Cockroaches: Allergens, Component-Resolved Diagnosis (CRD) and Component-Resolved Immunotherapy

Page: [124 - 141] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.

Keywords: Allergens, Cockroach, Component-resolved diagnosis (CRD), Component-resolved immunotherapy (CRIT), Th2 response, Tissue Remodeling.

Graphical Abstract

[1]
Averbeck, M.; Gebhardt, C.; Emmrich, F.; Treudler, R.; Simon, J.C. Immunologic principles of allergic disease. J. Dtsch. Dermatol. Ges., 2007, 5(11), 1015-1028.
[http://dx.doi.org/10.1111/j.1610-0387.2007.06538.x] [PMID: 17976144]
[2]
Camelo, A.; Rosignoli, G.; Ohne, Y.; Stewart, R.A.; Overed-Sayer, C.; Sleeman, M.A.; May, R.D. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv., 2017, 1(10), 577-589.
[http://dx.doi.org/10.1182/bloodadvances.2016002352] [PMID: 29296700]
[3]
Morita, H.; Moro, K.; Koyasu, S. Innate lymphoid cells in allergic and nonallergic inflammation. J. Allergy Clin. Immunol., 2016, 138(5), 1253-1264.
[http://dx.doi.org/10.1016/j.jaci.2016.09.011] [PMID: 27817797]
[4]
Oboki, K.; Ohno, T.; Kajiwara, N.; Arae, K.; Morita, H.; Ishii, A.; Nambu, A.; Abe, T.; Kiyonari, H.; Matsumoto, K.; Sudo, K.; Okumura, K.; Saito, H.; Nakae, S. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18581-18586.
[http://dx.doi.org/10.1073/pnas.1003059107] [PMID: 20937871]
[5]
Lampinen, M.; Carlson, M.; Håkansson, L.D.; Venge, P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy, 2004, 59(8), 793-805.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00469.x] [PMID: 15230810]
[6]
Odemuyiwa, S.O.; Ghahary, A.; Li, Y.; Puttagunta, L.; Lee, J.E.; Musat-Marcu, S.; Ghahary, A.; Moqbel, R. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J. Immunol., 2004, 173(10), 5909-5913.
[http://dx.doi.org/10.4049/jimmunol.173.10.5909] [PMID: 15528322]
[7]
Spencor, L.A.; Szela, C.T.; Perez, S.A.; Kirchhoffer, C.L.; Neves, J.S.; Radke, A.L.; Weller, P.F. Human eosinophils constitutetively express multiple Th1, Th2, and immunomodulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol., 2009, 85(1), 117-123.
[8]
Shen, H.H.; Ochkur, S.I.; McGarry, M.P.; Crosby, J.R.; Hines, E.M.; Borchers, M.T.; Wang, H.; Biechelle, T.L.; O’Neill, K.R.; Ansay, T.L.; Colbert, D.C.; Cormier, S.A.; Justice, J.P.; Lee, N.A.; Lee, J.J. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J. Immunol., 2003, 170(6), 3296-3305.
[http://dx.doi.org/10.4049/jimmunol.170.6.3296] [PMID: 12626589]
[9]
Del Pozo, V.; De Andrés, B.; Martín, E.; Cárdaba, B.; Fernández, J.C.; Gallardo, S.; Tramón, P.; Leyva-Cobian, F.; Palomino, P.; Lahoz, C. Eosinophil as antigen-presenting cell: activation of T cell clones and T cell hybridoma by eosinophils after antigen processing. Eur. J. Immunol., 1992, 22(7), 1919-1925.
[http://dx.doi.org/10.1002/eji.1830220736] [PMID: 1623930]
[10]
Rothenberg, M.E.; Hogan, S.P. The eosinophil. Annu. Rev. Immunol., 2006, 24, 147-174.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090720] [PMID: 16551246]
[11]
Oboki, K.; Ohno, T.; Saito, H.; Nakae, S. Th17 and allergy. Allergol. Int., 2008, 57(2), 121-134.
[http://dx.doi.org/10.2332/allergolint.R-07-160] [PMID: 18427165]
[12]
de Vries, J.E. The role of IL-13 and its receptor in allergy and inflammatory responses. J. Allergy Clin. Immunol., 1998, 102(2), 165-169.
[http://dx.doi.org/10.1016/S0091-6749(98)70080-6] [PMID: 9723655]
[13]
Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest., 2008, 118(11), 3546-3556.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[14]
Nouri-Aria, K.T.; Irani, A.M.; Jacobson, M.R.; O’brien, F.; Varga, E.M.; Till, S.J.; Durham, S.R.; Schwartz, L.B. Basophil recruitment and IL-4 production during human allergen-induced late asthma. J. Allergy Clin. Immunol., 2001, 108(2), 205-211.
[http://dx.doi.org/10.1067/mai.2001.117175] [PMID: 11496235]
[15]
Tagaya, E.; Tamaoki, J. Mechanisms of airway remodeling in asthma. Allergol. Int., 2007, 56(4), 331-340.
[http://dx.doi.org/10.2332/allergolint.R-07-152] [PMID: 17965576]
[16]
Pène, J.; Chevalier, S.; Preisser, L.; Vénéreau, E.; Guilleux, M.H.; Ghannam, S.; Molès, J.P.; Danger, Y.; Ravon, E.; Lesaux, S.; Yssel, H.; Gascan, H. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol., 2008, 180(11), 7423-7430.
[http://dx.doi.org/10.4049/jimmunol.180.11.7423] [PMID: 18490742]
[17]
Bullens, D.M.; Truyen, E.; Coteur, L.; Dilissen, E.; Hellings, P.W.; Dupont, L.J.; Ceuppens, J.L. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res., 2006, 7(1), 135.
[http://dx.doi.org/10.1186/1465-9921-7-135] [PMID: 17083726]
[18]
Chakir, J.; Shannon, J.; Molet, S.; Fukakusa, M.; Elias, J.; Laviolette, M.; Boulet, L.P.; Hamid, Q. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol., 2003, 111(6), 1293-1298.
[http://dx.doi.org/10.1067/mai.2003.1557] [PMID: 12789232]
[19]
Vock, C.; Hauber, H.P.; Wegmann, M. The other T helper cells in asthma pathogenesis. J. Allergy (Cairo), 2010, 2010519298
[http://dx.doi.org/10.1155/2010/519298] [PMID: 20976014]
[20]
Ciprandi, G.; Buscaglia, S.; Pesce, G.; Pronzato, C.; Ricca, V.; Parmiani, S.; Bagnasco, M.; Canonica, G.W. Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J. Allergy Clin. Immunol., 1995, 96(6 Pt 1), 971-979.
[http://dx.doi.org/10.1016/S0091-6749(95)70235-0] [PMID: 8543756]
[21]
Oh, J.W.; Kim, K.E.; Pyun, B.Y.; Lee, H.R.; Choung, J.T.; Hong, S.J.; Park, K.S.; Lee, S.Y.; Song, S.W.; Kim, C.H.; Ahn, K.M.; Nam, S.Y.; Shon, M.H.; Kim, W.K.; Lee, M.H.; Kwon, B.C.; Choi, S.Y.; Lee, H.B.; Lee, S.I.; Lee, J.S. Nationwide study for epidemiological change of atopic dermatitis in school aged children between 1995 and 2000 and kindergarten aged children in 2003 in Korea. Pediatr. Allergy Respir. Dis, 2003, 13(4), 227-237.
[22]
Gupta, R.; Sheikh, A.; Strachan, D.P.; Anderson, H.R. Time trends in allergic disorders in the UK. Thorax, 2007, 62(1), 91-96.
[http://dx.doi.org/10.1136/thx.2004.038844] [PMID: 16950836]
[23]
Cooper, P.J.; Rodrigues, L.C.; Cruz, A.A.; Barreto, M.L. Asthma in Latin America: a public heath challenge and research opportunity. Allergy, 2009, 64(1), 5-17.
[http://dx.doi.org/10.1111/j.1398-9995.2008.01902.x] [PMID: 19076533]
[24]
Lee, S.I. Prevalence of childhood asthma in Korea: international study of asthma and allergies in childhood. Allergy Asthma Immunol. Res., 2010, 2(2), 61-64.
[http://dx.doi.org/10.4168/aair.2010.2.2.61] [PMID: 20358019]
[25]
Pawankar, R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ. J., 2014, 7(1), 12.
[http://dx.doi.org/10.1186/1939-4551-7-12] [PMID: 24940476]
[26]
Asher, M.I.; Montefort, S.; Björkstén, B.; Lai, C.K.; Strachan, D.P.; Weiland, S.K.; Williams, H. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet, 2006, 368(9537), 733-743.
[http://dx.doi.org/10.1016/S0140-6736(06)69283-0] [PMID: 16935684]
[27]
Pawankar, R.; Canonica, G.W.; Holgate, S.T.; Lockey, R.F.; Blaiss, M.S. WAO White Book on Allergy: update 2013; In: World Allergy Organization, 2013, pp. 11-19.
[28]
Vichyanond, P.; Jirapongsananuruk, O.; Visitsuntorn, N.; Tuchinda, M. Prevalence of asthma, rhinitis and eczema in children from the Bangkok area using the ISAAC (International Study for Asthma and Allergy in Children) questionnaires. J. Med. Assoc. Thai., 1998, 81(3), 175-184.
