Association Between CYP3A4 and CYP3A5 Genotypes and Cyclosporine's Blood Levels and Doses among Jordanian Kidney Transplanted Patients

Page: [682 - 694] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Cyclosporine is used as an immunosuppressive agent in kidney transplantation. It has a narrow therapeutic window. Cyclosporine is predominantly metabolized by CYP3A4 and CYP3A5. The most common Single Nucleotide Polymorphisms (SNPs) affecting cyclosporine metabolism (CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3) were investigated among Jordanian kidney transplanted patients to find out the genotypes and allele frequencies of these SNPs. Additionally, this study investigated whether genotypes of CYP3A4 and CYP3A5 affect C2 blood levels, dosing of cyclosporine and the prevalence of acute rejection.

Methods: Blood samples of 109 adult patients taking cyclosporine as their primary immunosuppressant for kidney transplantation were collected from the Prince Hamzah Hospital, Amman, Jordan. Patients’ first C2 blood levels and their first two given doses were collected. Patients were genotyped for the four SNPs using Polymerase Chain Reaction- restriction Fragment Length Polymorphism (PCR-RFLP) assay method.

Results: Allele frequencies among Jordanian patients for CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3 were 0.037, 0.399, 0.037 and 0.271, respectively. There was a significant association between CYP3A4*22 and mean difference in the second and first given doses (P=0.034). There was a big difference between CYP3A4*22 and the mean of the first C2 blood levels (P=0.063).

Conclusion: There was a strong association between CYP3A4*22 and the mean difference between the second and first given doses. There was a trend of significant difference between the mean of the first C2 blood levels among heterozygous CYP3A4*22 patients. Pharmacogenomics may hold promise in assisting the prediction of the best cyclosporine dose and C2 blood level among Jordanian kidney transplant patients.

Keywords: Cyclosporine, kidney transplantation, CYP3A4*1B, CYP3A4*1G, CYP3A4*22, CYP3A5*3, Jordanian.

Graphical Abstract

[1]
Ware, N. The role of genetics in drug dosing. Pediatr. Nephrol., 2012, 27(9), 1489-1498.
[http://dx.doi.org/10.1007/s00467-012-2105-0] [PMID: 22358188]
[2]
Ingelfinger, J.R.; Schwartz, R.S. Immunosuppression--the promise of specificity. N. Engl. J. Med., 2005, 353(8), 836-839.
[http://dx.doi.org/10.1056/NEJMe058166] [PMID: 16120865]
[3]
McKay, D.; Steinberg, S. Kidney transplantation: A guide to the care of kidney transplant recipients; Springer, 2010.
[http://dx.doi.org/10.1007/978-1-4419-1690-7]
[4]
Picard, N.; Marquet, P. The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation. Expert Opin. Drug Metab. Toxicol., 2011, 7(6), 731-743.
[http://dx.doi.org/10.1517/17425255.2011.570260] [PMID: 21434840]
[5]
Meng, X.G.; Guo, C.X.; Feng, G.Q.; Zhao, Y.C.; Zhou, B.T.; Han, J.L.; Chen, X.; Shi, Y.; Shi, H.Y.; Yin, J.Y.; Peng, X.D.; Pei, Q.; Zhang, W.; Wang, G.; He, M.; Liu, M.; Yang, J.K.; Zhou, H.H. Association of CYP3A polymorphisms with the pharmacokinetics of cyclosporine A in early post-renal transplant recipients in China. Acta Pharmacol. Sin., 2012, 33(12), 1563-1570.
[http://dx.doi.org/10.1038/aps.2012.136] [PMID: 23085740]
[6]
Rosso Felipe, C.; de Sandes, T.V.; Sampaio, E.L.; Park, S.I.; Silva, H.T., Jr; Medina Pestana, J.O. Clinical impact of polymorphisms of transport proteins and enzymes involved in the metabolism of immunosuppressive drugs. Transplant. Proc., 2009, 41(5), 1441-1455.
[http://dx.doi.org/10.1016/j.transproceed.2009.03.024] [PMID: 19545654]
[7]
Cheung, C.Y. Pharmacogenetics and renal transplantation; INTECH Open Access Publisher, 2011.
