Pyrrolo[1,2-a]azepines Coupled with Benzothiazole and Fluorinated Aryl Thiourea Scaffolds as Promising Antioxidant and Anticancer Agents

Page: [1855 - 1862] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer remains a major health concern throughout history and is responsible for huge numbers of deaths globally. The sensitivity of cancer cells to anticancer drugs is a crucial factor for developing effective treatments.

Methods: Pyrrolo[1,2-a]azepines coupled with benzothiazole and fluorinated aryl thiourea scaffolds have been synthesized, and their potential as cytotoxic agents was investigated against different cancer cell lines such as human ovarian cancer (SK-OV-3), cervical cancer (HeLa), colon adenocarcinoma (HT-29) and non-small-cell lung carcinoma (A549). Cytotoxicity of new compounds was confirmed using SRB assay against non-cancer MDCK cell line. In addition, free radical scavenging activity of new pyrrolo[1,2-a]azepines was examined by adopting DPPH and ABTS assays.

Results: The results concluded that the presence and position of fluorine atom(s) on the thiourea unit played a significant role in order to gain anticipated efficacies. Results of the cytotoxic assay against non-cancer MDCK cells showed that these new derivatives are safe to study further. New structures were confirmed using spectral and elemental analyses.

Conclusion: Pyrrolo[1,2-a]azepines endowed with a benzothiazole entity and fluorinated aryl thiourea substituents were derived aiming to furnish remarkable antioxidant and anticancer activities. New molecules generated showed interesting biological result correlated with the structure and substituent of the final derivatives. Specifically, numbers and position of fluorine atoms on the thiourea unit influenced the biological profile of the mentioned compounds.

Keywords: Pyrrolo[1, 2-a]azepines, benzothiazole, aryl thioureas, anticancer, antioxidant, SAR.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[3]
Utku, N. New approaches to treat cancer - what they can and cannot do. Biotechnol. Healthc., 2011, 8(4), 25-27.
[4]
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5, 15233-15266.
[5]
Mohamed, M.S.; Fathallah, S.S. Pyrroles and fused pyrroles: Synthesis and therapeutic activities. Mini Rev. Org. Chem., 2014, 11, 477-507.
[6]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[7]
Pilli, R.A.; Rosso, G.B.; de Oliveira, M.C. The chemistry of stemona alkaloids: An update. Nat. Prod. Rep., 2010, 27(12), 1908-1937.
[8]
Itokawa, H.; Morris-Natschke, S.L.; Akiyama, T.; Lee, K.H. Plant-derived natural product research aimed at new drug discovery. J. Nat. Med., 2008, 62(3), 263-280.
[9]
Sun, L.; Veith, J.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel. Bioorg. Med. Chem., 2010, 18(19), 7101-7112.
[10]
Fiore, D.; Proto, M.C.; Pisanti, S.; Picardi, P.; Pagano Zottola, A.C.; Butini, S.; Gemma, S.; Casagni, A.; Laezza, C.; Vitale, M.; Ligresti, A.; Di Marzo, V.; Zisterer, D.M.; Nathwani, S.; Williams, D.C.; Campiani, G.; Gazzerro, P.; Bifulco, M. Antitumor effect of pyrrolo-1,5-benzoxazepine-15 and its synergistic effect with Oxaliplatin and 5-FU in colorectal cancer cells. Cancer Biol. Ther., 2016, 17(8), 849-858.
[11]
Powell, R.G.; Weisleder, D.; Smith, C.R., Jr; Wolff, I.A. Structure of cephalotaxine and related alkaloids. Tetrahedron Lett., 1969, 10, 4081-4084.
[12]
Jaiash, D.A.; Belal, A.; Abdelgawad, M.A.; Abdellatif, K.R. Design, synthesis and biological evaluation of new pyrroloazepines with potential and selective antitumor activity. Acta Pol. Pharm., 2016, 73(2), 359-368.
[13]
Belal, A. Design, synthesis and anticancer activity evaluation of some novel pyrrolo[1,2-a]azepine derivatives. Arch. Pharm. (Weinheim), 2014, 347(7), 515-522.
[14]
Powell, R.G.; Weisleder, D.; Smith, C.R., Jr Antitumor alkaloids for Cephalataxus harringtonia: Structure and activity. J. Pharm. Sci., 1972, 61(8), 1227-1230.
[15]
Luo, C.Y.; Tang, J.Y.; Wang, Y.P. Homoharringtonine: a new treatment option for myeloid leukemia. Hematology, 2004, 9(4), 259-270.
[16]
Chanmahasathien, W.; Ohnuma, S.; Ambudkar, S.V.; Limtrakul, P. Biochemical mechanism of modulation of human P-glycoprotein by stemofoline. Planta Med., 2011, 77(18), 1990-1995.
[17]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[18]
Noolvi, M.N.; Patel, H.M.; Kaur, M. Benzothiazoles: Search for anticancer agents. Eur. J. Med. Chem., 2012, 54, 447-462.
[19]
Patel, R.V.; Patel, P.K.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem., 2012, 53, 41-51.
[20]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[21]
Kumar, V.; Chimni, S.S. Recent developments on thiourea based anticancer chemotherapeutics. Anticancer. Agents Med. Chem., 2015, 15(2), 163-175.
[22]
Mistry, B.M.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(23), 5561-5565.
[23]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28, 25-30.
[24]
Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res., 2001, 15(2), 127-130.
[25]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[26]
Adaramoye, O.A.; Sarkar, J.; Singh, N.; Meena, S.; Changkija, B.; Yadav, P.P.; Kanojiya, S.; Sinha, S. Antiproliferative action of Xylopia aethiopica fruit extract on human cervical cancer cells. Phytother. Res., 2011, 25(10), 1558-1563.
[27]
Pang, Y.N.; Liang, Y.W.; Feng, T.S.; Zhao, S.; Wu, H.; Chai, Y.S.; Lei, F.; Ding, Y.; Xing, D.M.; Du, L.J. Transportation of berberine into HepG2, HeLa and SY5Y cells: A correlation to its anti-cancer effect. PLoS One, 2014, 9(11)e112937
[28]
Jacobs, W.A.; Heidelberger, M. The ferrous sulfate and ammonia method for the reduction of nitro to amino compounds. J. Am. Chem. Soc., 1917, 39, 1435-1439.
[29]
Sayed, S.M.; Raslan, M.A.; Dawood, K.M. Synthesis and reactivity of phenylthiourea derivatives: An efficient synthesis of new thiazole-based heterocycles. J. Heterocycl. Chem., 2016, 53, 508-512.
[30]
Wang, L.; Li, P.; Li, B.; Wang, Y.; Li, J.; Song, L. Design, synthesis, and antitumor activity of novel quinazoline derivatives. Molecules, 2017, 22(10), 1624.
[31]
Azzariti, A.; Porcelli, L.; Xu, J-M.; Simone, G.M.; Paradiso, A. Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474: Cytotoxic and biomolecular effects. World J. Gastroenterol., 2006, 12(32), 5140-5147.