Antitumoral Potential of Lansbermin-I, a Novel Disintegrin from Porthidium lansbergii lansbergii Venom on Breast Cancer Cells

Page: [2069 - 2078] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Disintegrins from snake venoms bind with high specificity cell surface integrins, which are important pharmacological targets associated with cancer development and progression.

Objective: In this study, we isolated a disintegrin from the Porthidium lansbergii lansbergii venom and evaluated its antitumoral effects on breast cancer cells.

Methods: The isolation of the disintegrin was performed on RP-HPLC and the inhibition of platelet aggregation was evaluated on human platelet-rich plasma. The inhibition of cell adhesion was also evaluated in vitro on cultures of cell lines by the MTT method as well as the inhibition of breast cancer cell migration by the wound healing assay. The binding of the disintegrin to integrin subunits was verified by flow cytometry and confocal microscopy. Finally, inhibition of angiogenesis was assessed in vitro on HUVEC cells and the concentration of VEGF was measured in the cellular supernatants.

Results: The disintegrin, named Lansbermin-I, is a low molecular weight protein (< 10 kDa) that includes an RGD on its sequence identified previously. Lansbermin-I showed potent inhibition of ADP and collagen-induced platelet aggregation on human plasma and also displayed inhibitory effects on the adhesion and migration of breast cancer MCF7 and MDA-MB 231cell lines, without affecting nontumorigenic breast MCF-10A and lung BEAS cells. Additionally, Lansbermin-I prevented MCF7 cells to adhere to fibronectin and collagen, and also inhibited in vitro angiogenesis on human endothelial HUVEC cells.

Conclusion: Our results display the first report on the antitumor and anti-metastatic effects of an RGDdisintegrin isolated from a Porthidium snake venom by possibly interfering with α2 and/or β1-containing integrins. Thus, Lansbermin-I could be an attractive model to elucidate the role of disintegrins against breast cancer development.

Keywords: Snake venoms, ADAM proteins, Antitumor agents, Anti-angiogenic drugs, Integrins, Cancer cells.