[8]
Canafax, D.M. Minimizing cyclosporine concentration variability to optimize transplant outcome. Clin. Transplant., 1995, 9(1), 1-13.
[PMID: 7742576]
[9]
Eng, H.S.; Mohamed, Z.; Calne, R.; Lang, C.C.; Mohd, M.A.; Seet, W.T.; Tan, S.Y. The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int., 2006, 69(10), 1858-1864.
[http://dx.doi.org/10.1038/sj.ki.5000325] [PMID: 16612333]
[10]
Cattaneo, D.; Perico, N.; Remuzzi, G. From pharmacokinetics to pharmacogenomics: A new approach to tailor immunosuppressive therapy. Am. J. Transplant., 2004, 4(3), 299-310.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00312.x]
[11]
Bäckman, L.; Levy, M.F.; Klintmalm, G. Whole-blood and plasma levels of FK 506 after liver transplantation: Results from the US Multicenter Trial. FK506 Multicenter Study Group. Transplant. Proc., 1995, 27(1), 1124-1124.
[PMID: 7533361]
[12]
Zaza, G.; Granata, S.; Sallustio, F.; Grandaliano, G.; Schena, F.P. Pharmacogenomics: A new paradigm to personalize treatments in nephrology patients. Clin. Exp. Immunol., 2010, 159(3), 268-280.
[http://dx.doi.org/10.1111/j.1365-2249.2009.04065.x] [PMID: 19968662]
[13]
Kalow, W.; Tang, B.K.; Endrenyi, L. Hypothesis: Comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics, 1998, 8(4), 283-289.
[http://dx.doi.org/10.1097/00008571-199808000-00001] [PMID: 9731714]
[14]
Lamba, J.K.; Lin, Y.S.; Thummel, K.; Daly, A.; Watkins, P.B.; Strom, S.; Zhang, J.; Schuetz, E.G. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics, 2002, 12(2), 121-132.
[http://dx.doi.org/10.1097/00008571-200203000-00006] [PMID: 11875366]
[15]
Combalbert, J.; Fabre, I.; Fabre, G.; Dalet, I.; Derancourt, J.; Cano, J.P.; Maurel, P. Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab. Dispos., 1989, 17(2), 197-207.
[PMID: 2565211]
[16]
Tang, H.L.; Ma, L.L.; Xie, H.G.; Zhang, T.; Hu, Y.F. Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis. Pharmacogenet. Genomics, 2010, 20(9), 525-531.
[http://dx.doi.org/10.1097/FPC.0b013e32833ccd56] [PMID: 20588203]
[17]
Crettol, S.; Venetz, J-P.; Fontana, M.; Aubert, J-D.; Pascual, M.; Eap, C.B. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther. Drug Monit., 2008, 30(6), 689-699.
[http://dx.doi.org/10.1097/FTD.0b013e31818a2a60] [PMID: 18978522]
[18]
Barbarino, J.M.; Staatz, C.E.; Venkataramanan, R.; Klein, T.E.; Altman, R.B. PharmGKB summary: Cyclosporine and tacrolimus pathways. Pharmacogenet. Genomics, 2013, 23(10), 563-585.
[http://dx.doi.org/10.1097/FPC.0b013e328364db84] [PMID: 23922006]
[19]
Schirmer, M.; Rosenberger, A.; Klein, K.; Kulle, B.; Toliat, M.R.; Nürnberg, P.; Zanger, U.M.; Wojnowski, L. Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes. Pharmacogenomics, 2007, 8(5), 443-453.
[http://dx.doi.org/10.2217/14622416.8.5.443] [PMID: 17465708]
[20]
Fohner, A.; Muzquiz, L.I.; Austin, M.A.; Gaedigk, A.; Gordon, A.; Thornton, T.; Rieder, M.J.; Pershouse, M.A.; Putnam, E.A.; Howlett, K.; Beatty, P.; Thummel, K.E.; Woodahl, E.L. Pharmacogenetics in american indian populations: Analysis of cyp2d6, cyp3a4, cyp3a5, and cyp2c9 in the confederated salish and kootenai tribes. Pharmacogenet. Genomics, 2013, 23(8), 403-414.