[PMID: 9623008]
[29]
Rosenstreich, D.L.; Eggleston, P.; Kattan, M.; Baker, D.; Slavin, R.G.; Gergen, P.; Mitchell, H.; McNiff-Mortimer, K.; Lynn, H.; Ownby, D.; Malveaux, F. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N. Engl. J. Med., 1997, 336(19), 1356-1363.
[http://dx.doi.org/10.1056/NEJM199705083361904] [PMID: 9134876]
[30]
Addo-Yobo, E.O.; Custovic, A.; Taggart, S.C.; Craven, M.; Bonnie, B.; Woodcock, A. Risk factors for asthma in urban Ghana. J. Allergy Clin. Immunol., 2001, 108(3), 363-368.
[http://dx.doi.org/10.1067/mai.2001.117464] [PMID: 11544454]
[31]
Bunjean, K.; Sukkasem, K.; Noppacroh, N.; Yamkaew, N.; Janthayanont, D.; Theerapancharern, W.; Chokkanchitchai, S.; Moungthong, G. Prevalence of allergic rhinitis and types of sensitized allergen in adult at Wat Intaram community, Hua Raeu, Phra Nakhon Si Ayutthaya District, Phra Nakhon Si Ayutthaya Province, Thailand. J. Med. Assoc. Thai., 2012, 95(5)(Suppl. 5), S63-S68.
[PMID: 22934447]
[32]
Lan, J.L.; Lee, D.T.; Wu, C.H.; Chang, C.P.; Yeh, C.L. Cockroach hypersensitivity: preliminary study of allergic cockroach asthma in Taiwan. J. Allergy Clin. Immunol., 1988, 82(5 Pt 1), 736-740.
[http://dx.doi.org/10.1016/0091-6749(88)90072-3] [PMID: 3057039]
[33]
Tandon, N.; Maitra, S.B.; Saha, G.K.; Modak, A.; Hati, A.K. Role of cockroaches in allergy to house dust in Calcutta, India. Ann. Allergy, 1990, 64(2 Pt 1), 155-157.
[PMID: 2306016]
[34]
Sun, B.Q.; Lai, X.X.; Gjesing, B.; Spangfort, M.D.; Zhong, N.S. Prevalence of sensitivity to cockroach allergens and IgE cross-reactivity between cockroach and house dust mite allergens in Chinese patients with allergic rhinitis and asthma. Chin. Med. J. (Engl.), 2010, 123(24), 3540-3544.
[PMID: 22166627]
[35]
Uzel, A.; Capan, N.; Canbakan, S.; Yurdakul, A.S.; Dursun, B. Evaluation of the relationship between cockroach sensitivity and house-dust-mite sensitivity in Turkish asthmatic patients. Respir. Med., 2005, 99(8), 1032-1037.
[http://dx.doi.org/10.1016/j.rmed.2004.12.013] [PMID: 15950145]
[36]
Rhee, H.; Love, T.; Harrington, D.; Grape, A. Common allergies in urban adolescents and their relationships with asthma control and healthcare utilization. Allergy Asthma Clin. Immunol., 2018, 14, 33.
[http://dx.doi.org/10.1186/s13223-018-0260-y] [PMID: 30186335]
[37]
Sookrung, N.; Chaicumpa, W. A revisit to cockroach allergens. Asian Pac. J. Allergy Immunol., 2010, 28(2-3), 95-106.
[PMID: 21038777]
[38]
Wu, C.H.; Lan, J.L. Cockroach hypersensitivity: isolation and partial characterization of major allergens. J. Allergy Clin. Immunol., 1988, 82(5 Pt 1), 727-735.
[http://dx.doi.org/10.1016/0091-6749(88)90071-1] [PMID: 3192860]
[39]
Schou, C.; Lind, P.; Fernandez-Caldas, E.; Lockey, R.F.; Løwenstein, H. Identification and purification of an important cross-reactive allergen from American (Periplaneta americana) and German (Blattella germanica) cockroach. J. Allergy Clin. Immunol., 1990, 86(6 Pt 1), 935-946.
[http://dx.doi.org/10.1016/S0091-6749(05)80157-5] [PMID: 2262648]
[40]
Wu, C.H.; Lee, M.F.; Liao, S.C. Isolation and preliminary characterization of cDNA encoding American cockroach allergens. J. Allergy Clin. Immunol., 1995, 96(3), 352-359.
[http://dx.doi.org/10.1016/S0091-6749(95)70054-4] [PMID: 7560637]
[41]
Wang, N.M.; Lee, M.F.; Wu, C.H. Immunologic characterization of a recombinant American cockroach (Periplaneta americana) Per a 1 (Cr-PII) allergen. Allergy, 1999, 54(2), 119-127.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00902.x] [PMID: 10221434]
[42]
Wu, C.H.; Lee, M.F.; Yang, J.S.; Tseng, C.Y. IgE-binding epitopes of the American cockroach Per a 1 allergen. Mol. Immunol., 2002, 39(7-8), 459-464.
[http://dx.doi.org/10.1016/S0161-5890(02)00145-1] [PMID: 12413697]
[43]
Pomés, A.; Melén, E.; Vailes, L.D.; Retief, J.D.; Arruda, L.K.; Chapman, M.D. Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J. Biol. Chem., 1998, 273(46), 30801-30807.
[http://dx.doi.org/10.1074/jbc.273.46.30801] [PMID: 9804858]
[44]
Wu, C.H.; Wang, N.M.; Lee, M.F.; Kao, C.Y.; Luo, S.F. Cloning of the American cockroach Cr-PII allergens: evidence for the existence of cross-reactive allergens between species. J. Allergy Clin. Immunol., 1998, 101(6 Pt 1), 832-840.
[http://dx.doi.org/10.1016/S0091-6749(98)70312-4] [PMID: 9648712]
[45]
Melén, E.; Pomés, A.; Vailes, L.D.; Arruda, L.K.; Chapman, M.D. Molecular cloning of Per a 1 and definition of the cross-reactive Group 1 cockroach allergens. J. Allergy Clin. Immunol., 1999, 103(5 Pt 1), 859-864.
[http://dx.doi.org/10.1016/S0091-6749(99)70430-6] [PMID: 10329820]
[46]
Yang, C.Y.; Wu, J.D.; Wu, C.H. Sequence analysis of the first complete cDNA clone encoding an American cockroach Per a 1 allergen. Biochim. Biophys. Acta, 2000, 1517(1), 153-158.
[http://dx.doi.org/10.1016/S0167-4781(00)00235-9] [PMID: 11118630]
[47]
Pomés, A.; Wünschmann, S.; Hindley, J.; Vailes, L.D.; Chapman, M.D. Cockroach allergens: function, structure and allergenicity. Protein Pept. Lett., 2007, 14(10), 960-969.
[http://dx.doi.org/10.2174/092986607782541178] [PMID: 18220993]
[48]
He, S.; Zhang, Z.; Zhang, H.; Wei, J.; Yang, L.; Yang, H.; Sun, W.; Zeng, X.; Yang, P. Analysis of properties and proinflammatory functions of cockroach allergens Per a 1.01s. Scand. J. Immunol., 2011, 74(3), 288-295.
[http://dx.doi.org/10.1111/j.1365-3083.2011.02571.x] [PMID: 21535080]
[49]
Diraphat, P.; Sookrung, N.; Chaicumpa, W.; Pumhirun, P.; Vichyanond, P.; Tapchaisri, P.; Kalambaheti, T.; Mahakunkijchareon, Y.; Sakolvaree, Y.; Bunnag, C. Recombinant American cockroach component, Per a 1, reactive to IgE of allergic Thai patients. Asian Pac. J. Allergy Immunol., 2003, 21(1), 11-20.
[PMID: 12931746]
[50]
Sookrung, N.; Khetsuphan, T.; Chaisri, U.; Indrawattana, N.; Reamtong, O.; Chaicumpa, W.; Tungtrongchitr, A. Specific B-cell epitope of Per a 1: a major allergen of American cockroach (Periplaneta americana) and anatomical localization. Allergy Asthma Immunol. Res., 2014, 6(4), 325-332.
[http://dx.doi.org/10.4168/aair.2014.6.4.325] [PMID: 24991456]
[51]
Lehane, M.J. Peritrophic matrix structure and function. Annu. Rev. Entomol., 1997, 42, 525-550.
[http://dx.doi.org/10.1146/annurev.ento.42.1.525] [PMID: 15012322]
[52]
Kato, N.; Dasgupta, R.; Smartt, C.T.; Christensen, B.M. Glucosamine:fructose-6-phosphate aminotransferase: gene characterization, chitin biosynthesis and peritrophic matrix formation in Aedes aegypti. Insect Mol. Biol., 2002, 11(3), 207-216.
[http://dx.doi.org/10.1046/j.1365-2583.2002.00326.x] [PMID: 12000639]
[53]
Pascoa, V.; Oliveira, P.L.; Dansa-Petretski, M.; Silva, J.R.; Alvarenga, P.H.; Jacobs-Lorena, M.; Lemos, F.J. Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochem. Mol. Biol., 2002, 32(5), 517-523.
