For decades, neutrophils were generally regarded as the cells of innate immunity with proinflammatory and phagocytic properties involved in a dual activity, beneficial (antimicrobial) and detrimental (tissue damage). Importantly, until the discovery of toll-like receptors (TLRs), a role of neutrophils in adaptive immunity was limited to the effector stage of humoral response and phagocytosis of opsonized antigens. Moreover, in common opinion, neutrophils, as well as the entire innate immune system, were not functionally associated with adaptive immunity. At the time we demonstrated protein chlorination by HOCl, the major product of neutrophil MPO-halide system enhances protein immunogenicity. Based on this discovery, we proposed, as the first, a new role for neutrophils as APC-accessory cells involved in the induction stage of adaptive immunity. Thereafter, we developed our theory concerning the role of neutrophils as the cells which link innate and adaptive immunity. We proposed that protein modification by HOCl may act as a neutrophildependent molecular tagging system, by which sentinel dendritic cells can faster recognise pathogen- derived antigens. Contemporaneously, it was demonstrated that taurine, the most abundant free amino acid in neutrophil cytosol and the major scavenger of HOCl, is a part of the oxidantantioxidant network and is responsible for the regulation and termination of acute inflammation. Moreover, it has been described, that taurine chloramine (TauCl), the physiological products of the reaction of HOCl with taurine, show anti-microbial and anti-inflammatory properties.
In this review, the role of HOCl, taurine and TauCl in innate and adaptive immunity will be discussed.
Keywords: Neutrophils, myeloperoxidase, hypochlorous acid, taurine, taurine chloramine, inflammation, protein oxidation, antigen processing.