[http://dx.doi.org/10.1097/FPC.0b013e3283629ce9] [PMID: 23778323]
[21]
Werk, A.N.; Cascorbi, I. Functional gene variants of CYP3A4. Clin. Pharmacol. Ther., 2014, 96(3), 340-348.
[http://dx.doi.org/10.1038/clpt.2014.129] [PMID: 24926778]
[22]
Skagen, K.J. Interindividual variability in the cytochrome p450 3a4 drug metabolizing enzyme: Effect of the cyp3a4* 1g genetic variant; PhD Thesis. The University of Montana: Missoula, August, 2014.
[23]
Von Ahsen, N.; Richter, M.; Grupp, C.; Ringe, B.; Oellerich, M.; Armstrong, V.W. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem., 2001, 47(6), 1048-1052.
[PMID: 11375290]
[24]
Van Schaik, R.H.; de Wildt, S.N.; Van Iperen, N.M.; Uitterlinden, A.G.; Van Den Anker, J.N.; Lindemans, J. CYP3A4-V polymorphism detection by PCR-restriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin. Chem., 2000, 46(11), 1834-1836.
[PMID: 11067821]
[25]
Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J., 2011, 11(4), 274-286.
[http://dx.doi.org/10.1038/tpj.2010.28] [PMID: 20386561]
[26]
Westlind, A.; Löfberg, L.; Tindberg, N.; Andersson, T.B.; Ingelman-Sundberg, M. Interindividual differences in hepatic expression of CYP3A4: Relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem. Biophys. Res. Commun., 1999, 259(1), 201-205.
[http://dx.doi.org/10.1006/bbrc.1999.0752] [PMID: 10334940]
[27]
Lee, S-J.; Goldstein, J.A. Functionally defective or altered cyp3a4 and cyp3a5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics, 2005, 6(4), 357-371.
[28]
Albekairy, A.; Alkatheri, A.; Fujita, S.; Hemming, A.; Howard, R.; Reed, A.; Karlix, J. Cytochrome p450 3a4* 1b as pharmacogenomic predictor of tacrolimus pharmacokinetics and clinical outcome in the liver transplant recipients. Saudi J. Gastroenterol., 2013, 19(2), 89.
[http://dx.doi.org/10.4103/1319-3767.108484] [PMID: 23481136]
[29]
Cattaneo, D.; Perico, N.; Remuzzi, G. From pharmacokinetics to pharmacogenomics: A new approach to tailor immunosuppressive therapy. Am. J. Transplant., 2004, 4(3), 299-310.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00312.x] [PMID: 14961981]
[30]
Shi, X.J.; Geng, F.; Jiao, Z.; Cui, X.Y.; Qiu, X.Y.; Zhong, M.K. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: A population pharmacokinetic analysis. J. Clin. Pharm. Ther., 2011, 36(5), 614-624.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01206.x] [PMID: 21916909]
[31]
He, B.X.; Shi, L.; Qiu, J.; Tao, L.; Li, R.; Yang, L.; Zhao, S.J. A functional polymorphism in the CYP3A4 gene is associated with increased risk of coronary heart disease in the Chinese Han population. Basic Clin. Pharmacol. Toxicol., 2011, 108(3), 208-213.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00657.x] [PMID: 21199372]
[32]
Shu, W.Y.; Li, J.L.; Wang, X.D.; Huang, M. Pharmacogenomics and personalized medicine: A review focused on their application in the Chinese population. Acta Pharmacol. Sin., 2015, 36(5), 535-543.
[http://dx.doi.org/10.1038/aps.2015.10] [PMID: 25891088]
[33]
Zeng, Y.; He, Y.J.; He, F.Y.; Fan, L.; Zhou, H.H. Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects. Acta Pharmacol. Sin., 2009, 30(4), 478-484.
[http://dx.doi.org/10.1038/aps.2009.27] [PMID: 19343062]
[34]
Wang, D.; Sadee, W. The making of a cyp3a biomarker panel for guiding drug therapy. J. Pers. Med., 2012, 2, 175-191.
