Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis

Page: [1288 - 1299] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.

Keywords: Cancer, theranostics, nanomedicine, imaging, drug delivery, nanoprobe.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[2]
Tariman, J.D. Changes in cancer treatment: Mabs, Mibs, Mids, Nabs, and Nibs. Nurs. Clin. North Am., 2017, 52(1), 65-81.
[http://dx.doi.org/10.1016/j.cnur.2016.10.004] [PMID: 28189167]
[3]
Hisada, Y.; Mackman, N. tissue factor and cancer: regulation, tumor growth, and metastasis. Semin. Thromb. Hemost., 2019, 45(4), 385-395.
[http://dx.doi.org/10.1055/s-0039-1687894] [PMID: 31096306]
[4]
DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin., 2014, 64(4), 252-271.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[5]
(a)Singh, D.; Minz, A.P.; Sahoo, S.K. Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discov. Today,, 2017, 22(6), 952-959.
[http://dx.doi.org/10.1016/j.drudis.2017.04.005] [PMID: 28435061]
(b)Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer, 2013, 13(10), 727-738.
[http://dx.doi.org/10.1038/nrc3597] [PMID: 24060864]
[6]
(a)Hussain, S.; Singh, A.; Nazir, S.U.; Tulsyan, S.; Khan, A.; Kumar, R.; Bashir, N.; Tanwar, P.; Mehrotra, R. Cancer drug resistance: A fleet to conquer. J. Cell. Biochem., 2019.
[http://dx.doi.org/10.1002/jcb.28782] [PMID: 31037763]
(b)Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[7]
(a)Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
(b)Mohanty, C.; Kundu, P.; Sahoo, S.K. Brain Targeting of siRNA via intranasal pathway. Curr. Pharm. Des., 2015, 21(31), 4606-4613.
[http://dx.doi.org/10.2174/138161282131151013191737] [PMID: 26486146]
[8]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[9]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[10]
Singh, A.; Sahoo, S.K. Magnetic nanoparticles: A novel platform for cancer theranostics. Drug Discov. Today, 2014, 19(4), 474-481.
[http://dx.doi.org/10.1016/j.drudis.2013.10.005] [PMID: 24140592]
[11]
Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4(6), 660-677.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[12]
Kievit, F.M.; Zhang, M. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater., 2011, 23(36), H217-H247.
[http://dx.doi.org/10.1002/adma.201102313] [PMID: 21842473]
[13]
Rappeport, E.D.; Loft, A.; Berthelsen, A.K.; von der Recke, P.; Larsen, P.N.; Mogensen, A.M.; Wettergren, A.; Rasmussen, A.; Hillingsoe, J.; Kirkegaard, P.; Thomsen, C. Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: A prospective study with intraoperative confirmation. Acta Radiol., 2007, 48(4), 369-378.
[http://dx.doi.org/10.1080/02841850701294560] [PMID: 17453514]
[14]
Kim, S.H.; Oh, S.N.; Choi, H.S.; Lee, H.S.; Jun, J.; Nam, Y.; Lee, S.H.; Lee, J.K.; Lee, H.G. USPIO enhanced lymph node MRI using 3D multi-echo GRE in a rabbit model. Contrast Media Mol. Imaging, 2016, 11(6), 544-549.
[http://dx.doi.org/10.1002/cmmi.1716] [PMID: 27976506]
[15]
(a)Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(11), 1052-1063.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
(b)Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1), 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[16]
Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1363-1384.
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[17]
Lammers, T.; Rizzo, L.Y.; Storm, G.; Kiessling, F. Personalized nanomedicine. Clin. Cancer Res., 2012, 18(18), 4889-4894.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1414] [PMID: 22829203]
[18]
Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer, 2016, 16(4), 201-218.
[http://dx.doi.org/10.1038/nrc.2016.25] [PMID: 27009393]
[19]
Kunjachan, S.; Pola, R.; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; Hermanns-Sachweh, B.; Pechar, M.; Ulbrich, K.; Hennink, W.E.; Storm, G.; Lederle, W.; Kiessling, F.; Lammers, T. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett., 2014, 14(2), 972-981.
