Carvacrol Induced Program Cell Death and Cell Cycle Arrest in Androgen-Independent Human Prostate Cancer Cells via Inhibition of Notch Signaling

Page: [1588 - 1608] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Several studies have revealed that abnormal activation of Notch signaling is closely related with the development and progression of prostate cancer. Although there are numerous therapeutic strategies, a more effective modality with least side effects is urgently required for the treatment of prostate cancer. Carvacrol is a monoterpenoid phenol and majorly present in the essential oils of Lamiaceae family plants. Many previous reports have shown various biological activities of carvacrol like antioxidant, antiinflammatory and anticancer properties. Recently, we have shown potent anticancer property of carvacrol against prostate cancer cell line DU145. In the current study, we report the chemopreventive and therapeutic potential of carvacrol against another prostate cancer cell line PC-3 with its detailed mechanism of action.

Methods: To determine the effect of the carvacrol on prostate cancer cells, the cell viability was estimated by MTT assay and cell death was estimated by LDH release assay. The apoptotic assay was performed by DAPI staining and FITC-Annexin V assay. Reactive Oxygen Species (ROS) was estimated by DCFDA method. Cell cycle analysis was performed by flow cytometry. Gene expression analysis was performed by quantitative real time PCR.

Results: Our results suggested that the carvacrol treatment significantly reduced the cell viability of PC-3 cells in a dose- and time-dependent manner. The antiproliferative action of carvacrol was correlated with apoptosis which was confirmed by nuclear condensation, FITC-Annexin V assay, modulation in expression of Bax, Bcl-2 and caspase activation. The mechanistic insight into carvacrol-induced apoptosis leads to finding of elevated level of Reactive Oxygen Species (ROS) and mitochondrial membrane potential disruption. Cell cycle analysis revealed that carvacrol prevented cell cycle in G0/G1 that was associated with decline in expression of cyclin D1 and Cyclin-Dependent Kinase 4 (CDK4) and augmented expression of CDK inhibitor p21. Having been said the role of hyperactivation of Notch signaling in prostate cancer, we also deciphered that carvacrol could inhibit Notch signaling in PC-3 cells via downregulation of Notch-1, and Jagged-1.

Conclusion: Thus, our previous and current findings have established the strong potential of carvacrol as a chemopreventive agent against androgen-independent human prostate cancer cells.

Keywords: Prostate cancer, PC-3, notch, Jagged-1, apoptosis, cell cycle.