[http://dx.doi.org/10.1016/S0965-1748(01)00130-8] [PMID: 11891128]
[54]
Gustchina, A.; Li, M.; Wünschmann, S.; Chapman, M.D.; Pomés, A.; Wlodawer, A. Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J. Mol. Biol., 2005, 348(2), 433-444.
[http://dx.doi.org/10.1016/j.jmb.2005.02.062] [PMID: 15811379]
[55]
Pan, Q.R.; Wang, S.M.; Shang, H.S.; Chew, F.T. Identification and characterization of Per a 2, the Bla g 2 allergen homologue from American cockroach (Periplaneta americana). J. Allergy Clin. Immunol., 2006, 117(2), S115.
[http://dx.doi.org/10.1016/j.jaci.2005.12.461]
[56]
Lee, M.F.; Song, P.P.; Hwang, G.Y.; Lin, S.J.; Chen, Y.H. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann. Allergy Asthma Immunol., 2012, 108(4), 243-248.
[http://dx.doi.org/10.1016/j.anai.2012.01.014] [PMID: 22469443]
[57]
König, M.; Agrawal, O.P.; Schenkel, H.; Scheller, K. Incorporation of calliphorin into the cuticle of the developing blowfly, Calliphora vicina. Rouxs Arch. Dev. Biol., 1986, 195(5), 296-301.
[http://dx.doi.org/10.1007/BF00376062] [PMID: 28306054]
[58]
Wu, C.H.; Lee, M.F.; Liao, S.C.; Luo, S.F. Sequencing analysis of cDNA clones encoding the American cockroach Cr-PI allergens. Homology with insect hemolymph proteins. J. Biol. Chem., 1996, 271(30), 17937-17943.
[http://dx.doi.org/10.1074/jbc.271.30.17937] [PMID: 8663281]
[59]
Arruda, L.K.; Barbosa, M.C.; Santos, A.B.; Moreno, A.S.; Chapman, M.D.; Pomés, A. Recombinant allergens for diagnosis of cockroach allergy. Curr. Allergy Asthma Rep., 2014, 14(4), 428.
[http://dx.doi.org/10.1007/s11882-014-0428-6] [PMID: 24563284]
[60]
Wu, C.H.; Lee, M.F.; Tseng, C.Y. IgE-binding epitopes of the American cockroach Per a 3 allergen. Allergy, 2003, 58(10), 986-992.
[http://dx.doi.org/10.1034/j.1398-9995.2003.00092.x] [PMID: 14510715]
[61]
Wu, C.H.; Luo, S.F.; Wong, D.W. Analysis of cross-reactive allergens from American and German cockroaches by human IgE. Allergy, 1997, 52(4), 411-416.
[http://dx.doi.org/10.1111/j.1398-9995.1997.tb01020.x] [PMID: 9188922]
[62]
Tan, Y.W.; Chan, S.L.; Ong, T.C.; Yit, Y.; Tiong, Y.S.; Chew, F.T.; Sivaraman, J.; Mok, Y.K. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J. Biol. Chem., 2009, 284(5), 3148-3157.
[http://dx.doi.org/10.1074/jbc.M807209200] [PMID: 19056737]
[63]
Chew, F.T.; Lim, S.H.; Goh, D.Y.; Lee, B.W. Sensitization to local dust-mite fauna in Singapore. Allergy, 1999, 54(11), 1150-1159.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00050.x] [PMID: 10604550]
[64]
Guang-Li, W.; Wei, L.; Ling-Yun, L.; Song-Quan, W. Cloning and purification of Per a 4, a gene encoding a Periplaneta americana allergen, and preparation of its monoclonal antibodies. Ann. Clin. Lab. Sci., 2018, 48(3), 323-327.
[PMID: 29970435]
[65]
Wei, J.F.; Yang, H.; Li, D.; Gao, P.; He, S. Preparation and identification of Per a 5 as a novel American cockroach allergen. Mediators Inflamm., 2014, 2014591468
[http://dx.doi.org/10.1155/2014/591468] [PMID: 24707117]
[66]
Sookrung, N.; Reamtong, O.; Poolphol, R.; Indrawattana, N.; Seesuay, W.; Saelim, N.; Tantilipikorn, P.; Bunnag, C.; Chaicumpa, W.; Tungtrongchitr, A. Glutathione S-transferase (GST) of American cockroach, Periplaneta americana: classes, isoforms, and allergenicity. Sci. Rep., 2018, 8(1), 484.
[http://dx.doi.org/10.1038/s41598-017-18759-z] [PMID: 29323160]
[67]
Zhang, J.; Zhang, Y.; Li, J.; Liu, M.; Liu, Z. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One, 2016, 11(5)e0155254
[http://dx.doi.org/10.1371/journal.pone.0155254] [PMID: 27153200]
[68]
Hindley, J.; Wünschmann, S.; Satinover, S.M.; Woodfolk, J.A.; Chew, F.T.; Chapman, M.D.; Pomés, A. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J. Allergy Clin. Immunol., 2006, 117(6), 1389-1395.
[http://dx.doi.org/10.1016/j.jaci.2006.02.017] [PMID: 16751002]
[69]
Gomes, A.V.; Potter, J.D.; Szczesna-Cordary, D. The role of troponins in muscle contraction. IUBMB Life, 2002, 54(6), 323-333.
[http://dx.doi.org/10.1080/15216540216037] [PMID: 12665242]
[70]
Daul, C.B.; Slattery, M.; Reese, G.; Lehrer, S.B. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int. Arch. Allergy Immunol., 1994, 105(1), 49-55.
[http://dx.doi.org/10.1159/000236802] [PMID: 7916224]
[71]
Santos, A.B.; Chapman, M.D.; Aalberse, R.C.; Vailes, L.D.; Ferriani, V.P.; Oliver, C.; Rizzo, M.C.; Naspitz, C.K.; Arruda, L.K. Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J. Allergy Clin. Immunol., 1999, 104(2 Pt 1), 329-337.
[http://dx.doi.org/10.1016/S0091-6749(99)70375-1] [PMID: 10452753]
[72]
Asturias, J.A.; Gómez-Bayón, N.; Arilla, M.C.; Martínez, A.; Palacios, R.; Sánchez-Gascón, F.; Martínez, J. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J. Immunol., 1999, 162(7), 4342-4348.
[PMID: 10201967]
[73]
Sookrung, N.; Indrawattana, N.; Tungtrongchitr, A.; Bunnag, C.; Tantilipikorn, P.; Kwangsri, S.; Chaicump, W. Allergenicity of native/recombinant tropomyosin, per a 7, of American cockroach (CR), Periplaneta americana, among CR allergic Thais. Asian Pac. J. Allergy Immunol., 2009, 27(1), 9-17.
[PMID: 19548625]
[74]
Sookrung, N.; Chaicumpa, W.; Tungtrongchitr, A.; Vichyanond, P.; Bunnag, C.; Ramasoota, P.; Tongtawe, P.; Sakolvaree, Y.; Tapchaisri, P. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ. Health Perspect., 2006, 114(6), 875-880.
[http://dx.doi.org/10.1289/ehp.8650] [PMID: 16759988]
[75]
Tungtrongchitr, A.; Sookrung, N.; Indrawattana, N.; Sae-Lim, J.; Puduang, S.; Phonrat, B.; Wanachiwanawin, D.; Chaicumpa, W. Seasonal levels of the major American cockroach allergen per a 9 (arginine kinase) in Bangkok and their relevance for disease severity. Asian Pac. J. Allergy Immunol., 2009, 27(1), 1-7.
[PMID: 19548624]
[76]
Chuang, J.G.; Su, S.N.; Chiang, B.L.; Lee, H.J.; Chow, L.P. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics, 2010, 10(21), 3854-3867.
[http://dx.doi.org/10.1002/pmic.201000348] [PMID: 20960453]
[77]
Binder, M.; Mahler, V.; Hayek, B.; Sperr, W.R.; Schöller, M.; Prozell, S.; Wiedermann, G.; Valent, P.; Valenta, R.; Duchêne, M. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J. Immunol., 2001, 167(9), 5470-5477.
[http://dx.doi.org/10.4049/jimmunol.167.9.5470] [PMID: 11673567]
[78]
Pascal, M.; Grishina, G.; Yang, A.C.; Sánchez-García, S.; Lin, J.; Towle, D.; Ibañez, M.D.; Sastre, J.; Sampson, H.A.; Ayuso, R. Molecular diagnosis of shrimp allergy: efficiency of several allergens to predict clinical reactivity. J. Allergy Clin. Immunol. Pract., 2015, 3(4), 521-9.e10.
[http://dx.doi.org/10.1016/j.jaip.2015.02.001] [PMID: 25769902]
[79]
Sookrung, N.; Diraphat, P.; Chaicumpa, W.; Tongtawe, P.; Sakolvaree, Y.; Tapchaisri, P.; Mahakittikun, V.; Tungtrongchitr, A.; Vichyanond, P.; Bunnag, C. Cockroach allergen detection and cockroach allergens of allergic Thai patients. Asian Pac. J. Allergy Immunol., 2003, 21(1), 1-9.
[PMID: 12931745]
[80]
Lee, M.F.; Chen, Y.H.; Chiang, C.H.; Lin, S.J.; Song, P.P. Analysis of 10 environmental allergen components of the American cockroach in Taiwan. Ann. Allergy Asthma Immunol., 2016, 117(5), 535-541.e1.
