Current Medicinal Chemistry

Author(s): Ying Xiong, Mingming Zhang* and Yingxia Li*

DOI: 10.2174/0929867326666190731141055

DownloadDownload PDF Flyer Cite As
Recent Advances in the Development of CBP/p300 Bromodomain Inhibitors

Page: [5583 - 5598] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

CBP and p300 are two closely related Histone Acetyltransferases (HATs) that interact with numerous transcription factors and act to increase the expression of their target genes. Both proteins contain a bromodomain flanking the HAT catalytic domain that is important in binding of CBP/p300 to chromatin, which offers an opportunity to develop protein-protein interaction inhibitors. Since their discovery in 2006, CBP/p300 bromodomains have attracted much interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, autoimmune disorders, and cardiovascular disease. Herein, we present a comprehensive review of the structure, function, and inhibitors of CBP/p300 bromodomains developed in the last several years, which is expected to be beneficial to relevant studies.

Keywords: CBP/p300, bromodomain, histone acetyltransferases, genes, inhibitors, drug discovery.

[1]
Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev., 2018, 118(3), 1216-1252.
[http://dx.doi.org/10.1021/acs.chemrev.7b00181] [PMID: 29405707]
[2]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[3]
Mahalingam, D.; Medina, E.C.; Esquivel, J.A., II; Espitia, C.M.; Smith, S.; Oberheu, K.; Swords, R.; Kelly, K.R.; Mita, M.M.; Mita, A.C.; Carew, J.S.; Giles, F.J.; Nawrocki, S.T. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin. Cancer Res., 2010, 16(1), 141-153.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1385] [PMID: 20028765]
[4]
Liu, X.; Wang, L.; Zhao, K.; Thompson, P.R.; Hwang, Y.; Marmorstein, R.; Cole, P.A. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 2008, 451(7180), 846-850.
[http://dx.doi.org/10.1038/nature06546] [PMID: 18273021]
[5]
Xing, S.; Poirier, Y. The protein acetylome and the regulation of metabolism. Trends Plant Sci., 2012, 17(7), 423-430.
[http://dx.doi.org/10.1016/j.tplants.2012.03.008] [PMID: 22503580]
[6]
Thompson, P.R.; Kurooka, H.; Nakatani, Y.; Cole, P.A. Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J. Biol. Chem., 2001, 276(36), 33721-33729.
[http://dx.doi.org/10.1074/jbc.M104736200] [PMID: 11445580]
[7]
Dekker, F.J.; van den Bosch, T.; Martin, N.I. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov. Today, 2014, 19(5), 654-660.
[http://dx.doi.org/10.1016/j.drudis.2013.11.012] [PMID: 24269836]
[8]
Wang, X.; Moore, S.C.; Laszckzak, M.; Ausió, J. Acetylation increases the alpha-helical content of the histone tails of the nucleosome. J. Biol. Chem., 2000, 275(45), 35013-35020.
[http://dx.doi.org/10.1074/jbc.M004998200] [PMID: 10938086]
[9]
Galvani, A.; Thiriet, C. Nucleosome dancing at the tempo of histone tail acetylation. Genes (Basel), 2015, 6(3), 607-621.
[http://dx.doi.org/10.3390/genes6030607] [PMID: 26184324]
[10]
Yee, S.P.; Branton, P.E. Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology, 1985, 147(1), 142-153.
[http://dx.doi.org/10.1016/0042-6822(85)90234-X] [PMID: 2932846]
[11]
Eckner, R.; Ewen, M.E.; Newsome, D.; Gerdes, M.; DeCaprio, J.A.; Lawrence, J.B.; Livingston, D.M. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev., 1994, 8(8), 869-884.
[http://dx.doi.org/10.1101/gad.8.8.869] [PMID: 7523245]
[12]
Chrivia, J.C.; Kwok, R.P.S.; Lamb, N.; Hagiwara, M.; Montminy, M.R.; Goodman, R.H. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 1993, 365(6449), 855-859.
[http://dx.doi.org/10.1038/365855a0] [PMID: 8413673]
[13]
Bannister, A.J.; Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature, 1996, 384(6610), 641-643.