[http://dx.doi.org/10.1021/nl404391r] [PMID: 24422585]
[20]
Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target., 2008, 16(2), 108-123.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[21]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[22]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260) 260ra149
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]
[23]
Das, M.; Duan, W.; Sahoo, S.K. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine (Lond.), 2015, 11(2), 379-389.
[http://dx.doi.org/10.1016/j.nano.2014.09.002] [PMID: 25240596]
[24]
Yu, M.K.; Kim, D.; Lee, I.H.; So, J.S.; Jeong, Y.Y.; Jon, S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small, 2011, 7(15), 2241-2249.
[http://dx.doi.org/10.1002/smll.201100472] [PMID: 21648076]
[25]
Moon, H.; Son, M.; Park, J.E.; Yoon, S.M.; Lee, S.H.; Choi, H.C. Significant increase in the water dispersibility of zinc phthalocyanine nanowires and applications in cancer phototherapy. NPG Asia Mater., 2012, 4 e12
[http://dx.doi.org/10.1038/am.2012.22]
[26]
Fan, W.; Shen, B.; Bu, W.; Chen, F.; He, Q.; Zhao, K.; Zhang, S.; Zhou, L.; Peng, W.; Xiao, Q.; Ni, D.; Liu, J.; Shi, J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, 35(32), 8992-9002.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.024] [PMID: 25103233]
[27]
Kim, T.H.; Lee, S.; Chen, X. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn., 2013, 13(3), 257-269.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[28]
La Thangue, N.B.; Kerr, D.J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol., 2011, 8(10), 587-596.
[http://dx.doi.org/10.1038/nrclinonc.2011.121] [PMID: 21862978]
[29]
(a)Swierczewska, M.; Liu, G.; Lee, S.; Chen, X. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev., 2012, 41(7), 2641-2655.
[http://dx.doi.org/10.1039/C1CS15238F] [PMID: 22187721]
(b)Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 2012, 6(8), 6546-6561.
[http://dx.doi.org/10.1021/nn3023969] [PMID: 22835068]
[30]
Roy Chowdhury, M.; Schumann, C.; Bhakta-Guha, D.; Guha, G. Cancer nanotheranostics: Strategies, promises and impediments. Biomed. Pharmacother., 2016, 84, 291-304.
[http://dx.doi.org/10.1016/j.biopha.2016.09.035] [PMID: 27665475]
[31]
Edwards, P.P.; Thomas, J.M. Gold in a metallic divided state--from Faraday to present-day nanoscience. Angew. Chem. Int. Ed. Engl., 2007, 46(29), 5480-5486.
[http://dx.doi.org/10.1002/anie.200700428] [PMID: 17562538]
[32]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Emrani, A.S.; Hassanabad, K.Y.; Ramezani, M.; Abnous, K. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater. Sci. Eng. C, 2016, 61, 753-761.
[http://dx.doi.org/10.1016/j.msec.2016.01.009] [PMID: 26838906]
[33]
Mioc, A.; Mioc, M.; Ghiulai, R.; Voicu, M.; Babuta, R.; Trandafirescu, C.; Dehelean, C.; Coricovac, D.; Soica, C.M. Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy. Curr. Med. Chem., 2019, 26(35), 6493-6513.
[http://dx.doi.org/10.2174/0929867326666190506123721] [PMID: 31057102]
[34]
McQuaid, H.N.; Muir, M.F.; Taggart, L.E.; McMahon, S.J.; Coulter, J.A.; Hyland, W.B.; Jain, S.; Butterworth, K.T.; Schettino, G.; Prise, K.M.; Hirst, D.G.; Botchway, S.W.; Currell, F.J. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci. Rep., 2016, 6, 19442.
[http://dx.doi.org/10.1038/srep19442] [PMID: 26787230]
[35]
Liu, Y.; Ma, W.; Wang, J. theranostics of gold nanoparticles with an emphasis on photoacoustic imaging and photothermal therapy. Curr. Pharm. Des., 2018, 24(23), 2719-2728.