Graphical Abstract

[1]
Li, L.; Huang, J.; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins (Basel), 2018, 10(9), 346.
[http://dx.doi.org/10.3390/toxins10090346] [PMID: 30158426]
[2]
Juárez, P.; Comas, I.; González-Candelas, F.; Calvete, J.J. Evolution of snake venom disintegrins by positive Darwinian selection. Mol. Biol. Evol., 2008, 25(11), 2391-2407.
[http://dx.doi.org/10.1093/molbev/msn179] [PMID: 18701431]
[3]
Jiménez-Charris, E.; Montealegre-Sanchez, L.; Solano-Redondo, L.; Mora-Obando, D.; Camacho, E.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg’s hognose viper) from the Atlantic Department of Colombia. J. Proteomics, 2015, 114, 287-299.
[http://dx.doi.org/10.1016/j.jprot.2014.11.016] [PMID: 25496801]
[4]
Oliva, I.B.; Coelho, R.M.; Barcellos, G.G.; Saldanha-Gama, R.; Wermelinger, L.S.; Marcinkiewicz, C.; Benedeta Zingali, R.; Barja-Fidalgo, C. Effect of RGD-disintegrins on melanoma cell growth and metastasis: involvement of the actin cytoskeleton, FAK and c-Fos. Toxicon, 2007, 50(8), 1053-1063.
[http://dx.doi.org/10.1016/j.toxicon.2007.07.016] [PMID: 17854854]
[5]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[6]
Thangam, R.; Gunasekaran, P.; Kaveri, K.; Sridevi, G.; Sundarraj, S.; Paulpandi, M.; Kannan, S. A novel disintegrin protein from naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro. Process Biochem., 2012, 47, 1243-1249.
[http://dx.doi.org/10.1016/j.procbio.2012.04.020]
[7]
Calvete, J.J.; Moreno-Murciano, M.P.; Theakston, R.D.G.; Kisiel, D.G.; Marcinkiewicz, C. Snake venom disintegrins: Novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J., 2003, 372(Pt 3), 725-734.
[http://dx.doi.org/10.1042/bj20021739] [PMID: 12667142]
[8]
Yang, R-S.; Tang, C-H.; Chuang, W-J.; Huang, T-H.; Peng, H-C.; Huang, T-F.; Fu, W-M. Inhibition of tumor formation by snake venom disintegrin. Toxicon, 2005, 45(5), 661-669.
[http://dx.doi.org/10.1016/j.toxicon.2005.01.013] [PMID: 15777962]
[9]
Swenson, S.; Ramu, S.; Markland, F.S. Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr. Pharm. Des., 2007, 13(28), 2860-2871.
[http://dx.doi.org/10.2174/138161207782023793] [PMID: 17979731]
[10]
Calvete, J.J. The continuing saga of snake venom disintegrins. Toxicon, 2013, 62, 40-49.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.005] [PMID: 23010163]
[11]
Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848.
[http://dx.doi.org/10.1038/nrc3397] [PMID: 23151603]
[12]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med., 2017, 1, 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[13]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[14]
Reeder, J.G.; Vogel, V.G. Breast Cancer Prevention. In:Advances in Breast Cancer Management, 2nd ed; Springer: Boston, MA, 2008, pp. 149-164.
[15]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[16]
Kang, I.C.; Lee, Y.D.; Kim, D.S. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res., 1999, 59(15), 3754-3760.
[PMID: 10446992]
[17]
Yue, P.Y.K.; Leung, E.P.Y.; Mak, N.K.; Wong, R.N.S. A simplified method for quantifying cell migration/wound healing in 96-well plates. J. Biomol. Screen., 2010, 15(4), 427-433.
[http://dx.doi.org/10.1177/1087057110361772] [PMID: 20208035]
[18]
Jiménez-Charris, E.; Lopes, D.S.; Gimenes, S.N.C.; Teixeira, S.C.; Montealegre-Sánchez, L.; Solano-Redondo, L.; Fierro-Pérez, L.; Rodrigues Ávila, V.M. Antitumor potential of Pllans-II, an acidic Asp49-PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. Int. J. Biol. Macromol., 2019, 122, 1053-1061.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.053] [PMID: 30218735]
[19]
Imbalzano, K.M.; Tatarkova, I.; Imbalzano, A.N.; Nickerson, J.A. Increasingly transformed MCF-10A cells have a progressively tumor-like phenotype in three-dimensional basement membrane culture. Cancer Cell Int., 2009, 9, 7.
[http://dx.doi.org/10.1186/1475-2867-9-7] [PMID: 19291318]
[20]
Arruda Macêdo, J.K.; Fox, J.W.; de Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci., 2015, 16(6), 532-548.
[http://dx.doi.org/10.2174/1389203716666150515125002] [PMID: 26031306]
[21]
Jiménez-Charris, E.; Montealegre-Sánchez, L.; Solano-Redondo, L.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Divergent functional profiles of acidic and basic phospholipases A2 in the venom of the snake Porthidium lansbergii lansbergii. Toxicon, 2016, 119, 289-298.
[http://dx.doi.org/10.1016/j.toxicon.2016.07.006] [PMID: 27381371]
[22]
McLane, M.A.; Paquette-Straub, C. Scientific and standardization committee communications: classification and nomenclature of disintegrins isolated from snake venoms. J. Thromb. Haemost., 2007, 5(9), 1971-1971.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02671.x] [PMID: 17596129]
[23]
Kini, R.M.; Evans, H.J. Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon, 1992, 30(3), 265-293.
[http://dx.doi.org/10.1016/0041-0101(92)90869-7] [PMID: 1529462]
[24]