[http://dx.doi.org/10.1038/384641a0] [PMID: 8967953]
[14]
Chan, H.M.; La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci., 2001, 114(Pt 13), 2363-2373.
[PMID: 11559745]
[15]
Wang, F.; Marshall, C.B.; Ikura, M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell. Mol. Life Sci., 2013, 70(21), 3989-4008.
[http://dx.doi.org/10.1007/s00018-012-1254-4] [PMID: 23307074]
[16]
Kalkhoven, E. CBP and p300: HATs for different occasions. Biochem. Pharmacol., 2004, 68(6), 1145-1155.
[http://dx.doi.org/10.1016/j.bcp.2004.03.045] [PMID: 15313412]
[17]
Sauer, M.; Schuldner, M.; Hoffmann, N.; Cetintas, A.; Reiners, K.S.; Shatnyeva, O.; Hallek, M.; Hansen, H.P.; Gasser, S.; von Strandmann, E.P. CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells. Oncogene, 2017, 36(7), 933-941.
[http://dx.doi.org/10.1038/onc.2016.259] [PMID: 27477692]
[18]
Ghosh, S.; Taylor, A.; Chin, M.; Huang, H.R.; Conery, A.R.; Mertz, J.A.; Salmeron, A.; Dakle, P.J.; Mele, D.; Cote, A.; Jayaram, H.; Setser, J.W.; Poy, F.; Hatzivassiliou, G.; DeAlmeida-Nagata, D.; Sandy, P.; Hatton, C.; Romero, F.A.; Chiang, E.; Reimer, T.; Crawford, T.; Pardo, E.; Watson, V.G.; Tsui, V.; Cochran, A.G.; Zawadzke, L.; Harmange, J.C.; Audia, J.E.; Bryant, B.M.; Cummings, R.T.; Magnuson, S.R.; Grogan, J.L.; Bellon, S.F.; Albrecht, B.K.; Sims, R.J., III; Lora, J.M.; Regulatory, T. Regulatory T cell modulation by CBP/EP300 bromodomain inhibition. J. Biol. Chem., 2016, 291(25), 13014-13027.
[http://dx.doi.org/10.1074/jbc.M115.708560] [PMID: 27056325]
[19]
Gu, W.; Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 1997, 90(4), 595-606.
[http://dx.doi.org/10.1016/S0092-8674(00)80521-8] [PMID: 9288740]
[20]
Liu, L.; Scolnick, D.M.; Trievel, R.C.; Zhang, H.B.; Marmorstein, R.; Halazonetis, T.D.; Berger, S.L. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol., 1999, 19(2), 1202-1209.
[http://dx.doi.org/10.1128/MCB.19.2.1202] [PMID: 9891054]
[21]
Bouchal, J.; Santer, F.R.; Höschele, P.P.; Tomastikova, E.; Neuwirt, H.; Culig, Z. Transcriptional coactivators p300 and CBP stimulate estrogen receptor-beta signaling and regulate cellular events in prostate cancer. Prostate, 2011, 71(4), 431-437.
[http://dx.doi.org/10.1002/pros.21257] [PMID: 20859991]
[22]
Iyer, N.G.; Ozdag, H.; Caldas, C. p300/CBP and cancer. Oncogene, 2004, 23(24), 4225-4231.
[http://dx.doi.org/10.1038/sj.onc.1207118] [PMID: 15156177]
[23]
Gajer, J.M.; Furdas, S.D.; Gründer, A.; Gothwal, M.; Heinicke, U.; Keller, K.; Colland, F.; Fulda, S.; Pahl, H.L.; Fichtner, I.; Sippl, W.; Jung, M. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis, 2015, 4(2)e137
[http://dx.doi.org/10.1038/oncsis.2014.51] [PMID: 25664930]
[24]
Di Cerbo, V.; Schneider, R. Cancers with wrong HATs: the impact of acetylation. Brief. Funct. Genomics, 2013, 12(3), 231-243.
[http://dx.doi.org/10.1093/bfgp/els065] [PMID: 23325510]
[25]
Demetriadou, C.; Kirmizis, A. Histone acetyltransferases in cancer: guardians or hazards? Crit. Rev. Oncog., 2017, 22(3-4), 195-218.