[http://dx.doi.org/10.2174/1381612824666180604112201] [PMID: 29865999]
[36]
Singh, M.; Harris-Birtill, D.C.; Markar, S.R.; Hanna, G.B.; Elson, D.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine (Lond.), 2015, 11(8), 2083-2098.
[http://dx.doi.org/10.1016/j.nano.2015.05.010] [PMID: 26115635]
[37]
Croissant, J.G.; Zhang, D.; Alsaiari, S.; Lu, J.; Deng, L.; Tamanoi, F.; AlMalik, A.M.; Zink, J.I.; Khashab, N.M. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in vivo tumor imaging. J. Control. Release, 2016, 229, 183-191.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.030] [PMID: 27016140]
[38]
An, L.; Wang, Y.; Lin, J.; Tian, Q.; Xie, Y.; Hu, J.; Yang, S. macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy. ACS Appl. Mater. Interfaces, 2019, 11(17), 15251-15261.
[http://dx.doi.org/10.1021/acsami.9b00495] [PMID: 30964253]
[39]
Gao, F.; He, G.; Yin, H.; Chen, J.; Liu, Y.; Lan, C.; Zhang, S.; Yang, B. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale, 2019, 11(5), 2374-2384.
[http://dx.doi.org/10.1039/C8NR07188H] [PMID: 30667014]
[40]
Angelakeris, M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1642-1651.
[http://dx.doi.org/10.1016/j.bbagen.2017.02.022] [PMID: 28219721]
[41]
Hu, F.; Zhao, Y.S. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale, 2012, 4(20), 6235-6243.
[http://dx.doi.org/10.1039/c2nr31865b] [PMID: 22971876]
[42]
Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev., 2019, 138, 302-325.
[http://dx.doi.org/10.1016/j.addr.2019.01.005] [PMID: 30639256]
[43]
Janko, C.; Ratschker, T.; Nguyen, K.; Zschiesche, L.; Tietze, R.; Lyer, S.; Alexiou, C. Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy. Front. Oncol., 2019, 9, 59.
[http://dx.doi.org/10.3389/fonc.2019.00059] [PMID: 30815389]
[44]
Shevtsov, M.; Stangl, S.; Nikolaev, B.; Yakovleva, L.; Marchenko, Y.; Tagaeva, R.; Sievert, W.; Pitkin, E.; Mazur, A.; Tolstoy, P.; Galibin, O.; Ryzhov, V.; Steiger, K.; Smirnov, O.; Khachatryan, W.; Chester, K.; Multhoff, G.; Granzyme, B. Granzyme B functionalized nanoparticles targeting membrane Hsp70-Positive tumors for multimodal cancer theranostics. Small, 2019, 15(13) e1900205
[http://dx.doi.org/10.1002/smll.201900205] [PMID: 30828968]
[45]
(a)Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304.
[http://dx.doi.org/10.1016/j.addr.2009.11.002] [PMID: 19909778]
(b)Same, S.; Aghanejad, A.; Akbari Nakhjavani, S.; Barar, J.; Omidi, Y. Radiolabeled theranostics: Magnetic and gold nanoparticles. Bioimpacts, 2016, 6(3), 169-181.
[http://dx.doi.org/10.15171/bi.2016.23] [PMID: 27853680]
[46]
Mulder, W.J.; Strijkers, G.J.; Griffioen, A.W.; van Bloois, L.; Molema, G.; Storm, G.; Koning, G.A.; Nicolay, K. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug. Chem., 2004, 15(4), 799-806.
[http://dx.doi.org/10.1021/bc049949r] [PMID: 15264867]
[47]
Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 2010, 31(13), 3694-3706.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.057] [PMID: 20144478]
[48]
Uchida, M.; Flenniken, M.L.; Allen, M.; Willits, D.A.; Crowley, B.E.; Brumfield, S.; Willis, A.F.; Jackiw, L.; Jutila, M.; Young, M.J.; Douglas, T. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc., 2006, 128(51), 16626-16633.
[http://dx.doi.org/10.1021/ja0655690] [PMID: 17177411]
[49]
(a)Toraya-Brown, S.; Fiering, S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int. J. Hyperthermia, 2014, 30(8), 531-539.