[http://dx.doi.org/10.1016/j.anai.2016.09.432] [PMID: 27788884]
[81]
Sudha, V.T.; Arora, N.; Gaur, S.N.; Pasha, S.; Singh, B.P. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy, 2008, 63(6), 768-776.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01602.x] [PMID: 18445191]
[82]
Govindaraj, D.; Gaur, S.N.; Arora, N. Characterization of recombinant per a 10 from Periplaneta americana. Clin. Vaccine Immunol., 2013, 20(2), 262-268.
[http://dx.doi.org/10.1128/CVI.00461-12] [PMID: 23254302]
[83]
Sudha, V.T.; Arora, N.; Singh, B.P. Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur. J. Clin. Invest., 2009, 39(6), 507-516.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02112.x] [PMID: 19397689]
[84]
Kondo, S.; Helin, H.; Shichijo, M.; Bacon, K.B. Cockroach allergen extract stimulates protease-activated receptor-2 (PAR-2) expressed in mouse lung fibroblast. Inflamm. Res., 2004, 53(9), 489-496.
[http://dx.doi.org/10.1007/s00011-004-1287-8] [PMID: 15551003]
[85]
Jeong, S.K.; Kim, H.J.; Youm, J.K.; Ahn, S.K.; Choi, E.H.; Sohn, M.H.; Kim, K.E.; Hong, J.H.; Shin, D.M.; Lee, S.H. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J. Invest. Dermatol., 2008, 128(8), 1930-1939.
[http://dx.doi.org/10.1038/jid.2008.13] [PMID: 18305573]
[86]
Goel, C.; Kalra, N.; Dwarakanath, B.S.; Gaur, S.N.; Arora, N. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway. Clin. Exp. Immunol., 2015, 180(2), 341-351.
[http://dx.doi.org/10.1111/cei.12569] [PMID: 25492061]
[87]
Goel, C.; Gaur, S.N.; Bhati, G.; Arora, N. DC type 2 polarization depends on both the allergic status of the individual and protease activity of Per a 10. Immunobiology, 2015, 220(10), 1113-1121.
[http://dx.doi.org/10.1016/j.imbio.2015.05.010] [PMID: 26033313]
[88]
Kale, S.L.; Arora, N. Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2. Immunobiology, 2015, 220(4), 525-532.
[http://dx.doi.org/10.1016/j.imbio.2014.10.018] [PMID: 25468564]
[89]
Srivastava, D.; Gaur, S.N.; Arora, N.; Singh, B.P. Clinico-immunological changes post-immunotherapy with Periplaneta americana. Eur. J. Clin. Invest., 2011, 41(8), 879-888.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02480.x] [PMID: 21323911]
[90]
Fang, Y.; Long, C.; Bai, X.; Liu, W.; Rong, M.; Lai, R.; An, S. Two new types of allergens from the cockroach, Periplaneta americana. Allergy, 2015, 70(12), 1674-1678.
[http://dx.doi.org/10.1111/all.12766] [PMID: 26361742]
[91]
Hamid, R.; Khan, M.A.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J.; Javed, S. Chitinases: An update. J. Pharm. Bioallied Sci., 2013, 5(1), 21-29.
[http://dx.doi.org/10.4103/0975-7406.106559] [PMID: 23559820]
[92]
Powning, R.F.; Irzykiewicz, H. A chitinase from the gut of the cockroach Periplaneta americana. Nature, 1963, 200, 1128.
[http://dx.doi.org/10.1038/2001128a0] [PMID: 14098466]
[93]
Tamaki, F.K.; Pimentel, A.C.; Dias, A.B.; Cardoso, C.; Ribeiro, A.F.; Ferreira, C.; Terra, W.R. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana. J. Insect Physiol., 2014, 70, 22-35.
[http://dx.doi.org/10.1016/j.jinsphys.2014.08.007] [PMID: 25193546]
[94]
Available from; WHO/IUIS Allergen Nomenclature Sub-committee.
[95]
Pollart, S.M.; Mullins, D.E.; Vailes, L.D.; Hayden, M.L.; Platts-Mills, T.A.; Sutherland, W.M.; Chapman, M.D. Identification, quantitation, and purification of cockroach allergens using monoclonal antibodies. J. Allergy Clin. Immunol., 1991, 87(2), 511-521.
[http://dx.doi.org/10.1016/0091-6749(91)90010-L] [PMID: 1993811]
[96]
Helm, R.; Cockrell, G.; Stanley, J.S.; Brenner, R.J.; Burks, W.; Bannon, G.A. Isolation and characterization of a clone encoding a major allergen (Bla g Bd90K) involved in IgE-mediated cockroach hypersensitivity. J. Allergy Clin. Immunol., 1996, 98(1), 172-180.
[http://dx.doi.org/10.1016/S0091-6749(96)70240-3] [PMID: 8765832]
[97]
Mueller, G.A.; Pedersen, L.C.; Lih, F.B.; Glesner, J.; Moon, A.F.; Chapman, M.D.; Tomer, K.B.; London, R.E.; Pomés, A. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J. Allergy Clin. Immunol., 2013, 132(6), 1420-1426.
[http://dx.doi.org/10.1016/j.jaci.2013.06.014] [PMID: 23915714]
[98]
Suazo, A.; Gore, C.; Schal, C. RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption. Insect Mol. Biol., 2009, 18(6), 727-736.
[http://dx.doi.org/10.1111/j.1365-2583.2009.00912.x] [PMID: 19758414]
[99]
Shao, L.; Devenport, M.; Fujioka, H.; Ghosh, A.; Jacobs-Lorena, M. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol., 2005, 35(9), 947-959.
[http://dx.doi.org/10.1016/j.ibmb.2005.03.012] [PMID: 15978997]
[100]
Gore, J.C.; Schal, C. Cockroach allergen biology and mitigation in the indoor environment. Annu. Rev. Entomol., 2007, 52, 439-463.
[http://dx.doi.org/10.1146/annurev.ento.52.110405.091313] [PMID: 17163801]
[101]
Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; Ono-Moore, K.D.; Schneider, D.A.; Newman, J.W.; Adams, S.H.; Hwang, D.H. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res., 2012, 53(9), 2002-2013.
[http://dx.doi.org/10.1194/jlr.D029546] [PMID: 22766885]
[102]
Wünschmann, S.; Gustchina, A.; Chapman, M.D.; Pomés, A. Cockroach allergen Bla g 2: an unusual aspartic proteinase. J. Allergy Clin. Immunol., 2005, 116(1), 140-145.
[http://dx.doi.org/10.1016/j.jaci.2005.04.024] [PMID: 15990787]
[103]
Gustchina, A.; Li, M.; Wünschmann, S.; Chapman, M.D.; Pomés, A.; Wlodawer, A. Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J. Mol. Biol., 2005, 348(2), 433-444.
[http://dx.doi.org/10.1016/j.jmb.2005.02.062] [PMID: 15811379]
[104]
Pomés, A.; Chapman, M.D.; Vailes, L.D.; Blundell, T.L.; Dhanaraj, V. Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Am. J. Respir. Crit. Care Med., 2002, 165(3), 391-397.
[http://dx.doi.org/10.1164/ajrccm.165.3.2104027] [PMID: 11818327]
[105]
Arruda, L.K.; Vailes, L.D.; Mann, B.J.; Shannon, J.; Fox, J.W.; Vedvick, T.S.; Hayden, M.L.; Chapman, M.D. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J. Biol. Chem., 1995, 270(33), 19563-19568.
[http://dx.doi.org/10.1074/jbc.270.33.19563] [PMID: 7642642]
[106]
Sporik, R.; Squillace, S.P.; Ingram, J.M.; Rakes, G.; Honsinger, R.W.; Platts-Mills, T.A. Mite, cat, and cockroach exposure, allergen sensitisation, and asthma in children: a case-control study of three schools. Thorax, 1999, 54(8), 675-680.
[http://dx.doi.org/10.1136/thx.54.8.675] [PMID: 10413718]
[107]
Li, M.; Gustchina, A.; Glesner, J.; Wünschmann, S.; Vailes, L.D.; Chapman, M.D.; Pomés, A.; Wlodawer, A. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J. Immunol., 2011, 186(1), 333-340.
[http://dx.doi.org/10.4049/jimmunol.1002318] [PMID: 21123808]
[108]
Glesner, J.; Wünschmann, S.; Li, M.; Gustchina, A.; Wlodawer, A.; Himly, M.; Chapman, M.D.; Pomés, A. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS One, 2011, 6(7)e22223
[http://dx.doi.org/10.1371/journal.pone.0022223] [PMID: 21789239]
[109]
Woodfolk, J.A.; Glesner, J.; Wright, P.W.; Kepley, C.L.; Li, M.; Himly, M.; Muehling, L.M.; Gustchina, A.; Wlodawer, A.; Chapman, M.D.; Pomés, A. Antigenic determinants of the bilobal cockroach allergen Bla g 2. J. Biol. Chem., 2016, 291(5), 2288-2301.
[http://dx.doi.org/10.1074/jbc.M115.702324] [PMID: 26644466]
[110]
Khurana, T.; Collison, M.; Chew, F.T.; Slater, J.E. Bla g 3: a novel allergen of German cockroach identified using cockroach-specific avian single-chain variable fragment antibody. Ann. Allergy Asthma Immunol., 2014, 112(2), 140-145.e1.