[http://dx.doi.org/10.1615/CritRevOncog.2017024506] [PMID: 29604899]
[26]
Diab, A.; Zickl, L.; Abdel-Wahab, O.; Jhanwar, S.; Gulam, M.A.; Panageas, K.S.; Patel, J.P.; Jurcic, J.; Maslak, P.; Paietta, E.; Mangan, J.K.; Carroll, M.; Fernandez, H.F.; Teruya-Feldstein, J.; Luger, S.M.; Douer, D.; Litzow, M.R.; Lazarus, H.M.; Rowe, J.M.; Levine, R.L.; Tallman, M.S. Acute myeloid leukemia with translocation t(8;16) presents with features which mimic acute promyelocytic leukemia and is associated with poor prognosis. Leuk. Res., 2013, 37(1), 32-36.
[http://dx.doi.org/10.1016/j.leukres.2012.08.025] [PMID: 23102703]
[27]
Wang, G.G.; Allis, C.D.; Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med., 2007, 13(9), 363-372.
[http://dx.doi.org/10.1016/j.molmed.2007.07.003] [PMID: 17822958]
[28]
Xiao, X.S.; Cai, M.Y.; Chen, J.W.; Guan, X.Y.; Kung, H.F.; Zeng, Y.X.; Xie, D. High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis. Chin. J. Cancer Res., 2011, 23(3), 201-207.
[http://dx.doi.org/10.1007/s11670-011-0201-5] [PMID: 23467396]
[29]
Santer, F.R.; Höschele, P.P.; Oh, S.J.; Erb, H.H.; Bouchal, J.; Cavarretta, I.T.; Parson, W.; Meyers, D.J.; Cole, P.A.; Culig, Z. Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol. Cancer Ther., 2011, 10(9), 1644-1655.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0182] [PMID: 21709130]
[30]
Dutta, R.; Tiu, B.; Sakamoto, K.M. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol. Genet. Metab., 2016, 119(1-2), 37-43.
[http://dx.doi.org/10.1016/j.ymgme.2016.06.013] [PMID: 27380996]
[31]
Lasko, L.M.; Jakob, C.G.; Edalji, R.P.; Qiu, W.; Montgomery, D.; Digiammarino, E.L.; Hansen, T.M.; Risi, R.M.; Frey, R.; Manaves, V.; Shaw, B.; Algire, M.; Hessler, P.; Lam, L.T.; Uziel, T.; Faivre, E.; Ferguson, D.; Buchanan, F.G.; Martin, R.L.; Torrent, M.; Chiang, G.G.; Karukurichi, K.; Langston, J.W.; Weinert, B.T.; Choudhary, C.; de Vries, P.; Van Drie, J.H.; McElligott, D.; Kesicki, E.; Marmorstein, R.; Sun, C.; Cole, P.A.; Rosenberg, S.H.; Michaelides, M.R.; Lai, A.; Bromberg, K.D. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 2017, 550(7674), 128-132.
[http://dx.doi.org/10.1038/nature24028] [PMID: 28953875]
[32]
Iqbal, M.; Guimei, T.; Daiqing, L. Abstract 4132: roles of the acetyltransferases CBP/p300 in breast cancer. Cancer Res., 2017, 77(13)
[http://dx.doi.org/10.1158/1538-7445.AM2017-4132]
[33]
Bosic, M.M.; Brasanac, D.C.; Stojkovic-Filipovic, J.M.; Zaletel, I.V.; Gardner, J.M.; Cirovic, S.L. Expression of p300 and p300/CBP associated factor (PCAF) in actinic keratosis and squamous cell carcinoma of the skin. Exp. Mol. Pathol., 2016, 100(3), 378-385.
[http://dx.doi.org/10.1016/j.yexmp.2016.03.006] [PMID: 27019369]
[34]
Tamkun, J.W.; Deuring, R.; Scott, M.P.; Kissinger, M.; Pattatucci, A.M.; Kaufman, T.C.; Kennison, J.A. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell, 1992, 68(3), 561-572.
[http://dx.doi.org/10.1016/0092-8674(92)90191-E] [PMID: 1346755]
[35]
Zeng, L.; Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett., 2002, 513(1), 124-128.