[35]
Elens, L.; Bouamar, R.; Hesselink, D.A.; Haufroid, V.; van Gelder, T.; van Schaik, R.H. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet. Genomics, 2012, 22(5), 373-380.
[http://dx.doi.org/10.1097/FPC.0b013e328351f3c1] [PMID: 22388796]
[36]
Lunde, I.; Bremer, S.; Midtvedt, K.; Mohebi, B.; Dahl, M.; Bergan, S.; Åsberg, A.; Christensen, H. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur. J. Clin. Pharmacol., 2014, 70(6), 685-693.
[http://dx.doi.org/10.1007/s00228-014-1656-3] [PMID: 24658827]
[37]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27(4), 383-391.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[38]
Dai, Y.; Iwanaga, K.; Lin, Y.S.; Hebert, M.F.; Davis, C.L.; Huang, W.; Kharasch, E.D.; Thummel, K.E. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol., 2004, 68(9), 1889-1902.
[http://dx.doi.org/10.1016/j.bcp.2004.07.012] [PMID: 15450954]
[39]
Birdwell, K. Role of pharmacogenomics in dialysis and transplantation. Curr. Opin. Nephrol. Hypertens., 2014, 23(6), 570-577.
[http://dx.doi.org/10.1097/MNH.0000000000000065] [PMID: 25162201]
[40]
Yousef, A-M.; Qosa, H.; Bulatova, N.; Abuhaliema, A.; Almadhoun, H.; Khayyat, G.; Olemat, M. Effects of genetic polymorphism in cyp3a4 and cyp3a5 genes on tacrolimus dose among kidney transplant recipients. Iran. J. Kidney Dis., 2016, 10(3), 156-163.
[PMID: 27225724]
[41]
Sayῐtoḡlu, M.; Yildiz, I.; Hatirnaz, Ö.; Özbek, U. Common cytochrome p4503a (cyp3a4 and cyp3a5) and thiopurine s-methyl transferase (tpmt) polymorphisms in turkish population. Turk. J. Med. Sci., 2006, 36(1), 11-15.
[42]
Gervasini, G.; Vizcaino, S.; Gasiba, C.; Carrillo, J.A.; Benitez, J. Differences in CYP3A5*3 genotype distribution and combinations with other polymorphisms between Spaniards and other Caucasian populations. Ther. Drug Monit., 2005, 27(6), 819-821.
[http://dx.doi.org/10.1097/01.ftd.0000186914.32038.a0] [PMID: 16306861]
[43]
Umamaheswaran, G.; Krishna Kumar, D.; Adithan, C. Distribution of genetic polymorphisms of genes encoding drug metabolizing enzymes & drug transporters-a review with indian perspective. Indian J. Med. Res., 2014, 139(1), 27-65.
[PMID: 24604039]
[44]
Kurzawski, M.; Dąbrowska, J.; Dziewanowski, K.; Domański, L.; Perużyńska, M.; Droździk, M. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics, 2014, 15(2), 179-188.
[http://dx.doi.org/10.2217/pgs.13.199] [PMID: 24444408]
[45]
Hesselink, D.A.; Van Gelder, T.; Van Schaik, R.H.; Balk, A.H.; Van Der Heiden, I.P.; Van Dam, T.; Van Der Werf, M.; Weimar, W.; Mathot, R.A. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther., 2004, 76(6), 545-556.
[http://dx.doi.org/10.1016/j.clpt.2004.08.022] [PMID: 15592326]
[46]
Lee, J.S.; Cheong, H.S.; Kim, L.H.; Kim, J.O.; Seo, D.W.; Kim, Y.H.; Chung, M.W.; Han, S.Y.; Shin, H.D. Screening of genetic polymorphisms of cyp3a4 and cyp3a5 genes. Korean J. Physiol. Pharmacol., 2013, 17(6), 479-484.
[http://dx.doi.org/10.4196/kjpp.2013.17.6.479] [PMID: 24381495]
[47]
Qiu, F.; He, X-J.; Sun, Y-X.; Li-Ling, J.; Zhao, L-M. Influence of ABCB1, CYP3A4*18B and CYP3A5*3 polymorphisms on cyclosporine A pharmacokinetics in bone marrow transplant recipients. Pharmacol. Rep., 2011, 63(3), 815-825.