Graphical Abstract

[1]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[2]
Lalitha, K.; Suman, G.; Pruthvish, S.; Mathew, A.; Murthy, N.S. Estimation of time trends of incidence of prostate cancer-an Indian scenario. Asian Pac. J. Cancer Prev., 2012, 13(12), 6245-6250.
[3]
Asbell, S.O.; Martz, K.L.; Shin, K.H.; Sause, W.T.; Doggett, R.L.; Perez, C.A.; Pilepich, M.V. Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG 77-06, a phase III study for T1bN0M0 (A2) and T2N0M0 (B) prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 1998, 40(4), 769-782.
[4]
Klotz, L. Prostate cancer overdiagnosis and overtreatment. Curr. Opin. Endocrinol. Diab Obes., 2013, 20(3), 204-209.
[5]
Nguyen, C.; Lairson, D.R.; Swartz, M.D.; Du, X.L. Risks of Major Long-term side effects associated with androgen-deprivation therapy in men with prostate cancer Pharmacotherapy. J. Human Pharmacol. Drug Ther., 2018, 38(10), 999-1009.
[6]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[7]
Evans, A.J. Treatment effects in prostate cancer. Mod. Pathol., 2018, 31(S1), S110.
[8]
Cui, J.; Wang, Y.; Dong, B.; Qin, L.; Wang, C.; Zhou, P.; Wang, X.; Xu, H.; Xue, W.; Fang, Y.X.; Gao, W.Q. Pharmacological inhibition of the Notch pathway enhances the efficacy of androgen deprivation therapy for prostate cancer. Int. J. Cancer, 2018, 143(3), 645-656.
[9]
Leong, K.G.; Gao, W.Q. The Notch pathway in prostate development and cancer. Differentiation, 2008, 76(6), 699-716.
[10]
Hafeez, B.B.; Adhami, V.M.; Asim, M.; Siddiqui, I.A.; Bhat, K.M.; Zhong, W.; Saleem, M.; Din, M.; Setaluri, V.; Mukhtar, H. Targeted knockdown of Notch-1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin. Cancer Res., 2009, 15(2), 452-459.
[11]
Fleming, R.J. Structural conservation of Notch receptors and ligands. Semin. Cell Dev. Biol., 1998, 9(6), 599-607.
[12]
Zayzafoon, M.; Abdulkadir, S.A.; McDonald, J.M. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J. Biol. Chem., 2004, 279, 3662-3670.
[13]
Santagata, S.; Demichelis, F.; Riva, A.; Varambally, S.; Hofer, M.D.; Kutok, J.L.; Rubin, M.A. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res., 2004, 64, 6854-6857.
[14]
Sha, J.; Li, J.; Wang, W.; Pan, L.; Cheng, J.; Li, L.; Lin, W. Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling. Biomed. Pharmacother., 2016, 84, 177-184.
[15]
Wang, K.; Pan, L.; Che, X.; Cui, D.; Li, C. Gli1 inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J. Neurooncol., 2010, 98, 319-327.
[16]
Chhabra, G.; Singh, C.K.; Ndiaye, M.A.; Fedorowicz, S.; Molot, A.; Ahmad, N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett., 2018, 422, 9-18.
[17]
Rivera, M.; Ramos, Y.; Rodriguez-Valentín, M.; Lopez-Acevedo, S.; Cubano, L.A.; Zou, J.; Boukli, N.M. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One, 2017, 12e0179587
[18]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9, 767-776.
[19]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S. December. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35, S276-S304.
[20]
Friedman, M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem., 2014, 62, 7652-7670.
[21]
Koparal, A.T.; Zeytinoglu, M. Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology, 2003, 43(1-3), 149-154.
[22]
Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Skoufos, I. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol., 2006, 28, 121-125.
[23]
Arunasree, K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 2010, 17, 581-588.
[24]
Mehdi, S.J.; Ahmad, A.; Irshad, M.; Manzoor, N.; Rizvi, M.M.A. Cytotoxic effect of Carvacrol on human cervical cancer cells. Biol. Med. (Aligarh), 2011, 3, 307-312.
[25]
Patel, B.; Shah, V.R.; Bavadekar, S.A. Anti-proliferative effects of carvacrol on human prostate cancer cell line, LNCaP. FASEB J., 2012, 26, 1037-5.
[26]
Yin, Q.H.; Yan, F.X.; Zu, X.Y.; Wu, Y.H.; Wu, X.P.; Liao, M.C.; Zhuang, Y.Z. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology, 2012, 64, 43-51.
[27]
Ahmed, H.H.; Shousha, W.G.; El-Mezayen, H.A.; Ismaiel, N.N.; Mahmoud, N.S. In vivo antitumor potential of carvacrol against hepatocellular carcinoma in rat model. World J. Pharm. Pharm. Sci., 2013, 2, 2367-2396.
[28]
Bhakkiyalakshmi, E.; Suganya, N.; Sireesh, D.; Krishnamurthi, K.; Devi, S.S.; Rajaguru, P.; Ramkumar, K.M. Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. Eur. J. Pharmacol., 2016, 772, 92-98.
[29]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer Cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[30]
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep., 2016, 6, 36543.
[31]
Xiong, J.; Yang, H.; Luo, W.; Shan, E.; Liu, J.; Zhang, F.; Yang, J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol. Res., 2016, 105, 121-133.
[32]
Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G 0/G 1 in HPV18+ human cervical cancer HeLa cell line. Biomed. Pharmacother., 2018, 97, 752-764.
[33]
Mondal, A.; Bennett, L.L. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed. Pharmacother., 2016, 84, 1906-1914.
[34]
Shankar, S.; Srivastava, R.K. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int. J. Oncol., 2007, 30, 905-918.
[35]
Zhou, G.X.; Ding, X.L.; Huang, J.F.; Zhang, H.; Wu, S.B.; Cheng, J.P.; Wei, Q. Apoptosis of human pancreatic cancer cells induced by Triptolide. World J. Gastroenterol., 2008, 14, 1504.
[36]