[http://dx.doi.org/10.1016/S0014-5793(01)03309-9] [PMID: 11911891]
[36]
Kanno, T.; Kanno, Y.; Siegel, R.M.; Jang, M.K.; Lenardo, M.J.; Ozato, K. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell, 2004, 13(1), 33-43.
[http://dx.doi.org/10.1016/S1097-2765(03)00482-9] [PMID: 14731392]
[37]
Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A.C.; Arrowsmith, C.H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012, 149(1), 214-231.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[38]
Muller, S.; Filippakopoulos, P.; Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med., 2011, 13e29
[http://dx.doi.org/10.1017/S1462399411001992] [PMID: 21933453]
[39]
Dhalluin, C.; Carlson, J.E.; Zeng, L.; He, C.; Aggarwal, A.K.; Zhou, M.M. Structure and ligand of a histone acetyltransferase bromodomain. Nature, 1999, 399(6735), 491-496.
[http://dx.doi.org/10.1038/20974] [PMID: 10365964]
[40]
Mujtaba, S.; Zeng, L.; Zhou, M.M. Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 2007, 26(37), 5521-5527.
[http://dx.doi.org/10.1038/sj.onc.1210618] [PMID: 17694091]
[41]
Dawson, M.A.; Prinjha, R.K.; Dittmann, A.; Giotopoulos, G.; Bantscheff, M.; Chan, W.I.; Robson, S.C.; Chung, C.W.; Hopf, C.; Savitski, M.M.; Huthmacher, C.; Gudgin, E.; Lugo, D.; Beinke, S.; Chapman, T.D.; Roberts, E.J.; Soden, P.E.; Auger, K.R.; Mirguet, O.; Doehner, K.; Delwel, R.; Burnett, A.K.; Jeffrey, P.; Drewes, G.; Lee, K.; Huntly, B.J.; Kouzarides, T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478(7370), 529-533.
[http://dx.doi.org/10.1038/nature10509] [PMID: 21964340]
[42]
Sanchez, R.; Meslamani, J.; Zhou, M.M. The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta, 2014, 1839(8), 676-685.
[http://dx.doi.org/10.1016/j.bbagrm.2014.03.011] [PMID: 24686119]
[43]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[44]
Sanchez, R.; Zhou, M.M. The role of human bromodomains in chromatin biology and gene transcription. Curr. Opin. Drug Discov. Devel., 2009, 12(5), 659-665.
[PMID: 19736624]
[45]
Ott, C.J.; Kopp, N.; Bird, L.; Paranal, R.M.; Qi, J.; Bowman, T.; Rodig, S.J.; Kung, A.L.; Bradner, J.E.; Weinstock, D.M. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood, 2012, 120(14), 2843-2852.
[http://dx.doi.org/10.1182/blood-2012-02-413021] [PMID: 22904298]
[46]
Fujisawa, T.; Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 246-262.
[http://dx.doi.org/10.1038/nrm.2016.143] [PMID: 28053347]
[47]
Pervaiz, M.; Mishra, P.; Günther, S. Bromodomain drug discovery - the past, the present and the future. Chem. Rec., 2018, 18(12), 1808-1817.
[http://dx.doi.org/10.1002/tcr.201800074] [PMID: 30289209]
[48]
Smith, S.G.; Zhou, M.M. The bromodomain: a new target in emerging epigenetic medicine. ACS Chem. Biol., 2016, 11(3), 598-608.
[http://dx.doi.org/10.1021/acschembio.5b00831] [PMID: 26596782]
[49]
Galdeano, C.; Ciulli, A. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Med. Chem., 2016, 8(13), 1655-1680.
[http://dx.doi.org/10.4155/fmc-2016-0059] [PMID: 27193077]
[50]
Ferri, E.; Petosa, C.; McKenna, C.E. Bromodomains: structure, function and pharmacology of inhibition. Biochem. Pharmacol., 2016, 106, 1-18.
[http://dx.doi.org/10.1016/j.bcp.2015.12.005] [PMID: 26707800]
[51]
Vidler, L.R.; Brown, N.; Knapp, S.; Hoelder, S. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J. Med. Chem., 2012, 55(17), 7346-7359.