[http://dx.doi.org/10.1016/j.anai.2013.11.007] [PMID: 24468254]
[111]
Flower, D.R.; North, A.C.; Attwood, T.K. Structure and sequence relationships in the lipocalins and related proteins. Protein Sci., 1993, 2(5), 753-761.
[http://dx.doi.org/10.1002/pro.5560020507] [PMID: 7684291]
[112]
Lücke, C.; Franzoni, L.; Abbate, F.; Löhr, F.; Ferrari, E.; Sorbi, R.T.; Rüterjans, H.; Spisni, A. Solution structure of a recombinant mouse major urinary protein. Eur. J. Biochem., 1999, 266(3), 1210-1218.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00984.x] [PMID: 10583419]
[113]
Böcskei, Z.; Groom, C.R.; Flower, D.R.; Wright, C.E.; Phillips, S.E.; Cavaggioni, A.; Findlay, J.B.; North, A.C. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature, 1992, 360(6400), 186-188.
[http://dx.doi.org/10.1038/360186a0] [PMID: 1279439]
[114]
Brownlow, S.; Morais Cabral, J.H.; Cooper, R.; Flower, D.R.; Yewdall, S.J.; Polikarpov, I.; North, A.C.; Sawyer, L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure, 1997, 5(4), 481-495.
[http://dx.doi.org/10.1016/S0969-2126(97)00205-0] [PMID: 9115437]
[115]
Arruda, L.K.; Barbosa, M.C.; Santos, A.B.; Moreno, A.S.; Chapman, M.D.; Pomés, A. Recombinant allergens for diagnosis of cockroach allergy. Curr. Allergy Asthma Rep., 2014, 14(4), 428.
[http://dx.doi.org/10.1007/s11882-014-0428-6] [PMID: 24563284]
[116]
Rouvinen, J.; Rautiainen, J.; Virtanen, T.; Zeiler, T.; Kauppinen, J.; Taivainen, A.; Mäntyjärvi, R. Probing the molecular basis of allergy. three-dimensional structure of the bovine lipocalin allergen Bos d 2. J. Biol. Chem., 1999, 274(4), 2337-2343.
[http://dx.doi.org/10.1074/jbc.274.4.2337] [PMID: 9891000]
[117]
Dandeu, J.P.; Rabillon, J.; Divanovic, A.; Carmi-Leroy, A.; David, B. Hydrophobic interaction chromatography for isolation and purification of Equ c l, the horse major allergen. J. Chromatogr. A, 1993, 621(1), 23-31.
[http://dx.doi.org/10.1016/0378-4347(93)80072-C] [PMID: 8281259]
[118]
Gregoire, C.; Rosinski-Chupin, I.; Rabillon, J.; Alzari, P.M.; David, B.; Dandeu, J.P. cDNA cloning and sequencing reveal the major horse allergen Equ c1 to be a glycoprotein member of the lipocalin superfamily. J. Biol. Chem., 1996, 271(51), 32951-32959.
[http://dx.doi.org/10.1074/jbc.271.51.32951] [PMID: 8955138]
[119]
Lascombe, M.B.; Grégoire, C.; Poncet, P.; Tavares, G.A.; Rosinski-Chupin, I.; Rabillon, J.; Goubran-Botros, H.; Mazié, J.C.; David, B.; Alzari, P.M. Crystal structure of the allergen Equ c 1. A dimeric lipocalin with restricted IgE-reactive epitopes. J. Biol. Chem., 2000, 275(28), 21572-21577.
[http://dx.doi.org/10.1074/jbc.M002854200] [PMID: 10787420]
[120]
Fan, Y.; Gore, J.C.; Redding, K.O.; Vailes, L.D.; Chapman, M.D.; Schal, C. Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol. Biol., 2005, 14(1), 45-53.
[http://dx.doi.org/10.1111/j.1365-2583.2004.00530.x] [PMID: 15663774]
[121]
Offermann, L.R.; Chan, S.L.; Osinski, T.; Tan, Y.W.; Chew, F.T.; Sivaraman, J.; Mok, Y.K.; Minor, W.; Chruszcz, M. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Mol. Immunol., 2014, 60(1), 86-94.
[http://dx.doi.org/10.1016/j.molimm.2014.03.016] [PMID: 24769496]
[122]
Arruda, L.K.; Vailes, L.D.; Hayden, M.L.; Benjamin, D.C.; Chapman, M.D.; Chapman, M.D. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J. Biol. Chem., 1995, 270(52), 31196-31201.
[http://dx.doi.org/10.1074/jbc.270.52.31196] [PMID: 8537384]
[123]
Yu, S.J.; Huang, S.W. Purification and characterization of glutathione S-transferases from the German cockroach, Blattella germanica (L.). Pestic. Biochem. Physiol., 2000, 67(1), 36-45.
[http://dx.doi.org/10.1006/pest.1999.2472]
[124]
Ma, B.; Chang, F.N. Purification and cloning of a Delta class glutathione S-transferase displaying high peroxidase activity isolated from the German cockroach Blattella germanica. FEBS J., 2007, 274(7), 1793-1803.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05728.x] [PMID: 17331184]
[125]
Jeong, K.Y.; Jeong, K.J.; Yi, M.H.; Lee, H.; Hong, C.S.; Yong, T.S. Allergenicity of sigma and delta class glutathione S-transferases from the German cockroach. Int. Arch. Allergy Immunol., 2009, 148(1), 59-64.
[http://dx.doi.org/10.1159/000151506] [PMID: 18716404]
[126]
Arruda, L.K.; Vailes, L.D.; Platts-Mills, T.A.; Hayden, M.L.; Chapman, M.D. Induction of IgE antibody responses by glutathione S-transferase from the German cockroach (Blattella germanica). J. Biol. Chem., 1997, 272(33), 20907-20912.
[http://dx.doi.org/10.1074/jbc.272.33.20907] [PMID: 9252418]
[127]
Mueller, G.A.; Pedersen, L.C.; Glesner, J.; Edwards, L.L.; Zakzuk, J.; London, R.E.; Arruda, L.K.; Chapman, M.D.; Caraballo, L.; Pomés, A. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: Relevance for molecular diagnosis. J. Allergy Clin. Immunol., 2015, 136(5), 1369-1377.
[http://dx.doi.org/10.1016/j.jaci.2015.03.015] [PMID: 25930195]
[128]
Santiago, H.C. LeeVan, E.; Bennuru, S.; Ribeiro-Gomes, F.; Mueller, E.; Wilson, M.; Wynn, T.; Garboczi, D.; Urban, J.; Mitre, E.; Nutman, T.B. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization. J. Allergy Clin. Immunol., 2012, 130(1), 248-56.e9.
[http://dx.doi.org/10.1016/j.jaci.2012.02.045] [PMID: 22541242]
[129]
Jeong, K.J.; Jeong, K.Y.; Kim, C.R.; Yong, T.S. IgE-binding epitope analysis of Bla g 5, the German cockroach allergen. Protein Pept. Lett., 2010, 17(5), 573-577.
[http://dx.doi.org/10.2174/092986610791112765] [PMID: 20044919]
[130]
Un, S.; Jeong, K.Y.; Yi, M.H.; Kim, C.R.; Yong, T.S. IgE binding epitopes of Bla g 6 from German cockroach. Protein Pept. Lett., 2010, 17(9), 1170-1176.
[http://dx.doi.org/10.2174/092986610791760432] [PMID: 20394576]
[131]
Pomés, A.; Mueller, G.A.; Randall, T.A.; Chapman, M.D.; Arruda, L.K. New insights into cockroach allergens. Curr. Allergy Asthma Rep., 2017, 17(4), 25.
[http://dx.doi.org/10.1007/s11882-017-0694-1] [PMID: 28421512]
[132]
Jeong, K.Y.; Hwang, H.; Lee, J.; Lee, I.Y.; Kim, D.S.; Hong, C.S.; Ree, H.I.; Yong, T.S. Allergenic characterization of tropomyosin from the dusky brown cockroach, Periplaneta fuliginosa. Clin. Diagn. Lab. Immunol., 2004, 11(4), 680-685.
[PMID: 15242941]
[133]
Shanti, K.N.; Martin, B.M.; Nagpal, S.; Metcalfe, D.D.; Rao, P.V. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol., 1993, 151(10), 5354-5363.
[PMID: 7693809]
[134]
Reese, G.; Ayuso, R.; Lehrer, S.B. Tropomyosin: an invertebrate pan-allergen. Int. Arch. Allergy Immunol., 1999, 119(4), 247-258.
[http://dx.doi.org/10.1159/000024201] [PMID: 10474029]
[135]
Santos, A.B.; Rocha, G.M.; Oliver, C.; Ferriani, V.P.; Lima, R.C.; Palma, M.S.; Sales, V.S.; Aalberse, R.C.; Chapman, M.D.; Arruda, L.K. Cross-reactive IgE antibody responses to tropomyosins from Ascaris lumbricoides and cockroach. J. Allergy Clin. Immunol., 2008, 121(4), 1040-6.e1.