[http://dx.doi.org/10.1016/S1734-1140(11)70594-1] [PMID: 21857093]
[48]
Garsa, A.A.; McLeod, H.L.; Marsh, S. CYP3A4 and CYP3A5 genotyping by pyrosequencing. BMC Med. Genet., 2005, 6(1), 19.
[http://dx.doi.org/10.1186/1471-2350-6-19] [PMID: 15882469]
[49]
Park, S.Y.; Kang, Y.S.; Jeong, M.S.; Yoon, H.K.; Han, K.O. Frequencies of CYP3A5 genotypes and haplotypes in a Korean population. J. Clin. Pharm. Ther., 2008, 33(1), 61-65.
[http://dx.doi.org/10.1111/j.1365-2710.2008.00879.x] [PMID: 18211618]
[50]
Renwick, A.G.; Robertson, D.R.; Macklin, B.; Challenor, V.; Waller, D.G.; George, C.F. The pharmacokinetics of oral nifedipine-a population study. Br. J. Clin. Pharmacol., 1988, 25(6), 701-708.
[http://dx.doi.org/10.1111/j.1365-2125.1988.tb05256.x] [PMID: 3203042]
[51]
Rivory, L.P.; Qin, H.; Clarke, S.J.; Eris, J.; Duggin, G.; Ray, E.; Trent, R.J.; Bishop, J.F. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur. J. Clin. Pharmacol., 2000, 56(5), 395-398.
[http://dx.doi.org/10.1007/s002280000166] [PMID: 11009048]
[52]
Ashavaid, T.; Raje, H.; Shalia, K.; Shah, B. Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients. Indian J. Nephrol., 2010, 20(3), 146-151.
[http://dx.doi.org/10.4103/0971-4065.70846] [PMID: 21072155]
[53]
Zhang, Y.; Li, J.L.; Fu, Q.; Wang, X.D.; Liu, L.S.; Wang, C.X.; Xie, W.; Chen, Z.J.; Shu, W.Y.; Huang, M. Associations of ABCB1, NFKB1, CYP3A, and NR1I2 polymorphisms with cyclosporine trough concentrations in Chinese renal transplant recipients. Acta Pharmacol. Sin., 2013, 34(4), 555-560.
[http://dx.doi.org/10.1038/aps.2012.200] [PMID: 23503472]
[54]
Hu, Y-F.; Tu, J-H.; Tan, Z-R.; Liu, Z-Q.; Zhou, G.; He, J.; Wang, D.; Zhou, H-H. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica, 2007, 37(3), 315-327.
[http://dx.doi.org/10.1080/00498250601149206] [PMID: 17624028]
[55]
Qiu, X.Y.; Jiao, Z.; Zhang, M.; Zhong, L.J.; Liang, H.Q.; Ma, C.L.; Zhang, L.; Zhong, M.K. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur. J. Clin. Pharmacol., 2008, 64(11), 1069-1084.
[http://dx.doi.org/10.1007/s00228-008-0520-8] [PMID: 18636247]
[56]
Elens, L.; van Schaik, R.H.; Panin, N.; de Meyer, M.; Wallemacq, P.; Lison, D.; Mourad, M.; Haufroid, V. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics, 2011, 12(10), 1383-1396.
[http://dx.doi.org/10.2217/pgs.11.90] [PMID: 21902502]
[57]
Haufroid, V.; Mourad, M.; Van Kerckhove, V.; Wawrzyniak, J.; De Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Squifflet, J-P.; Wallemacq, P. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics, 2004, 14(3), 147-154.
[http://dx.doi.org/10.1097/00008571-200403000-00002] [PMID: 15167702]
[58]
Zhu, H.J.; Yuan, S.H.; Fang, Y.; Sun, X.Z.; Kong, H.; Ge, W.H. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: A meta-analysis. Pharmacogenomics J., 2011, 11(3), 237-246.
[http://dx.doi.org/10.1038/tpj.2010.26] [PMID: 20368718]