[http://dx.doi.org/10.1021/jm300346w] [PMID: 22788793]
[52]
Sachchidanand; Resnick-Silverman, L.; Yan, S.; Mutjaba, S.; Liu, W.J.; Zeng, L.; Manfredi, J.J.; Zhou, M.M. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol., 2006, 13(1), 81-90.
[http://dx.doi.org/10.1016/j.chembiol.2005.10.014] [PMID: 16426974]
[53]
Borah, J.C.; Mujtaba, S.; Karakikes, I.; Zeng, L.; Muller, M.; Patel, J.; Moshkina, N.; Morohashi, K.; Zhang, W.; Gerona-Navarro, G.; Hajjar, R.J.; Zhou, M.M. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem. Biol., 2011, 18(4), 531-541.
[http://dx.doi.org/10.1016/j.chembiol.2010.12.021] [PMID: 21513889]
[54]
Gerona-Navarro, G. Yoel-Rodríguez; Mujtaba, S.; Frasca, A.; Patel, J.; Zeng, L.; Plotnikov, A.N.; Osman, R.; Zhou, M.M. Rational design of cyclic peptide modulators of the transcriptional coactivator CBP: a new class of p53 inhibitors. J. Am. Chem. Soc., 2011, 133(7), 2040-2043.
[http://dx.doi.org/10.1021/ja107761h] [PMID: 21271695]
[55]
Philpott, M.; Yang, J.; Tumber, T.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Keates, T.; Felletar, I.; Ciulli, A.; Knapp, S.; Heightman, T.D. Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Mol. Biosyst., 2011, 7(10), 2899-2908.
[http://dx.doi.org/10.1039/c1mb05099k] [PMID: 21804994]
[56]
Hewings, D.S.; Wang, M.; Philpott, M.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Vuppusetty, C.; Marsden, B.; Knapp, S.; Conway, S.J.; Heightman, T.D. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J. Med. Chem., 2011, 54(19), 6761-6770.
[http://dx.doi.org/10.1021/jm200640v] [PMID: 21851057]
[57]
Rooney, T.P.C.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Cortopassi, W.A.; Hay, D.A.; Martin, S.; Tumber, A.; Rogers, C.M.; Philpott, M.; Wang, M.; Thompson, A.L.; Heightman, T.D.; Pryde, D.C.; Cook, A.; Paton, R.S.; Müller, S.; Knapp, S.; Brennan, P.E.; Conway, S.J. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction. Angew. Chem. Int. Ed. Engl., 2014, 53(24), 6126-6130.
[http://dx.doi.org/10.1002/anie.201402750] [PMID: 24821300]
[58]
Hay, D.A.; Fedorov, O.; Martin, S.; Singleton, D.C.; Tallant, C.; Wells, C.; Picaud, S.; Philpott, M.; Monteiro, O.P.; Rogers, C.M.; Conway, S.J.; Rooney, T.P.C.; Tumber, A.; Yapp, C.; Filippakopoulos, P.; Bunnage, M.E.; Müller, S.; Knapp, S.; Schofield, C.J.; Brennan, P.E. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc., 2014, 136(26), 9308-9319.
[http://dx.doi.org/10.1021/ja412434f] [PMID: 24946055]
[59]
Hammitzsch, A.; Tallant, C.; Fedorov, O.; O’Mahony, A.; Brennan, P.E.; Hay, D.A.; Martinez, F.O.; Al-Mossawi, M.H.; de Wit, J.; Vecellio, M.; Wells, C.; Wordsworth, P.; Müller, S.; Knapp, S.; Bowness, P. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc. Natl. Acad. Sci. USA, 2015, 112(34), 10768-10773.