[http://dx.doi.org/10.3109/02656736.2014.968640] [PMID: 25430985]
(b)Quinto, C.A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale, 2015, 7(29), 12728-12736.
[http://dx.doi.org/10.1039/C5NR02718G] [PMID: 26154916]
(c)Huang, Z.; Zhou, X.; He, Y.; Ke, X.; Wen, Y.; Zou, F.; Chen, X. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci. Rep., 2016, 6, 38072.
[http://dx.doi.org/10.1038/srep38072] [PMID: 27909289]
[50]
Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 2011, 103(2), 317-324.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[51]
(a)Sneed, P.K.; Stauffer, P.R.; McDermott, M.W.; Diederich, C.J.; Lamborn, K.R.; Prados, M.D.; Chang, S.; Weaver, K.A.; Spry, L.; Malec, M.K.; Lamb, S.A.; Voss, B.; Davis, R.L.; Wara, W.M.; Larson, D.A.; Phillips, T.L.; Gutin, P.H. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys., 1998, 40(2), 287-295.
[http://dx.doi.org/10.1016/S0360-3016(97)00731-1] [PMID: 9457811]
(b)Jones, E.L.; Oleson, J.R.; Prosnitz, L.R.; Samulski, T.V.; Vujaskovic, Z.; Yu, D.; Sanders, L.L.; Dewhirst, M.W. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clin.Oncol., 2005, 23(13), 3079-3085.
[http://dx.doi.org/10.1200/JCO.2005.05.520 ] [PMID: 15860867]
(c)Hamazoe, R.; Maeta, M.; Kaibara, N. Intraperitoneal thermochemotherapy for prevention of peritoneal recurrence of gastric cancer. Final results of a randomized controlled study. Cancer, 1994, 73(8), 2048-2052.
[http://dx.doi.org/10.1002/1097-0142(19940415)73:8<2048::AID-CNCR2820730806>3.0.CO;2-Q] [PMID: 8156509]
[52]
(a)Kobayashi, T.; Kakimi, K.; Nakayama, E.; Jimbow, K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine (Lond.), 2014, 9(11), 1715-1726.
[http://dx.doi.org/10.2217/nnm.14.106] [PMID: 25321171]
(b)Kobayashi, T.; Ito, A.; Honda, H. Magnetic Nanoparticle-Mediated Hyperthermia and Induction of Anti-Tumor Immune Responses. In: Hyperthermic Oncology from Bench to Bedside; Kokura, S.; Yoshikawa, T.; Ohnishi, T., Eds.; Springer: Singapore, 2016.
[http://dx.doi.org/10.1007/978-981-10-0719-4_13]
[53]
Balkus, K.J. Synthesis and characterization of DAM-1 type materials. MRS Proceed., 2001, 628, CC10.7.
[54]
Kumar, P.; Tambe, P.; Paknikar, K.M.; Gajbhiye, V. Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J. Control. Release, 2018, 287, 35-57.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.024] [PMID: 30125637]
[55]
(a)Mekaru, H.; Lu, J.; Tamanoi, F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Deliv. Rev., 2015, 95, 40-49.
[http://dx.doi.org/10.1016/j.addr.2015.09.009] [PMID: 26434537]
(b)Kesse, S.; Boakye-Yiadom, K.O.; Ochete, B.O.; Opoku-Damoah, Y.; Akhtar, F.; Filli, M.S.; Asim Farooq, M.; Aquib, M.; Maviah Mily, B.J.; Murtaza, G.; Wang, B. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics, 2019, 11(2) E77
[http://dx.doi.org/10.3390/pharmaceutics11020077] [PMID: 30781850]
[56]
Zhang, R.; Wu, C.; Tong, L.; Tang, B.; Xu, Q.H. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir, 2009, 25(17), 10153-10158.
[http://dx.doi.org/10.1021/la902235d] [PMID: 19637879]
[57]
Tsai, C.P.; Hung, Y.; Chou, Y.H.; Huang, D.M.; Hsiao, J.K.; Chang, C.; Chen, Y.C.; Mou, C.Y. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small, 2008, 4(2), 186-191.