Marcinkiewicz, C. Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int. J. Biochem. Cell Biol., 2013, 45(9), 1974-1986.
[http://dx.doi.org/10.1016/j.biocel.2013.06.009] [PMID: 23811033]
[25]
Singh, C.; Shyanti, R.K.; Singh, V.; Kale, R.K.; Mishra, J.P.N.; Singh, R.P. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem. Biophys. Res. Commun., 2018, 499(2), 374-380.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.169] [PMID: 29577899]
[26]
McLane, M.A.; Joerger, T.; Mahmoud, A. Disintegrins in health and disease. Front. Biosci., 2008, 13, 6617-6637.
[http://dx.doi.org/10.2741/3177] [PMID: 18508683]
[27]
Wierzbicka-Patynowski, I.; Niewiarowski, S.; Marcinkiewicz, C.; Calvete, J.J.; Marcinkiewicz, M.M.; McLane, M.A. Structural requirements of echistatin for the recognition of α(v)β(3) and α(5)β(1) integrins. J. Biol. Chem., 1999, 274(53), 37809-37814.
[http://dx.doi.org/10.1074/jbc.274.53.37809] [PMID: 10608843]
[28]
Chang, Y-T.; Shiu, J-H.; Huang, C-H.; Chen, Y-C.; Chen, C-Y.; Chang, Y-S.; Chuang, W-J. Effects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition. PLoS One, 2017, 12(4)e0175321
[http://dx.doi.org/10.1371/journal.pone.0175321] [PMID: 28399159]
[29]
Marcinkiewicz, C. Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr. Pharm. Des., 2005, 11(7), 815-827.
[http://dx.doi.org/10.2174/1381612053381765] [PMID: 15777236]
[30]
Souza, D.H.; Iemma, M.R.; Ferreira, L.L.; Faria, J.P.; Oliva, M.L.; Zingali, R.B.; Niewiarowski, S.; Selistre-de-Araujo, H.S. The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion. Arch. Biochem. Biophys., 2000, 384(2), 341-350.
[http://dx.doi.org/10.1006/abbi.2000.2120] [PMID: 11368322]
[31]
Eble, J.A.; Niland, S.; Dennes, A.; Schmidt-Hederich, A.; Bruckner, P.; Brunner, G. Rhodocetin antagonizes stromal tumor invasion in vitro and other alpha2beta1 integrin-mediated cell functions. Matrix Biol., 2002, 21(7), 547-558.
[http://dx.doi.org/10.1016/S0945-053X(02)00068-9] [PMID: 12475639]
[32]
Rosenow, F.; Ossig, R.; Thormeyer, D.; Gasmann, P.; Schlüter, K.; Brunner, G.; Haier, J.; Eble, J.A. Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis [corrected]. Neoplasia, 2008, 10(2), 168-176.
[http://dx.doi.org/10.1593/neo.07898] [PMID: 18283339]
[33]
Grzesiak, J.J.; Bouvet, M. The alpha2beta1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines. Br. J. Cancer, 2006, 94(9), 1311-1319.
[http://dx.doi.org/10.1038/sj.bjc.6603088] [PMID: 16622460]
[34]
Hall, C.L.; Dubyk, C.W.; Riesenberger, T.A.; Shein, D.; Keller, E.T.; van Golen, K.L.; Type, I. Type I collagen receptor (alpha2beta1) signaling promotes prostate cancer invasion through RhoC GTPase. Neoplasia, 2008, 10(8), 797-803.
[http://dx.doi.org/10.1593/neo.08380] [PMID: 18670640]
[35]
Moritz, M.N. de O.; Eustáquio, L.M.S.; Micocci, K.C.; Nunes, A.C.C.; dos Santos, P.K. de Castro Vieira, T.; Selistre-de-Araujo, H.S. Alternagin-C binding to A2β1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J. Venom. Anim. Toxins Incl. Trop. Dis., 2018, 24, 13.
[http://dx.doi.org/10.1186/s40409-018-0150-2] [PMID: 29713337]
[36]
Zutter, M.M.; Santoro, S.A.; Staatz, W.D.; Tsung, Y.L. Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7411-7415.
[http://dx.doi.org/10.1073/pnas.92.16.7411] [PMID: 7638207]
[37]
Monteiro, D.A.; Selistre-de-Araújo, H.S.; Tavares, D.; Fernandes, M.N.; Kalinin, A.L.; Rantin, F.T. Alternagin-C (ALT-C), a disintegrin-like Cys-rich protein isolated from the venom of the snake Rhinocerophis alternatus, stimulates angiogenesis and antioxidant defenses in the liver of freshwater fish, Hoplias malabaricus. Toxins (Basel), 2017, 9(10), 9.
[http://dx.doi.org/10.3390/toxins9100307] [PMID: 28956818]
[38]
Yamauchi, M.; Imajoh-Ohmi, S.; Shibuya, M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci., 2007, 98(9), 1491-1497.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00534.x] [PMID: 17596205]
[39]
Lichtner, R.B.; Howlett, A.R.; Lerch, M.; Xuan, J-A.; Brink, J.; Langton-Webster, B.; Schneider, M.R. Negative cooperativity between alpha 3 β 1 and alpha 2 β 1 integrins in human mammary carcinoma MDA MB 231 cells. Exp. Cell Res., 1998, 240(2), 368-376.
[http://dx.doi.org/10.1006/excr.1998.4012] [PMID: 9597010]
[40]
Silva, M.C.C.; de Paula, C.A.A.; Ferreira, J.G.; Paredes-Gamero, E.J.; Vaz, A.M.S.F.; Sampaio, M.U.; Correia, M.T.S.; Oliva, M.L.V. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim. Biophys. Acta, 2014, 1840(7), 2262-2271.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.009] [PMID: 24641823]
[41]
Kato, H.; Liao, Z.; Mitsios, J.V.; Wang, H-Y.; Deryugina, E.I.; Varner, J.A.; Quigley, J.P.; Shattil, S.J. The primacy of β1 integrin activation in the metastatic cascade. PLoS One, 2012, 7(10)e46576
[http://dx.doi.org/10.1371/journal.pone.0046576] [PMID: 23056350]
[42]
Brakebusch, C.; Fässler, R. β 1 integrin function in vivo: Adhesion, migration and more. Cancer Metastasis Rev., 2005, 24(3), 403-411.
[http://dx.doi.org/10.1007/s10555-005-5132-5] [PMID: 16258728]