[http://dx.doi.org/10.1073/pnas.1501956112] [PMID: 26261308]
[60]
Xu, M.; Unzue, A.; Dong, J.; Spiliotopoulos, D.; Nevado, C.; Caflisch, A. Discovery of CREBBP bromodomain inhibitors by high-throughput docking and hit optimization guided by molecular dynamics. J. Med. Chem., 2016, 59(4), 1340-1349.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00171] [PMID: 26125948]
[61]
Unzue, A.; Xu, M.; Dong, J.; Wiedmer, L.; Spiliotopoulos, D.; Caflisch, A.; Nevado, C. Fragment-based design of selective nanomolar ligands of the CREBBP bromodomain. J. Med. Chem., 2016, 59(4), 1350-1356.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00172] [PMID: 26043365]
[62]
Picaud, S.; Fedorov, O.; Thanasopoulou, A.; Leonards, K.; Jones, K.; Meier, J.; Olzscha, H.; Monteiro, O.; Martin, S.; Philpott, M.; Tumber, A.; Filippakopoulos, P.; Yapp, C.; Wells, C.; Che, K.H.; Bannister, A.; Robson, S.; Kumar, U.; Parr, N.; Lee, K.; Lugo, D.; Jeffrey, P.; Taylor, S.; Vecellio, M.L.; Bountra, C.; Brennan, P.E.; O’Mahony, A.; Velichko, S.; Müller, S.; Hay, D.; Daniels, D.L.; Urh, M.; La Thangue, N.B.; Kouzarides, T.; Prinjha, R.; Schwaller, J.; Knapp, S. Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer Res., 2015, 75(23), 5106-5119.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0236] [PMID: 26552700]
[63]
Filippakopoulos, P.; Picaud, S.; Felletar, I.; Hay, D.; Fedorov, O.; Martin, S.; Chaikuad, A.; von Delft, F.; Brennan, P.; Arrowsmith, C.H.; Edwards, A.M.; Bountra, C.; Knapp, S. Structural Genomics Consortium (SGC). 4NR6: Crystal structure of the bromodomain of human CREBBP in complex with an oxazepin ligand, . 2018.
[http://dx.doi.org/10.2210/pdb4NR6/pdb]
[64]
Popp, T.A.; Tallant, C.; Rogers, C.; Fedorov, O.; Brennan, P.E.; Müller, S.; Knapp, S.; Bracher, F. Development of selective CBP/P300 benzoxazepine bromodomain inhibitors. J. Med. Chem., 2016, 59(19), 8889-8912.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00774] [PMID: 27673482]
[65]
Zucconi, B.E.; Luef, B.; Xu, W.; Henry, R.A.; Nodelman, I.M.; Bowman, G.D.; Andrews, A.J.; Cole, P.A. Modulation of p300/CBP acetylation of nucleosomes by bromodomain ligand I-CBP112. Biochemistry, 2016, 55(27), 3727-3734.
[http://dx.doi.org/10.1021/acs.biochem.6b00480] [PMID: 27332697]
[66]
Taylor, A.M.; Côté, A.; Hewitt, M.C.; Pastor, R.; Leblanc, Y.; Nasveschuk, C.G.; Romero, F.A.; Crawford, T.D.; Cantone, N.; Jayaram, H.; Setser, J.; Murray, J.; Beresini, M.H.; de Leon Boenig, G.; Chen, Z.; Conery, A.R.; Cummings, R.T.; Dakin, L.A.; Flynn, E.M.; Huang, O.W.; Kaufman, S.; Keller, P.J.; Kiefer, J.R.; Lai, T.; Li, Y.; Liao, J.; Liu, W.; Lu, H.; Pardo, E.; Tsui, V.; Wang, J.; Wang, Y.; Xu, Z.; Yan, F.; Yu, D.; Zawadzke, L.; Zhu, X.; Zhu, X.; Sims, R.J., III; Cochran, A.G.; Bellon, S.; Audia, J.E.; Magnuson, S.; Albrecht, B.K. Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637). ACS Med. Chem. Lett., 2016, 7(5), 531-536.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00075] [PMID: 27190605]
[67]