[http://dx.doi.org/10.1002/smll.200700457] [PMID: 18205156]
[58]
Zhou, H.; Chen, J.; Sutter, E.; Feygenson, M.; Aronson, M.C.; Wong, S.S. Water-dispersible, multifunctional, magnetic, luminescent silica-encapsulated composite nanotubes. Small, 2010, 6(3), 412-420.
[http://dx.doi.org/10.1002/smll.200901276] [PMID: 20025080]
[59]
Shi, S.; Chen, F.; Goel, S.; Graves, S.A.; Luo, H.; Theuer, C.P.; Engle, J.W.; Cai, W. In vivo tumor-targeted dual-modality PET/Optical imaging with a yolk/shell-structured silica nanosystem. Nano-Micro Lett., 2018, 10(4), 65.
[http://dx.doi.org/10.1007/s40820-018-0216-2] [PMID: 30393713]
[60]
Park, J.H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater., 2009, 8(4), 331-336.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[61]
Shi, J.; Sun, X.; Li, J.; Man, H.; Shen, J.; Yu, Y.; Zhang, H. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials, 2015, 37, 260-270.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.033] [PMID: 25453956]
[62]
Majoros, I.J.; Williams, C.R.; Baker, J.R., Jr Current dendrimer applications in cancer diagnosis and therapy. Curr. Top. Med. Chem., 2008, 8(14), 1165-1179.
[http://dx.doi.org/10.2174/156802608785849049] [PMID: 18855703]
[63]
Zhou, K.; Nguyen, L.H.; Miller, J.B.; Yan, Y.; Kos, P.; Xiong, H.; Li, L.; Hao, J.; Minnig, J.T.; Zhu, H.; Siegwart, D.J. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 520-525.
[http://dx.doi.org/10.1073/pnas.1520756113] [PMID: 26729861]
[64]
You, S.; Jung, H.Y.; Lee, C.; Choe, Y.H.; Heo, J.Y.; Gang, G.T.; Byun, S.K.; Kim, W.K.; Lee, C.H.; Kim, D.E.; Kim, Y.I.; Kim, Y. High-performance dendritic contrast agents for X-ray computed tomography imaging using potent tetraiodobenzene derivatives. J. Control. Release, 2016, 226, 258-267.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.036] [PMID: 26812006]
[65]
Wiener, E.C.; Brechbiel, M.W.; Brothers, H.; Magin, R.L.; Gansow, O.A.; Tomalia, D.A.; Lauterbur, P.C. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn. Reson. Med., 1994, 31(1), 1-8.
[http://dx.doi.org/10.1002/mrm.1910310102] [PMID: 8121264]
[66]
Fan, Y.; Zhang, J.; Shi, M.; Li, D.; Lu, C.; Cao, X.; Peng, C.; Mignani, S.; Majoral, J.P.; Shi, X. Poly(amidoamine) dendrimer-coordinated copper(ii) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis. Nano Lett., 2019, 19(2), 1216-1226.
[http://dx.doi.org/10.1021/acs.nanolett.8b04757] [PMID: 30698017]
[67]
Wong, P.T.; Chen, D.; Tang, S.; Yanik, S.; Payne, M.; Mukherjee, J.; Coulter, A.; Tang, K.; Tao, K.; Sun, K.; Baker, J.R., Jr; Choi, S.K. Modular integration of upconverting nanocrystal-dendrimer composites for folate receptor-specific NIR imaging and light-triggered drug release. Small, 2015, 11(45), 6078-6090.
[http://dx.doi.org/10.1002/smll.201501575] [PMID: 26476917]
[68]
Taratula, O.; Schumann, C.; Duong, T.; Taylor, K.L.; Taratula, O. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale, 2015, 7(9), 3888-3902.
[http://dx.doi.org/10.1039/C4NR06050D] [PMID: 25422147]
[69]
Taratula, O.; Patel, M.; Schumann, C.; Naleway, M.A.; Pang, A.J.; He, H.; Taratula, O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int. J. Nanomedicine, 2015, 10, 2347-2362.