[http://dx.doi.org/10.1016/j.jaci.2007.12.1147] [PMID: 18275995]
[136]
Lopata, A.L.; O’Hehir, R.E.; Lehrer, S.B. Shellfish allergy. Clin. Exp. Allergy, 2010, 40(6), 850-858.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03513.x] [PMID: 20412131]
[137]
Leung, P.S.; Chu, K.H.; Chow, W.K.; Ansari, A.; Bandea, C.I.; Kwan, H.S.; Nagy, S.M.; Gershwin, M.E. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J. Allergy Clin. Immunol., 1994, 94(5), 882-890.
[http://dx.doi.org/10.1016/0091-6749(94)90156-2] [PMID: 7963157]
[138]
Jenkins, J.A.; Breiteneder, H.; Mills, E.N. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J. Allergy Clin. Immunol., 2007, 120(6), 1399-1405.
[http://dx.doi.org/10.1016/j.jaci.2007.08.019] [PMID: 17935767]
[139]
Ayuso, R.; Reese, G.; Leong-Kee, S.; Plante, M.; Lehrer, S.B. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int. Arch. Allergy Immunol., 2002, 129(1), 38-48.
[http://dx.doi.org/10.1159/000065172] [PMID: 12372997]
[140]
Wang, J.; Calatroni, A.; Visness, C.M.; Sampson, H.A. Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J. Allergy Clin. Immunol., 2011, 128(4), 834-837.
[http://dx.doi.org/10.1016/j.jaci.2011.07.045] [PMID: 21872304]
[141]
Jeong, K.Y.; Lee, J.; Lee, I.Y.; Ree, H.I.; Hong, C.S.; Yong, T.S. Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy, 2003, 58(10), 1059-1063.
[http://dx.doi.org/10.1034/j.1398-9995.2003.00167.x] [PMID: 14510726]
[142]
Xu, L.; Zhang, M.; Ma, W.; Jin, S.; Song, W.; He, S. Cockroach allergen Bla g 7 promotes TIM4 expression in dendritic cells leading to Th2 polarization. Mediators Inflamm., 2013, 2013983149
[http://dx.doi.org/10.1155/2013/983149] [PMID: 24204099]
[143]
Jeong, K.Y.; Kim, C.R.; Park, J.; Han, I.S.; Park, J.W.; Yong, T.S. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int. Arch. Allergy Immunol., 2013, 161(4), 315-324.
[http://dx.doi.org/10.1159/000347034] [PMID: 23689614]
[144]
Available from: EAAACI Molecular Users’ Guide. https://www.eaaci.org/documents/MAUG_book.pdf
[145]
Dillon, M.B.; Schulten, V.; Oseroff, C.; Paul, S.; Dullanty, L.M.; Frazier, A.; Belles, X.; Piulachs, M.D.; Visness, C.; Bacharier, L.; Bloomberg, G.R.; Busse, P.; Sidney, J.; Peters, B.; Sette, A. Different Bla-g T cell antigens dominate responses in asthma versus rhinitis subjects. Clin. Exp. Allergy, 2015, 45(12), 1856-1867.
[http://dx.doi.org/10.1111/cea.12643] [PMID: 26414909]
[146]
Valenta, R.; Campana, R.; Marth, K.; van Hage, M. Allergen-specific immunotherapy: from therapeutic vaccines to prophylactic approaches. J. Intern. Med., 2012, 272(2), 144-157.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02556.x] [PMID: 22640224]
[147]
Douglass, J.A.; O’Hehir, R.E. 1. Diagnosis, treatment and prevention of allergic disease: the basics. Med. J. Aust., 2006, 185(4), 228-233.
[PMID: 16922672]
[148]
Gosepath, J.; Amedee, R.G.; Mann, W.J. Nasal provocation testing as an international standard for evaluation of allergic and nonallergic rhinitis. Laryngoscope, 2005, 115(3), 512-516.
[http://dx.doi.org/10.1097/01.MLG.0000149682.56426.6B] [PMID: 15744168]
[149]
Liccardi, G.; D’Amato, G.; Canonica, G.W.; Salzillo, A.; Piccolo, A.; Passalacqua, G. Systemic reactions from skin testing: literature review. J. Investig. Allergol. Clin. Immunol., 2006, 16(2), 75-78.
[PMID: 16689179]
[150]
Movérare, R.; Elfman, L.; Vesterinen, E.; Metso, T.; Haahtela, T. Development of new IgE specificities to allergenic components in birch pollen extract during specific immunotherapy studied with immunoblotting and Pharmacia CAP System. Allergy, 2002, 57(5), 423-430.
[http://dx.doi.org/10.1034/j.1398-9995.2002.13248.x] [PMID: 11972482]
[151]
Shah, K.M.; Rank, M.A.; Davé, S.A.; Oslie, C.L.; Butterfield, J.H. Predicting which medication classes interfere with allergy skin testing. Allergy Asthma Proc., 2010, 31(6), 477-482.
[http://dx.doi.org/10.2500/aap.2010.31.3382] [PMID: 21708059]
[152]
Brand, P.L.P. Allergy diagnosis: pros and cons of different tests, indications and limitations. Breathe (Sheff.), 2007, 3, 345-349.
[http://dx.doi.org/10.1183/18106838.0304.345]
[153]
Sookrung, N.; Jotikaprasardhna, P.; Bunnag, C.; Chaicumpa, W.; Tungtrongchitr, A. Concordance of skin prick test and serum-specific IgE to locally produced component-resolved diagnostics for cockroach allergy. Ann. Allergy Asthma Immunol., 2019, 122(1), 93-98.
[http://dx.doi.org/10.1016/j.anai.2018.09.463] [PMID: 30287255]
[154]
Valenta, R.; Lidholm, J.; Niederberger, V.; Hayek, B.; Kraft, D.; Grönlund, H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin. Exp. Allergy, 1999, 29(7), 896-904.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00653.x] [PMID: 10383589]
[155]
Dodig, S.; Čepelak, I. The potential of component-resolved diagnosis in laboratory diagnostics of allergy. Biochem. Med. (Zagreb), 2018, 28(2)020501
[http://dx.doi.org/10.11613/BM.2018.020501] [PMID: 29666553]
[156]
Harwanegg, C.; Laffer, S.; Hiller, R.; Mueller, M.W.; Kraft, D.; Spitzauer, S.; Valenta, R. Microarrayed recombinant allergens for diagnosis of allergy. Clin. Exp. Allergy, 2003, 33(1), 7-13.
[http://dx.doi.org/10.1046/j.1365-2222.2003.01550.x] [PMID: 12534543]
[157]
Ferrer, M.; Sanz, M.L.; Sastre, J.; Bartra, J.; del Cuvillo, A.; Montoro, J.; Jáuregui, I.; Dávila, I.; Mullol, J.; Valero, A. Molecular diagnosis in allergology: application of the microarray technique. J. Investig. Allergol. Clin. Immunol., 2009, 19(1)(Suppl. 1), 19-24.
[PMID: 19476050]
[158]
Luengo, O.; Cardona, V. Component resolved diagnosis: when should it be used? Clin. Transl. Allergy, 2014, 4, 28.
[http://dx.doi.org/10.1186/2045-7022-4-28] [PMID: 25250172]
[159]
Kattan, J.D.; Gimenez, G.; Lieberman, J.; Sampson, H. The use of the ISAC microarray platform in food allergic patients. J. Allergy Clin. Immunol., 2013, 131(2), AB85.
[http://dx.doi.org/10.1016/j.jaci.2012.12.970]
[160]
Griffiths, R.L.M.; El-Shanawany, T.; Jolles, S.R.A.; Selwood, C.; Heaps, A.G.; Carne, E.M.; Williams, P.E. Comparison of the performance of skin prick, ImmunoCAP, and ISAC tests in the diagnosis of patients with allergy. J. Clin. Allergy Immunol., 2017, 172, 215-223.
[161]
Carvalho, S.; Gaspar, A.; Prates, S.; Pires, G.; Silva, I.; Matos, V.; Loureiro, V. Leiria –Pinto, P. ImmunoCAP ISAC®: Microarray technology in the study of the role of cross-reactivity in food allergy. Rev. Port. Imunoalergol., 2010, 18(4), 331-352.
[162]
Jeong, K.Y.; Lee, J.Y.; Son, M.; Yi, M.H.; Yong, T-S.; Shin, J.U.; Lee, K.H.; Kim, Y.J.; Park, K.H.; Park, H.J.; Lee, J.H.; Park, J.W. Profiles of IgE Sensitization to Der f 1, Der f 2, Der f 6, Der f 8, Der f 10, and Der f 20 in Korean House Dust Mite Allergy Patients. Allergy Asthma Immunol. Res., 2015, 7(5), 483-488.
[http://dx.doi.org/10.4168/aair.2015.7.5.483] [PMID: 25749773]
[163]
Pittner, G.; Vrtala, S.; Thomas, W.R.; Weghofer, M.; Kundi, M.; Horak, F.; Kraft, D.; Valenta, R. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin. Exp. Allergy, 2004, 34(4), 597-603.
[http://dx.doi.org/10.1111/j.1365-2222.2004.1930.x] [PMID: 15080813]
[164]
Zeng, G.; Luo, W.; Zheng, P.; Wei, N.; Huang, H.; Sun, B.; Zhao, X. Component-resolved diagnostic study of Dermatophagoides pteronyssinus major allergen molecules in a Southern Chinese cohort. J. Investig. Allergol. Clin. Immunol., 2015, 25(5), 343-351.
