.
[http://dx.doi.org/10.1038/s41598-017-18102-6] [PMID: 29259246]
[12]
Morikawa, N.; Hagiwara, K.; Nakajima, T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun., 1992, 189(1), 184-190.
[http://dx.doi.org/10.1016/0006-291X(92)91542-X] [PMID: 1449472]
[13]
Pagès, J.M.; Dimarcq, J.L.; Quenin, S.; Hetru, C. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae. Int. J. Antimicrob. Agents, 2003, 22(3), 265-269.
[http://dx.doi.org/10.1016/S0924-8579(03)00201-2] [PMID: 13678832]
[14]
Cirioni, O.; Wu, G.; Li, L.; Orlando, F.; Silvestri, C.; Ghiselli, R.; Shen, Z.; Gabrielli, E.; Brescini, L.; Lezoche, G.; Provinciali, M.; Guerrieri, M.; Giacometti, A. S-thanatin in vitro prevents colistin resistance and improves its efficacy in an animal model of Pseudomonas aeruginosa sepsis. Peptides, 2011, 32(4), 697-701.
[http://dx.doi.org/10.1016/j.peptides.2011.01.016] [PMID: 21262298]
[15]
Gonzalez, R.; Jennings, L.L.; Knuth, M.; Orth, A.P.; Klock, H.E.; Ou, W.; Feuerhelm, J.; Hull, M.V.; Koesema, E.; Wang, Y.; Zhang, J.; Wu, C.; Cho, C.Y.; Su, A.I.; Batalov, S.; Chen, H.; Johnson, K.; Laffitte, B.; Nguyen, D.G.; Snyder, E.Y.; Schultz, P.G.; Harris, J.L.; Lesley, S.A. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3552-3557.
[http://dx.doi.org/10.1073/pnas.0914019107] [PMID: 20133595]
[16]
Jordan, M.; Schallhorn, A.; Wurm, F.M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res., 1996, 24(4), 596-601.
[http://dx.doi.org/10.1093/nar/24.4.596] [PMID: 8604299]
[17]
Tuomanen, E.; Durack, D.T.; Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother., 1986, 30(4), 521-527.
[http://dx.doi.org/10.1128/AAC.30.4.521] [PMID: 3539006]
[18]
Bryksa, B.C.; MacDonald, L.D.; Patrzykat, A.; Douglas, S.E.; Mattatall, N.R. A C-terminal glycine suppresses production of pleurocidin as a fusion peptide in Escherichia coli. Protein Expr. Purif., 2006, 45(1), 88-98.
[http://dx.doi.org/10.1016/j.pep.2005.04.010] [PMID: 15935695]
[19]
Liu, Z.; Zhu, M.; Chen, X.; Yang, G.; Yang, T.; Yu, L.; Wang, X. Expression and antibacterial activity of hybrid antimicrobial peptide cecropinA-thanatin in Pichia pastoris. Front. Lab. Med., 2018, 2(1), 23-29.
[http://dx.doi.org/10.1016/j.flm.2018.04.001]
[20]
Wang, L.N.; Yu, B.; Han, G.Q.; He, J.; Chen, D.W. Design, expression and characterization of recombinant hybrid peptide Attacin-Thanatin in Escherichia coli. Mol. Biol. Rep., 2010, 37(7), 3495-3501.
[http://dx.doi.org/10.1007/s11033-009-9942-3] [PMID: 19967452]
[21]
Shurko, J.F.; Galega, R.S.; Li, C.; Lee, G.C. Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus. J. Antibiot. (Tokyo), 2018, 71(11), 971-974.
[http://dx.doi.org/10.1038/s41429-018-0090-7] [PMID: 30120393]
[22]
Zouhir, A.; Jridi, T.; Nefzi, A.; Ben Hamida, J.; Sebei, K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils. Pharm. Biol., 2016, 54(12), 3136-3150.
[http://dx.doi.org/10.1080/13880209.2016.1190763] [PMID: 27246787]
[23]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49(6), 1130-1138.
[http://dx.doi.org/10.1021/acs.accounts.6b00074] [PMID: 27187572]
[24]
Guilhelmelli, F.; Vilela, N.; Albuquerque, P. Derengowski, Lda.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 2013, 4, 353.
[http://dx.doi.org/10.3389/fmicb.2013.00353] [PMID: 24367355]
[25]
Bechinger, B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol., 1997, 156(3), 197-211.
[http://dx.doi.org/10.1007/s002329900201] [PMID: 9096062]
[26]
Choi, H.; Chakraborty, S.; Liu, R.; Gellman, S.H.; Weisshaar, J.C. Single-cell, time-resolved antimicrobial effects of a highly cationic, random nylon-3 copolymer on live Escherichia coli. ACS Chem. Biol., 2016, 11(1), 113-120.
[http://dx.doi.org/10.1021/acschembio.5b00547] [PMID: 26493221]
[27]
Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002, 66(4), 236-248.
[http://dx.doi.org/10.1002/bip.10260] [PMID: 12491537]
[28]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[http://dx.doi.org/10.1021/cb1001558] [PMID: 20698568]
[29]
Band, V.I.; Weiss, D.S. Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics (Basel), 2015, 4(1), 18-41.