[http://dx.doi.org/10.2147/IJN.S81097] [PMID: 25848255]
[70]
Perche, F.; Torchilin, V.P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J. Drug Deliv., 2013, 2013 705265
[http://dx.doi.org/10.1155/2013/705265] [PMID: 23533772]
[71]
(a)Grange, C.; Geninatti-Crich, S.; Esposito, G.; Alberti, D.; Tei, L.; Bussolati, B.; Aime, S.; Camussi, G. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res., 2010, 70(6), 2180-2190.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2821] [PMID: 20215497]
(b)Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. :Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
(c)Xing, H.; Hwang, K.; Lu, Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics, 2016, 6(9), 1336-1352.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
[72]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
[73]
Lee, H.; Shields, A.F.; Siegel, B.A.; Miller, K.D.; Krop, I.; Ma, C.X.; LoRusso, P.M.; Munster, P.N.; Campbell, K.; Gaddy, D.F.; Leonard, S.C.; Geretti, E.; Blocker, S.J.; Kirpotin, D.B.; Moyo, V.; Wickham, T.J.; Hendriks, B.S. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res., 2017, 23(15), 4190-4202.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3193] [PMID: 28298546]
[74]
Ren, L.; Chen, S.; Li, H.; Zhang, Z.; Zhong, J.; Liu, M.; Zhou, X. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater., 2016, 35, 260-268.
[http://dx.doi.org/10.1016/j.actbio.2016.02.011] [PMID: 26873364]
[75]
(a)Mi, P.; Wang, F.; Nishiyama, N.; Cabral, H. Molecular cancer imaging with polymeric nanoassemblies: From tumor detection to theranostics. Macromol. Biosci.,, 2017, 17(1)
[http://dx.doi.org/10.1002/mabi.201600305] [PMID: 27739631]
(b)Blau, R.; Krivitsky, A.; Epshtein, Y.; Satchi-Fainaro, R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist. Updat., 2016, 27, 39-58.
[http://dx.doi.org/10.1016/j.drup.2016.06.003] [PMID: 27449597]
[76]
Liu, F.; Chen, Y.; Li, Y.; Guo, Y.; Cao, Y.; Li, P.; Wang, Z.; Gong, Y.; Ran, H. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5139-5158.
[http://dx.doi.org/10.2147/IJN.S167043] [PMID: 30233177]
[77]
Sharker, S.M.; Lee, J.E.; Kim, S.H.; Jeong, J.H. In, I.; Lee, H.; Park, S.Y. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide. Biomaterials, 2015, 61, 229-238.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.040] [PMID: 26005762]
[78]
Tambe, P.; Kumar, P.; Paknikar, K.M.; Gajbhiye, V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J. Control. Release, 2019, 299, 64-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.026] [PMID: 30797002]
[79]
Nishiyama, N.; Matsumura, Y.; Kataoka, K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci., 2016, 107(7), 867-874.
[http://dx.doi.org/10.1111/cas.12960] [PMID: 27116635]
[80]
Yu, G.; Ning, Q.; Mo, Z.; Tang, S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1476-1487.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[81]
Muthu, M.S.; Kulkarni, S.A.; Liu, Y.; Feng, S.S. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine (Lond.), 2012, 7(3), 353-364.
[http://dx.doi.org/10.2217/nnm.11.111] [PMID: 22329606]
[82]
Yang, Z.; Cheng, R.; Zhao, C.; Sun, N.; Luo, H.; Chen, Y.; Liu, Z.; Li, X.; Liu, J.; Tian, Z. Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics, 2018, 8(15), 4097-4115.
[http://dx.doi.org/10.7150/thno.26195] [PMID: 30128039]
[83]
Lee, S.Y.; Yang, C.Y.; Peng, C.L.; Wei, M.F.; Chen, K.C.; Yao, C.J.; Shieh, M.J. A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials, 2016, 86, 92-105.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.068] [PMID: 26896610]
[84]
Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y.; Li, Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 2016, 10(3), 3496-3508.