Uno, M.; Otsuki, T.; Hiratsuka, J.; Yoden, E.; Aihara, T.; Harada, T.; Imajo, Y. Expression of cell cycle regulator genes in KB, a human squamous cell carcinoma cell line, after irradiation. Int. J. Oncol., 2000, 17, 947-1001.
[37]
Chikara, S.; Lindsey, K.; Dhillon, H.; Mamidi, S.; Kittilson, J.; Christofidou-Solomidou, M.; Reindl, K.M. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases. Nutr. Cancer, 2017, 69, 652-662.
[38]
Jiang, L.; Wu, J.; Chen, Q.; Hu, X.; Li, W.; Hu, G. Notch1 expression is upregulated in glioma and is associated with tumor progression. J. Clin. Neurosci., 2011, 18, 387-390.
[39]
Chen, X.; Xiao, W.; Wang, W.; Luo, L.; Ye, S.; Liu, Y. The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells. PLoS One, 2014, 9e, 96365.
[40]
Li, W.; Song, A.P.; Zhao, F.; Hu, Y.M.; Hua, M. A novel human TINP1 gene promotes cell proliferation through inhibition of p53 and p21 expression. Oncol. Rep., 2013, 30, 1848-1852.
[41]
van de Merbel, A.F.; van der Horst, G.; Buijs, J.T.; van der Pluijm, G. Protocols for migration and invasion studies in prostate cancer. In: Prostate Cancer; Humana Press: New York, NY, 2018; pp. 67-79.
[42]
Sun, S.Y.; Hail, N., Jr; Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst., 2004, 96, 662-672.
[43]
Zielinski, R.R.; Eigl, B.J.; Chi, K.N. Targeting the apoptosis pathway in prostate cancer. Cancer J., 2013, 19, 79-89.
[44]
Knight, T.; Luedtke, D.; Edwards, H.; Taub, J.W.; Ge, Y. A delicate balance-The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol., 2019, 162, 250-261.
[45]
Amaral, R.G.; dos Santos, S.A.; Andrade, L.N.; Severino, P.; Carvalho, A.A. Natural products as treatment against cancer: A historical and current vision. Clin. Oncol. (R. Coll. Radiol.), 2019, 4, 1562.
[46]
Gezici, S.; Sekeroglu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer Agents Med Chem., (Formerly Current Medicinal Chemistry- Anti-Cancer Agents), 2019, 19(1), 101-111.
[47]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76, 1075-1079.
[48]
Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol., 2016, 40, 1-3.
[49]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[50]
Luo, Y.; Wu, J.Y.; Lu, M.H.; Shi, Z.; Na, N.; Di, J.M. Carvacrol alleviates prostate cancer cell proliferation, migration, and invasion through regulation of PI3K/Akt and MAPK signaling pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1469693.
[51]
Lim, W.; Ham, J.; Bazer, F.W.; Song, G. Carvacrol induces mitochondria‐mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J. Cell. Physiol., 2019, 234, 1803-1815.
[52]
Watson, R.W.G.; Fitzpatrick, J.M. Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins. BJU Int., 2005, 96, 30-34.
[53]
Shao, W.; Yeretssian, G.; Doiron, K.; Hussain, S.N.; Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem., 2007, 282, 36321-36329.
[54]
Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene, 2008, 27, 6194.
[55]
Kantari, C.; Walczak, H. Dual philosophy in death receptor signalling. Open Cell Signal. J., 2011, 3, 27-34.
[56]
Zivny, J.; Klener, P., Jr; Pytlik, R.; Andera, L. The role of apoptosis in cancer development and treatment: Focusing on the development and treatment of hematologic malignancies. Curr. Pharm. Des., 2010, 16, 11-33.
[57]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25, 27.
[58]
Guo, B.; Godzik, A.; Reed, J.C. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J. Biol. Chem., 2001, 276(4), 2780-2785.
[59]
Martin-Cordero, C.; Jose Leon-Gonzalez, A.; Manuel Calderon-Montano, J.; Burgos-Moron, E.; Lopez-Lazaro, M. Pro-oxidant natural products as anticancer agents. Curr. Drug Targets, 2012, 13, 1006-1028.
[60]
Fruehauf, J.P.; Meyskens, F.L. Reactive oxygen species: A breath of life or death? Clin. Cancer Res., 2007, 13, 789-794.
[61]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8, 579-591.
[62]
Sherr, C.J.; Bartek, J. Cell cycle–targeted cancer therapies. Annu. Rev. Cancer Biol., 2017, 1, 41-57.
[63]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17, 93.
[64]
Aparicio, L.A.; Campelo, R.G.; Espinosa, J.C.; Ayerbes, M.V.; Lopez, M.R.; Prado, S.D.; Gallego, G.A. Prostate cancer and Hedgehog signalling pathway. Clin. Transl. Oncol., 2007, 9, 420.
[65]
Wang, Z.; Li, Y.; Banerjee, S.; Kong, D.; Ahmad, A.; Nogueira, V.; Sarkar, F.H. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J. Cell. Biochem., 2010, 109, 726-736.
[66]
MacKenzie, F.; Duriez, P.; Wong, F.; Noseda, M.; Karsan, A. Notch4 inhibits endothelial apoptosis via RBP-Jκ-dependent and-independent pathways. J. Biol. Chem., 2004, 279, 11657-11663.
[67]
Nair, P.; Somasundaram, K.; Krishna, S. Activated Notch-1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol., 2003, 77, 7106-7112.
[68]
Ronchini, C.; Capobianco, A.J. Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol. Cell. Biol., 2001, 21, 5925-5934.
[69]
Murata, K.; Hattori, M.; Hirai, N.; Shinozuka, Y.; Hirata, H.; Kageyama, R.; Minato, N. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol. Cell. Biol., 2005, 25, 4262-4271.
[70]
Sarmento, L.M.; Huang, H.; Limon, A.; Gordon, W.; Fernandes, J.; Tavares, M.J.; Carlesso, N. Notch-1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation. J. Exp. Med., 2005, 202, 157-168.
[71]
Wang, Z.; Li, Y.; Ahmad, A.; Banerjee, S.; Azmi, A.S.; Kong, D.; Sarkar, F.H. Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J. Cell. Biochem., 2011, 112, 78-88.