[http://dx.doi.org/10.3390/antibiotics4010018] [PMID: 25927010]
[30]
Wu, G.; Li, X.; Fan, X.; Wu, H.; Wang, S.; Shen, Z.; Xi, T. The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides, 2011, 32(6), 1139-1145.
[http://dx.doi.org/10.1016/j.peptides.2011.03.019] [PMID: 21453736]
[31]
Richards, S.M. PhoPQ- and PmrAB-mediated Lipopolysaccharide Modification and Cationic Antimicrobial Peptide Resistance in Salmonella enterica Serovars Typhimurium and Typhi. Ph.D. Desertion; The Ohio State University, 2010.
[32]
Jung, S.; Sönnichsen, F.D.; Hung, C.W.; Tholey, A.; Boidin-Wichlacz, C.; Haeusgen, W.; Gelhaus, C.; Desel, C.; Podschun, R.; Waetzig, V.; Tasiemski, A.; Leippe, M.; Grötzinger, J. Macin family of antimicrobial proteins combines antimicrobial and nerve repair activities. J. Biol. Chem., 2012, 287(17), 14246-14258.
[http://dx.doi.org/10.1074/jbc.M111.336495] [PMID: 22396551]
[33]
Hou, Z.; Da, F.; Liu, B.; Xue, X.; Xu, X.; Zhou, Y.; Li, M.; Li, Z.; Ma, X.; Meng, J.; Jia, M.; Wang, Y.; Luo, X. R-thanatin inhibits growth and biofilm formation of methicillin-resistant Staphylococcus epidermidis in vivo and in vitro. Antimicrob. Agents Chemother., 2013, 57(10), 5045-5052.
[http://dx.doi.org/10.1128/AAC.00504-13] [PMID: 23917310]
[34]
Torrent, M.; Pulido, D.; Nogués, M.V.; Boix, E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog., 2012, 8(11)e1003005
[http://dx.doi.org/10.1371/journal.ppat.1003005] [PMID: 23133388]
[35]
Bulet, P.; Hetru, C.; Dimarcq, J.L.; Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol., 1999, 23(4-5), 329-344.
[http://dx.doi.org/10.1016/S0145-305X(99)00015-4] [PMID: 10426426]
[36]
Javadmanesh, A.; Tanhaeian, A.; Mousavi, S.Z.; Azghandi, M. Investigation of recombinant thanatin effects on the growth inhibition of e. coli mastitis in dairy cows Proceedings of the 2nd International Congress on Biomedicine, Tehran, IranDecember 24-27, 2018
[37]
Wu, G.Q.; Ding, J.X.; Li, L.X.; Wang, H.L.; Zhao, R.; Shen, Z.L. Activity of the antimicrobial peptide and thanatin analog S-thanatin on clinical isolates of Klebsiella pneumoniae resistant to conventional antibiotics with different structures. Curr. Microbiol., 2009, 59(2), 147-153.
[http://dx.doi.org/10.1007/s00284-009-9410-2] [PMID: 19459007]
[38]
Fisher, J.F.; Meroueh, S.O.; Mobashery, S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev., 2005, 105(2), 395-424.
[http://dx.doi.org/10.1021/cr030102i] [PMID: 15700950]
[39]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[40]
Robert, É.; Lefèvre, T.; Fillion, M.; Martial, B.; Dionne, J.; Auger, M. Mimicking and understanding the agglutination effect of the antimicrobial peptide thanatin using model phospholipid vesicles. Biochemistry, 2015, 54(25), 3932-3941.
[http://dx.doi.org/10.1021/acs.biochem.5b00442] [PMID: 26057537]
[41]
Hou, Z.; Lu, J.; Fang, C.; Zhou, Y.; Bai, H.; Zhang, X.; Xue, X.; Chen, Y.; Luo, X. Underlying mechanism of in vivo and in vitro activity of C-terminal-amidated thanatin against clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli. J. Infect. Dis., 2011, 203(2), 273-282.
[http://dx.doi.org/10.1093/infdis/jiq029] [PMID: 21288828]
[42]
Wu, G.; Fan, X.; Li, L.; Wang, H.; Ding, J.; Hongbin, W.; Zhao, R.; Gou, L.; Shen, Z.; Xi, T. Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli. Int. J. Antimicrob. Agents, 2010, 35(3), 250-254.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.11.009] [PMID: 20045294]
[43]
Lee, D.K.; Bhunia, A.; Kotler, S.A.; Ramamoorthy, A. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry, 2015, 54(10), 1897-1907.
[http://dx.doi.org/10.1021/bi501418m] [PMID: 25715195]
[44]
Matsuzaki, K.; Sugishita, K.; Fujii, N.; Miyajima, K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry, 1995, 34(10), 3423-3429.
[http://dx.doi.org/10.1021/bi00010a034] [PMID: 7533538]
[45]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[http://dx.doi.org/10.1016/j.peptides.2012.07.001] [PMID: 22800692]