[1]
Whitford, D. Proteins: structure and function; John Wiley and Sons, 2013.
[36]
Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C. iMethyl-PseAAC:
identification of protein methylation sites via a pseudo amino acid
composition approach BioMed Res. Int, 2014, 2014
[53]
Awais, M.; Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.-C. iPhosH-PseAAC: Identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the Chou's 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans. Comput. Biol. Bioinform, 2019.
[60]
Wang, L.; Zhang, R.; Mu, Y. Fu-SulfPred: Identification of protein s-sulfenylation sites by fusing forests via Chou’s general PseAAC. 2019, 461, 51-58.
[61]
Xie, H.-L.; Fu, L.; Nie, X.-D. J.; Design, P.E. Selection, using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC. 2013, 26(11), 735-742.
[68]
Jia, C.; Zhang, Y.; Wang, Z. SulfoTyrP: A high accuracy predictor of protein sulfotyrosine sites. Match Commun. Math. Comput. Chem, 2014, 71, 227-240.
[79]
Chen, W.; Feng, P-M.; Deng, E-Z.; Lin, H.; Chou, K-C. iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem., 2014, 462, 76-83.
[80]
Chen, W.; Feng, P-M.; Lin, H.; Chou, K-C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[82]
Chou, K.; Cheng, X.; Xiao, X. pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med. Chem., 2018, 15(5), 472-485.
[83]
Ding, H.; Deng, E.-Z.; Yuan, L.-F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.-C. A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. 2014, 2014, 1-10.
[87]
Khan, Y.D.; Batool, A.; Rasool, N.; Khan, S.A.; Chou, K-C. Prediction of nitrosocysteine sites using position and composition variant features. Lett. Org. Chem., 2019, 16(4), 283-293.
[88]
Li, J.-X.; Wang, S.-Q.; Du, Q.-S.; Wei, H.; Li, X.-M.; Meng, J.-Z.; Wang, Q.-Y.; Xie, N.-Z.; Huang, R.-B.; Chou, K.-C. Simulated protein thermal detection (SPTD) for enzyme thermostability study and an application example for pullulanase from Bacillus deramificans. 2018, 24(34), 4023-4033.
[90]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K-C. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2015, 32(3), 362-369.
[92]
Liu, Z.; Xiao, X.; Qiu, W-R.; Chou, K-C.J.A.b. iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[93]
Lu, Y.; Wang, S.; Wang, J.; Zhou, G.; Zhang, Q.; Zhou, X.; Niu, B.; Chen, Q.; Chou, K-C. An epidemic avian influenza prediction model based on google trends. Lett. Org. Chem., 2019, 16(4), 303-310.
[94]
Xiao, X.; Min, J.-L.; Lin, W.-Z.; Liu, Z.; Cheng, X.; Chou, K.-C. Dynamics, iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. 2015, 33(10), 2221-2233.
[97]
Chou, K.C.; Cai, Y.D. Prediction and classification of protein subcellular location-sequenceorder effect and pseudo amino acid composition. J. Cell. Biochem., 2003, 90(6), 1250-1260.
[101]
Chou, K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2004, 21(1), 10-19.
[102]
Ahmad, J.; Hayat, M. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components. J. Theor. Biol., 2019, 463, 99-109.
[103]
Akbar, S.; Hayat, M. iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J. Theor. Biol., 2018, 455, 205-211.
[106]
Dehzangi, A.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳ s general PseAAC. J. Theor. Biol., 2015, 364, 284-294.
[107]
Ju, Z.; He, J-J. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC. J. Mol. Graph. Model., 2017, 76, 356-363.
[108]
Kabir, M.; Hayat, M. iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples. Mol. Genet. Genomics, 2016, 291(1), 285-296.
[110]
Tahir, M.; Hayat, M.; Khan, S. iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition. Mol. Genet. Genomics, 2019, 294(1), 199-210.
[111]
Yu, B.; Li, S.; Qiu, W-Y.; Chen, C.; Chen, R-X.; Wang, L.; Wang, M-H.; Zhang, Y. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget, 2017, 8(64)107640
[116]
Cao, D-S.; Xu, Q-S.; Liang, Y-Z.J.B. Propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013, 29(7), 960-962.
[122]
Tahir, M.; Tayara, H.; Chong, K. iRNA-PseKNC (2methyl): Identify RNA 2′-O-methylation sites by convolution neural network and Chou’s pseudo components. J. Theor. Biol., 2019, 465, 1-6.
[123]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K-C. Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1), W65-W71.
[124]
Liu, B.; Wu, H.; Chou, K-C.J.N.S. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2017, 9(04), 67.
[126]
Khan, Y.D.; Ahmad, F.; Anwar, M.W. A neuro-cognitive approach for iris recognition using back propagation. World Appl. Sci. J., 2012, 16(5), 678-685.
[131]
Chou, K.C. Bioinformatics, Prediction of protein signal sequences and their cleavage sites. Proteins, 2001, 42(1), 136-139.
[132]
Chou, K-C. Prediction of signal peptides using scaled window. Peptides, 2001, 22(12), 1973-1979.
[150]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[151]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C.J.M. iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21(1), 95.
[152]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C. Dynamics, Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J. Biomol. Struct. Dyn., 2016, 34(9), 1946-1961.
[154]
Qiu, W-R.; Xiao, X.; Chou, K-C. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15(2), 1746-1766.
[156]
Xiao, X.; Ye, H-X.; Liu, Z.; Jia, J-H.; Chou, K-C.J.O. iROS-gPseKNC: Predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget, 2016, 7(23), 34180.
[157]
Yang, H.; Qiu, W-R.; Liu, G.; Guo, F-B.; Chen, W.; Chou, K-C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883.
[172]
Cheng, X.; Zhao, S-G.; Xiao, X.; Chou, K-C. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8(5), 58494-346.
[185]
Althaus, I.W.; Chou, J.; Gonzales, A.; Deibel, M.; Chou, K.; Kezdy, F.; Romero, D.; Aristoff, P.; Tarpley, W.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[187]
Althaus, I.W.; Gonzales, A.; Chou, J.; Romero, D.; Deibel, M.; Chou, K-C.; Kezdy, F.; Resnick, L.; Busso, M.; So, A. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[188]
Chou, K.; Forsen, S.; Zhou, G. Schematic rules for deriving apparent rate constants. Can. J. Chem., 1980, 16(4), 109-113.
[191]
Chou, K-C.J.J.o.B.C. Graphic rules in steady and non-steady state enzyme kinetics. J. Biol. Chem., 1989, 264(20), 12074-12079.
[192]
Chou, K-C. Applications of graph theory to enzyme kinetics and protein folding kinetics: Steady and non-steady-state systems. Biophys. Chem., 1990, 35(1), 1-24.
[194]
Chou, K. Graph theory of enzyme kinetics. Sci. Sin., 1979, 22, 341-358.
[195]
Chen, K-C.; Carter, R.E.; Forsen, S. A new graphical-method for deriving rate-equations for complicated mechanisms. Chem. Scr., 1981, 18(2), 82-86.
[201]
Shen, H-B.; Song, J-N.; Chou, K-C. Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J. Biomed. Sci. Eng., 2009, 2, 136-143.
[202]
Chou, K.; Chen, N.; Forsen, S. The biological functions of low-frequency phonons. 2. Cooperative effects. Biophys. Chem., 1981, 18(3), 126-132.
[205]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K. pLoc_bal-mVirus: Predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset. Med. Chem., 2018, 15(5), 496-509.