Crawford, T.D.; Romero, F.A.; Lai, K.W.; Tsui, V.; Taylor, A.M.; de Leon Boenig, G.; Noland, C.L.; Murray, J.; Ly, J.; Choo, E.F.; Hunsaker, T.L.; Chan, E.W.; Merchant, M.; Kharbanda, S.; Gascoigne, K.E.; Kaufman, S.; Beresini, M.H.; Liao, J.; Liu, W.; Chen, K.X.; Chen, Z.; Conery, A.R.; Côté, A.; Jayaram, H.; Jiang, Y.; Kiefer, J.R.; Kleinheinz, T.; Li, Y.; Maher, J.; Pardo, E.; Poy, F.; Spillane, K.L.; Wang, F.; Wang, J.; Wei, X.; Xu, Z.; Xu, Z.; Yen, I.; Zawadzke, L.; Zhu, X.; Bellon, S.; Cummings, R.; Cochran, A.G.; Albrecht, B.K.; Magnuson, S. Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300. J. Med. Chem., 2016, 59(23), 10549-10563.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01022] [PMID: 27682507]
[68]
Romero, F.A.; Murray, J.; Lai, K.W.; Tsui, V.; Albrecht, B.K.; An, L.; Beresini, M.H.; de Leon Boenig, G.; Bronner, S.M.; Chan, E.W.; Chen, K.X.; Chen, Z.; Choo, E.F.; Clagg, K.; Clark, K.; Crawford, T.D.; Cyr, P.; de Almeida Nagata, D.; Gascoigne, K.E.; Grogan, J.L.; Hatzivassiliou, G.; Huang, W.; Hunsaker, T.L.; Kaufman, S.; Koenig, S.G.; Li, R.; Li, Y.; Liang, X.; Liao, J.; Liu, W.; Ly, J.; Maher, J.; Masui, C.; Merchant, M.; Ran, Y.; Taylor, A.M.; Wai, J.; Wang, F.; Wei, X.; Yu, D.; Zhu, B.Y.; Zhu, X.; Magnuson, S. GNE-781, a highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP). J. Med. Chem., 2017, 60(22), 9162-9183.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00796] [PMID: 28892380]
[69]
Lai, K.W.; Romero, F.A.; Tsui, V.; Beresini, M.H.; de Leon Boenig, G.; Bronner, S.M.; Chen, K.; Chen, Z.; Choo, E.F.; Crawford, T.D.; Cyr, P.; Kaufman, S.; Li, Y.; Liao, J.; Liu, W.; Ly, J.; Murray, J.; Shen, W.; Wai, J.; Wang, F.; Zhu, C.; Zhu, X.; Magnuson, S. Design and synthesis of a biaryl series as inhibitors for the bromodomains of CBP/P300. Bioorg. Med. Chem. Lett., 2018, 28(1), 15-23.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.025] [PMID: 29169673]
[70]
Bronner, S.M.; Murray, J.; Romero, F.A.; Lai, K.W.; Tsui, V.; Cyr, P.; Beresini, M.H.; de Leon Boenig, G.; Chen, Z.; Choo, E.F.; Clark, K.R.; Crawford, T.D.; Jayaram, H.; Kaufman, S.; Li, R.; Li, Y.; Liao, J.; Liang, X.; Liu, W.; Ly, J.; Maher, J.; Wai, J.; Wang, F.; Zheng, A.; Zhu, X.; Magnuson, S. A unique approach to design potent and selective cyclic adenosine monophosphate response element binding protein, binding protein (CBP) inhibitors. J. Med. Chem., 2017, 60(24), 10151-10171.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01372] [PMID: 29155580]
[71]
Spiliotopoulos, D.; Zhu, J.; Wamhoff, E.C.; Deerain, N.; Marchand, J.R.; Aretz, J.; Rademacher, C.; Caflisch, A. Virtual screen to NMR (VS2NMR): discovery of fragment hits for the CBP bromodomain. Bioorg. Med. Chem. Lett., 2017, 27(11), 2472-2478.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.001] [PMID: 28410781]
[72]
Hügle, M.; Lucas, X.; Ostrovskyi, D.; Regenass, P.; Gerhardt, S.; Einsle, O.; Hau, M.; Jung, M.; Breit, B.; Günther, S.; Wohlwend, D. Beyond the BET family: targeting CBP/p300 with 4-Acyl Pyrroles. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12476-12480.
[http://dx.doi.org/10.1002/anie.201705516] [PMID: 28766825]
[73]
Xiang, Q.; Wang, C.; Zhang, Y.; Xue, X.; Song, M.; Zhang, C.; Li, C.; Wu, C.; Li, K.; Hui, X.; Zhou, Y.; Smaill, J.B.; Patterson, A.V.; Wu, D.; Ding, K.; Xu, Y. Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer. Eur. J. Med. Chem., 2018, 147, 238-252.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.087] [PMID: 29448139]
[74]
CellCentric. CCSI477 in patients, 2020. Available at:. https://www.cellcentric.com/clinical/