[PMID: 26727763]
[165]
Jakob, T.; Müller, U.; Helbling, A.; Spillner, E. Component resolved diagnostics for hymenoptera venom allergy. Curr. Opin. Allergy Clin. Immunol., 2017, 17(5), 363-372.
[http://dx.doi.org/10.1097/ACI.0000000000000390] [PMID: 28759475]
[166]
Ebo, D.G.; Faber, M.; Sabato, V.; Leysen, J.; Bridts, C.H.; De Clerck, L.S. Component-resolved diagnosis of wasp (yellow jacket) venom allergy. Clin. Exp. Allergy, 2013, 43(2), 255-261.
[http://dx.doi.org/10.1111/cea.12057] [PMID: 23331567]
[167]
Tomsitz, D.; Brockow, K. Component-resolved diagnosis in Hymenoptera anaphylaxis. Curr. Allergy Asthma Rep., 2017, 17(6), 38.
[http://dx.doi.org/10.1007/s11882-017-0707-0] [PMID: 28501976]
[168]
Hemmer, W.; Sesztak-Greinecker, G.; Wantke, F.; Wohrl, S. Usefulness of component-resolved diagnosis (CRD) in patients with pet allergy. J. Allergy Clin. Immunol., 2016, 137(2), AB28.
[http://dx.doi.org/10.1016/j.jaci.2015.12.089]
[169]
Valenta, R.; Twaroch, T.; Swoboda, I. Component-resolved diagnosis to optimize allergen-specific immunotherapy in the Mediterranean area. J. Investig. Allergol. Clin. Immunol., 2007, 17(1)(Suppl. 1), 36-40.
[PMID: 18050570]
[170]
Glesner, J.; Filep, S.; Vailes, L.D.; Wünschmann, S.; Chapman, M.D.; Birrueta, G.; Frazier, A.; Jeong, K.Y.; Schal, C.; Bacharier, L.; Beigelman, A.; Busse, P.; Schulten, V.; Sette, A.; Pomés, A. Allergen content in German cockroach extracts and sensitization profiles to a new expanded set of cockroach allergens determine in vitro extract potency for IgE reactivity. J. Allergy Clin. Immunol., 2019, 143(4), 1474-1481.e8.
[http://dx.doi.org/10.1016/j.jaci.2018.07.036] [PMID: 30170124]
[171]
Fujita, H.; Soyka, M.B.; Akdis, M.; Akdis, C.A. Mechanisms of allergen-specific immunotherapy. Clin. Transl. Allergy, 2012, 2(1), 2.
[http://dx.doi.org/10.1186/2045-7022-2-2] [PMID: 22409879]
[172]
Akdis, M.; Akdis, C.A. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J. Allergy Clin. Immunol., 2014, 133(3), 621-631.
[http://dx.doi.org/10.1016/j.jaci.2013.12.1088] [PMID: 24581429]
[173]
Denépoux, S.; Eibensteiner, P.B.; Steinberger, P.; Vrtala, S.; Visco, V.; Weyer, A.; Kraft, D.; Banchereau, J.; Valenta, R.; Lebecque, S. Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction. FEBS Lett., 2000, 465(1), 39-46.
[http://dx.doi.org/10.1016/S0014-5793(99)01703-2] [PMID: 10620703]
[174]
Wachholz, P.A.; Durham, S.R. Mechanisms of immunotherapy: IgG revisited. Curr. Opin. Allergy Clin. Immunol., 2004, 4(4), 313-318.
[http://dx.doi.org/10.1097/01.all.0000136753.35948.c0] [PMID: 15238798]
[175]
Kips, J.C.; Brusselle, G.J.; Joos, G.F.; Peleman, R.A.; Tavernier, J.H.; Devos, R.R.; Pauwels, R.A. Interleukin-12 inhibits antigen-induced airway hyperresponsiveness in mice. Am. J. Respir. Crit. Care Med., 1996, 153(2), 535-539.
[http://dx.doi.org/10.1164/ajrccm.153.2.8564093] [PMID: 8564093]
[176]
Meechan, P.; Tungtrongchitr, A.; Chaisri, U.; Maklon, K.; Indrawattana, N.; Chaicumpa, W.; Sookrung, N. Intranasal, liposome-adjuvanted cockroach allergy vaccines made of refined major allergen and whole-body extract of Periplaneta americana. Int. Arch. Allergy Immunol., 2013, 161(4), 351-362.
[http://dx.doi.org/10.1159/000348314] [PMID: 23689057]
[177]
Prangtaworn, P.; Chaisri, U.; Seesuay, W.; Mahasongkram, K.; Onlamoon, N.; Reamtong, O.; Tungtrongchitr, A.; Indrawattana, N.; Chaicumpa, W.; Sookrung, N. Tregitope-linked refined allergen vaccines for immunotherapy in cockroach allergy. Sci. Rep., 2018, 8(1), 15480.
[http://dx.doi.org/10.1038/s41598-018-33680-9] [PMID: 30341299]
[178]
Chaisri, U.; Tungtrongchitr, A.; Indrawattana, N.; Meechan, P.; Phurttikul, W.; Tasaniyananda, N.; Saelim, N.; Chaicumpa, W.; Sookrung, N. Immunotherapeutic efficacy of liposome-encapsulated refined allergen vaccines against Dermatophagoides pteronyssinus allergy. PLoS One, 2017, 12(11)e0188627
[http://dx.doi.org/10.1371/journal.pone.0188627] [PMID: 29182623]
[179]
McHugh, S.M.; Deighton, J.; Stewart, A.G.; Lachmann, P.J.; Ewan, P.W. Bee venom immunotherapy induces a shift in cytokine responses from a TH-2 to a TH-1 dominant pattern: comparison of rush and conventional immunotherapy. Clin. Exp. Allergy, 1995, 25(9), 828-838.
[http://dx.doi.org/10.1111/j.1365-2222.1995.tb00025.x] [PMID: 8564721]
[180]
Gajewski, T.F.; Fitch, F.W. Anti-proliferative effect of IFN-γ in immune regulation. I. IFN-γ inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J. Immunol., 1988, 140(12), 4245-4252.
[PMID: 2967332]
[181]
Frandji, P.; Tkaczyk, C.; Oskéritzian, C.; Lapeyre, J.; Peronet, R.; David, B.; Guillet, J.G.; Mécheri, S. Presentation of soluble antigens by mast cells: upregulation by interleukin-4 and granulocyte/macrophage colony-stimulating factor and downregulation by interferon-gamma. Cell. Immunol., 1995, 163(1), 37-46.
[http://dx.doi.org/10.1006/cimm.1995.1096] [PMID: 7758129]
[182]
Huang, H.; Paul, W.E. Impaired interleukin 4 signaling in T helper type 1 cells. J. Exp. Med., 1998, 187(8), 1305-1313.
[http://dx.doi.org/10.1084/jem.187.8.1305] [PMID: 9547341]
[183]
Elser, B.; Lohoff, M.; Kock, S.; Giaisi, M.; Kirchhoff, S.; Krammer, P.H.; Li-Weber, M. IFN-γ represses IL-4 expression via IRF-1 and IRF-2. Immunity, 2002, 17(6), 703-712.
[http://dx.doi.org/10.1016/S1074-7613(02)00471-5] [PMID: 12479817]
[184]
Iwamoto, I.; Nakajima, H.; Endo, H.; Yoshida, S. Interferon γ regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J. Exp. Med., 1993, 177(2), 573-576.
[http://dx.doi.org/10.1084/jem.177.2.573] [PMID: 8093895]
[185]
Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-γ. Annu. Rev. Immunol., 1997, 15, 749-795.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.749] [PMID: 9143706]
[186]
Fallarino, F.; Grohmann, U.; Hwang, K.W.; Orabona, C.; Vacca, C.; Bianchi, R.; Belladonna, M.L.; Fioretti, M.C.; Alegre, M.L.; Puccetti, P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol., 2003, 4(12), 1206-1212.
[http://dx.doi.org/10.1038/ni1003] [PMID: 14578884]
[187]
Patel, H.J.; Belvisi, M.G.; Donnelly, L.E.; Yacoub, M.H.; Chung, K.F.; Mitchell, J.A. Constitutive expressions of type I NOS in human airway smooth muscle cells: evidence for an antiproliferative role. FASEB J., 1999, 13(13), 1810-1816.
[http://dx.doi.org/10.1096/fasebj.13.13.1810] [PMID: 10506584]
[188]
Kodama, T.; Kuribayashi, K.; Nakamura, H.; Fujita, M.; Fujita, T.; Takeda, K.; Dakhama, A.; Gelfand, E.W.; Matsuyama, T.; Kitada, O. Role of interleukin-12 in the regulation of CD4+ T cell apoptosis in a mouse model of asthma. Clin. Exp. Immunol., 2003, 131(2), 199-205.
[http://dx.doi.org/10.1046/j.1365-2249.2003.02073.x] [PMID: 12562378]
[189]
Akdis, C.A.; Akdis, M. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J. Allergy Clin. Immunol., 2009, 123(4), 735-746.
[http://dx.doi.org/10.1016/j.jaci.2009.02.030] [PMID: 19348912]
[190]
Akdis, C.A.; Akdis, M. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol., 2011, 127(1), 18-27.