[http://dx.doi.org/10.1021/acsnano.5b07706] [PMID: 26866752]
[85]
(a)Zhang, R.X.; Ahmed, T.; Li, L.Y.; Li, J.; Abbasi, A.Z.; Wu, X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 2017, 9(4), 1334-1355.
[PMID: 27973629]
(b)Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4) E191
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[86]
Mirahadi, M.; Ghanbarzadeh, S.; Ghorbani, M.; Gholizadeh, A.; Hamishehkar, H. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Ther. Deliv., 2018, 9(8), 557-569.
[http://dx.doi.org/10.4155/tde-2018-0020] [PMID: 30071803]
[87]
Shao, D.; Li, J.; Guan, F.; Pan, Y.; Xiao, X.; Zhang, M.; Zhang, H.; Chen, L. Selective inhibition of liver cancer growth realized by the intrinsic toxicity of a quantum dot-lipid complex. Int. J. Nanomedicine, 2014, 9, 5753-5769.
[http://dx.doi.org/10.2147/IJN.S73185] [PMID: 25525357]
[88]
Bae, K.H.; Lee, J.Y.; Lee, S.H.; Park, T.G.; Nam, Y.S. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv. Healthc. Mater., 2013, 2(4), 576-584.
[http://dx.doi.org/10.1002/adhm.201200338] [PMID: 23184673]
[89]
Zhong, J.; Yang, S.; Wen, L.; Xing, D. Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles. J. Control. Release, 2016, 226, 77-87.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.010] [PMID: 26860283]
[90]
Moskvin, M.; Babič, M.; Reis, S.; Cruz, M.M.; Ferreira, L.P.; Carvalho, M.D.; Lima, S.A.C.; Horák, D. Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf. B Biointerfaces, 2018, 161, 35-41.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.034] [PMID: 29040832]
[91]
Kang, M.S.; Singh, R.K.; Kim, T.H.; Kim, J.H.; Patel, K.D.; Kim, H.W. Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater., 2017, 55, 466-480.
[http://dx.doi.org/10.1016/j.actbio.2017.03.054] [PMID: 28373086]
[92]
Liu, Y.; Ng, Y.; Toh, M.R.; Chiu, G.N.C. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. J. Control. Release, 2015, 220, 438-446.
[93]
Zhao, P.; Zheng, M.; Luo, Z.; Gong, P.; Gao, G.; Sheng, Z.; Zheng, C.; Ma, Y.; Cai, L. NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep., 2015, 5, 14258.
[http://dx.doi.org/10.1038/srep14258] [PMID: 26400780]
[94]
Lee, J.; Jeong, E.J.; Lee, Y.K.; Kim, K.; Kwon, I.C.; Lee, K.Y. Optical imaging and gene therapy with neuroblastoma-targeting polymeric nanoparticles for potential theranostic applications. Small, 2016, 12(9), 1201-1211.
[http://dx.doi.org/10.1002/smll.201501913] [PMID: 26573885]
[95]
Chen, Y.; Nan, J.; Lu, Y.; Wang, C.; Chu, F.; Gu, Z. Hybrid Fe3O4-Poly(acrylic acid) nanogels for theranostic cancer treatment. J. Biomed. Nanotechnol., 2015, 11(5), 771-779.
[http://dx.doi.org/10.1166/jbn.2015.2001] [PMID: 26349390]
[96]
Chen, Y.; Li, Z.; Wang, H.; Wang, Y.; Han, H.; Jin, Q.; Ji, J. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-IR imaging and photothermal therapy of pancreatic cancer. ACS Appl. Mater. Interfaces, 2016, 8(11), 6852-6858.
[http://dx.doi.org/10.1021/acsami.6b00251] [PMID: 26918365]
[97]
Chen, H.P.; Chen, M.H.; Tung, F.I.; Liu, T.Y. A novel micelle-forming material used for preparing a theranostic vehicle exhibiting enhanced in vivo therapeutic efficacy. J. Med. Chem., 2015, 58(9), 3704-3719.
[http://dx.doi.org/10.1021/jm501996y] [PMID: 25933159]