[http://dx.doi.org/10.1016/j.jaci.2010.11.030] [PMID: 21211639]
[191]
van de Veen, W. The role of regulatory B cells in allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol., 2017, 17(6), 447-452.
[http://dx.doi.org/10.1097/ACI.0000000000000400] [PMID: 28957824]
[192]
Deniz, G.; Erten, G.; Kücüksezer, U.C.; Kocacik, D.; Karagiannidis, C.; Aktas, E.; Akdis, C.A.; Akdis, M. Regulatory NK cells suppress antigen-specific T cell responses. J. Immunol., 2008, 180(2), 850-857.
[http://dx.doi.org/10.4049/jimmunol.180.2.850] [PMID: 18178824]
[193]
Fujita, H.; Teng, A.; Nozawa, R.; Takamoto-Matsui, Y.; Katagiri-Matsumura, H.; Ikezawa, Z.; Ishii, Y. Production of both IL-27 and IFN-γ after the treatment with a ligand for invariant NK T cells is responsible for the suppression of Th2 response and allergic inflammation in a mouse experimental asthma model. J. Immunol., 2009, 183(1), 254-260.
[http://dx.doi.org/10.4049/jimmunol.0800520] [PMID: 19542437]
[194]
Ishii, Y.; Nozawa, R.; Takamoto-Matsui, Y.; Teng, A.; Katagiri-Matsumura, H.; Nishikawa, H.; Fujita, H.; Tamura, Y. Alpha-galactosylceramide-driven immunotherapy for allergy. Front. Biosci., 2008, 13, 6214-6228.
[http://dx.doi.org/10.2741/3149] [PMID: 18508655]
[195]
Robinson, D.S. Regulatory T cells and asthma. Clin. Exp. Allergy, 2009, 39(9), 1314-1323.
[http://dx.doi.org/10.1111/j.1365-2222.2009.03301.x] [PMID: 19538496]
[196]
Schmidt, A.; Oberle, N.; Krammer, P.H. Molecular mechanisms of treg-mediated T cell suppression. Front. Immunol., 2012, 3, 51.
[http://dx.doi.org/10.3389/fimmu.2012.00051] [PMID: 22566933]
[197]
Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T cells and immune tolerance. Cell, 2008, 133(5), 775-787.
[http://dx.doi.org/10.1016/j.cell.2008.05.009] [PMID: 18510923]
[198]
Sakaguchi, S.; Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol., 2009, 21(10), 1105-1111.
[http://dx.doi.org/10.1093/intimm/dxp095] [PMID: 19737784]
[199]
Arce-Sillas, A.; Álvarez-Luquín, D.D.; Tamaya-Domínguez, B.; Gomez-Fuentes, S.; Trejo-García, A.; Melo-Salas, M.; Cárdenas, G.; Rodríguez-Ramírez, J.; Adalid-Peralta, L. Regulatory T cells: molecular actions on effector cells in immune regulation. J. Immunol. Res., 2016, 20161720827
[http://dx.doi.org/10.1155/2016/1720827] [PMID: 27298831]
[200]
Pillai, M.R.; Collison, L.W.; Wang, X.; Finkelstein, D.; Rehg, J.E.; Boyd, K.; Szymczak-Workman, A.L.; Doggett, T.; Griffth, T.S.; Ferguson, T.A.; Vignali, D.A.A. The plasticity of regulatory T cell function. J. Immunol., 2011, 187(10), 4987-4997.
[201]
Gondek, D.C.; Lu, L.F.; Quezada, S.A.; Sakaguchi, S.; Noelle, R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol., 2005, 174(4), 1783-1786.
[http://dx.doi.org/10.4049/jimmunol.174.4.1783] [PMID: 15699103]
[202]
Cao, X.; Cai, S.F.; Fehniger, T.A.; Song, J.; Collins, L.I.; Piwnica-Worms, D.R.; Ley, T.J. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007, 27(4), 635-646.
[http://dx.doi.org/10.1016/j.immuni.2007.08.014] [PMID: 17919943]
[203]
Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.F.; Enjyoji, K.; Linden, J.; Oukka, M.; Kuchroo, V.K.; Strom, T.B.; Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med., 2007, 204(6), 1257-1265.
[http://dx.doi.org/10.1084/jem.20062512] [PMID: 17502665]
[204]
Bopp, T.; Becker, C.; Klein, M.; Klein-Hessling, S.; Palmetshofer, A.; Serfling, E.; Heib, V.; Becker, M.; Kubach, J.; Schmitt, S.; Stoll, S.; Schild, H.; Staege, M.S.; Stassen, M.; Jonuleit, H.; Schmitt, E. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med., 2007, 204(6), 1303-1310.
[http://dx.doi.org/10.1084/jem.20062129] [PMID: 17502663]
[205]
Zarek, P.E.; Huang, C.T.; Lutz, E.R.; Kowalski, J.; Horton, M.R.; Linden, J.; Drake, C.G.; Powell, J.D. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood, 2008, 111(1), 251-259.
[http://dx.doi.org/10.1182/blood-2007-03-081646] [PMID: 17909080]
[206]
Yan, Z.; Garg, S.K.; Banerjee, R. Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J. Biol. Chem., 2010, 285(53), 41525-41532.
[http://dx.doi.org/10.1074/jbc.M110.189944] [PMID: 21037289]
[207]
Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol., 2013, 34(3), 137-143.
[http://dx.doi.org/10.1016/j.it.2012.10.001] [PMID: 23103127]
[208]
Bilir, C.; Sarisozen, C. Indoleamine 2,3-dioxygenase (IDO): only an enzyme or a checkpoint controller? J. Oncol. Sci, 2017, 3(2), 52-56.
[http://dx.doi.org/10.1016/j.jons.2017.04.001]
[209]
Yang, M.; Rui, K.; Wang, S.; Lu, L. Regulatory B cells in autoimmune diseases. Cell. Mol. Immunol., 2013, 10(2), 122-132.
[http://dx.doi.org/10.1038/cmi.2012.60] [PMID: 23292280]
[210]
Natarajan, P.; Guernsey, L.A.; Schramm, C.M. Regulatory B cells in allergic airways disease and asthma. Methods Mol. Biol., 2014, 1190, 207-225.
[http://dx.doi.org/10.1007/978-1-4939-1161-5_15] [PMID: 25015283]
[211]
Candando, K.M.; Lykken, J.M.; Tedder, T.F. B10 cell regulation of health and disease. Immunol. Rev., 2014, 259(1), 259-272.
[http://dx.doi.org/10.1111/imr.12176] [PMID: 24712471]
[212]
Ray, A.; Basu, S.; Williams, C.B.; Salzman, N.H.; Dittel, B.N. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J. Immunol., 2012, 188(7), 3188-3198.
[http://dx.doi.org/10.4049/jimmunol.1103354] [PMID: 22368274]
[213]
Ray, A.; Dittel, B.N. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10. J. Clin. Med., 2017, 6(1)E12
[http://dx.doi.org/10.3390/jcm6010012] [PMID: 28124981]
[214]
Mauri, C.; Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol., 2012, 30, 221-241.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074934] [PMID: 22224776]
[215]
Rincón-Arévalo, H.; Sanchez-Parra, C.C.; Castaño, D.; Yassin, L.; Vásquez, G. Regulatory B cells and mechanisms. Int. Rev. Immunol., 2016, 35(2), 156-176.
[PMID: 25793964]
[216]
Lu, Y.; Liu, F.; Li, C.; Chen, Y.; Weng, D.; Chen, J. IL-10-producing B cells suppress effector T cells activation and promote regulatory T cells in crystalline silica-induced inflammatory response in vitro. Mediators Inflamm., 2017, 20178415094
[http://dx.doi.org/10.1155/2017/8415094] [PMID: 28831210]
[217]
Lundy, S.K.; Fox, D.A. Reduced Fas ligand-expressing splenic CD5+ B lymphocytes in severe collagen-induced arthritis. Arthritis Res. Ther., 2009, 11(4), R128.
[http://dx.doi.org/10.1186/ar2795] [PMID: 19706160]
[218]
Bodhankar, S.; Galipeau, D.; Vandenbark, A.A.; Murphy, S.J.; Offner, H. PD-1 interaction with PD-L1 but not PD-L2 on B-cells mediates protective effects of estrogen against EAE. J. Clin. Cell. Immunol., 2013, 4(3), 143.
[PMID: 24015822]
[219]
Schaut, R.G.; Lamb, I.M.; Toepp, A.J.; Scott, B.; Mendes-Aguiar, C.O.; Coutinho, J.F.; Jeronimo, S.M.; Wilson, M.E.; Harty, J.T.; Waldschmidt, T.J.; Petersen, C.A. Regulatory IgDhi B cells suppress T cell function via IL-10 and PD-L1 during progressive visceral leishmaniasis. J. Immunol., 2016, 196(10), 4100-4109.
[http://dx.doi.org/10.4049/jimmunol.1502678] [PMID: 27076677]
[220]
Li, X.; Mai, J.; Virtue, A.; Yin, Y.; Gong, R.; Sha, X.; Gutchigian, S.; Frisch, A.; Hodge, I.; Jiang, X.; Wang, H.; Yang, X.F. IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines. PLoS One, 2012, 7(3)e33628
[http://dx.doi.org/10.1371/journal.pone.0033628] [PMID: 22438968]