The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis

Page: [646 - 655] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels.

Methods: We searched for relevant studies published in English using the PubMed database from 1993 to the present.

Results: Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation.

Conclusion: Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.

Keywords: Serotonin, gut-microbiota, gut-brain axis, fibrosis, serotonin transporter, serotonin receptors, inflammation.

Graphical Abstract

[1]
Crowell, M.D.; Jones, M.P.; Harris, L.A.; Dineen, T.N.; Schettler, V.A.; Olden, K.W. Antidepressants in the treatment of irritable bowel syndrome and visceral pain syndromes. Curr. Opin. Investig. Drugs, 2004, 5(7), 736-742.
[PMID: 15298070]
[2]
Bellini, M.; Gambaccini, D.; Bassotti, G. Comorbidities in functional gastrointestinal diseases: Do we need a lone ranger or a dream team? Dig. Liver Dis., 2016, 48(5), 562-564.
[http://dx.doi.org/10.1016/j.dld.2016.02.011] [PMID: 27005860]
[3]
Lesurtel, M.; Soll, C.; Humar, B.; Clavien, P.A. Serotonin: A double-edged sword for the liver? Surgeon, 2012, 10(2), 107-113.
[http://dx.doi.org/10.1016/j.surge.2011.11.002] [PMID: 22119013]
[4]
Inoue, T.; Kusumi, I.; Yoshioka, M. Serotonin transporters. Curr. Drug Targets CNS Neurol. Disord., 2002, 1(5), 519-529.
[http://dx.doi.org/10.2174/1568007023338987] [PMID: 12769604]
[5]
Camilleri, M.; Ford, A.C. Irritable bowel syndrome: Pathophysiology and current therapeutic approaches. Handb. Exp. Pharmacol., 2017, 239, 75-113.
[http://dx.doi.org/10.1007/164_2016_102] [PMID: 27995391]
[6]
De Ponti, F.; Tonini, M. Irritable bowel syndrome: new agents targeting serotonin receptor subtypes. Drugs, 2001, 61(3), 317-332.
[http://dx.doi.org/10.2165/00003495-200161030-00001] [PMID: 11293643]
[7]
Giordano, N.; Geraci, S.; Santacroce, C.; Mattii, G.; Battisti, E.; Gennari, C. Efficacy and tolerability of paroxetine in patients with fibromyalgia syndrome: A single-blind study. Curr. Ther. Res. Clin. Exp., 1999, 12, 696-702.
[http://dx.doi.org/10.1016/S0011-393X(99)90008-5]
[8]
Margolis, K.G. A role for the serotonin reuptake transporter in the brain and intestinal features of autism spectrum disorders and developmental antidepressant exposure. J. Chem. Neuroanat., 2017, 83-84, 36-40.
[http://dx.doi.org/10.1016/j.jchemneu.2017.02.001] [PMID: 28213183]
[9]
Vahedi, H.; Merat, S.; Rashidioon, A.; Ghoddoosi, A.; Malekzadeh, R. The effect of fluoxetine in patients with pain and constipation-predominant irritable bowel syndrome: A double-blind randomized-controlled study. Aliment. Pharmacol. Ther., 2005, 22(5), 381-385.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02566.x] [PMID: 16128675]
[10]
Stasi, C.; Bellini, M.; Bassotti, G.; Blandizzi, C.; Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol., 2014, 18, 613-621.
[http://dx.doi.org/dx.doi: 10.1007/s10151-013-1106-8] [PMID: 24425100]
[11]
Pata, C.; Erdal, M.E.; Derici, E.; Yazar, A.; Kanik, A.; Ulu, O. Serotonin transporter gene polymorphism in irritable bowel syndrome. Am. J. Gastroenterol., 2002, 97(7), 1780-1784.
[http://dx.doi.org/10.1111/j.1572-0241.2002.05841.x] [PMID: 12135035]
[12]
Camilleri, M.; Atanasova, E.; Carlson, P.J.; Ahmad, U.; Kim, H.J.; Viramontes, B.E.; McKinzie, S.; Urrutia, R. Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology, 2002, 123(2), 425-432.
[http://dx.doi.org/10.1053/gast.2002.34780] [PMID: 12145795]
[13]
Bellini, M.; Rappelli, L.; Blandizzi, C.; Costa, F.; Stasi, C.; Colucci, R.; Giannaccini, G.; Marazziti, D.; Betti, L.; Baroni, S.; Mumolo, M.G.; Marchi, S.; Del Tacca, M. Platelet serotonin transporter in patients with diarrhea-predominant irritable bowel syndrome both before and after treatment with alosetron. Am. J. Gastroenterol., 2003, 98(12), 2705-2711.
[http://dx.doi.org/10.1111/j.1572-0241.2003.08669.x] [PMID: 14687821]
[14]
Coates, M.D.; Mahoney, C.R.; Linden, D.R.; Sampson, J.E.; Chen, J.; Blaszyk, H.; Crowell, M.D.; Sharkey, K.A.; Gershon, M.D.; Mawe, G.M.; Moses, P.L. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology, 2004, 126(7), 1657-1664.
[http://dx.doi.org/10.1053/j.gastro.2004.03.013] [PMID: 15188158]
[15]
Lee, D.Y.; Park, H.; Kim, W.H.; Lee, S.I.; Seo, Y.J.; Choi, Y.C. Serotonin transporter gene polymorphism in healthy adults and patients with irritable bowel syndrome. Korean J. Gastroenterol., 2004, 43(1), 18-22.
[http://dx.doi.org/10.4166/kjg.2014.64.1.18] [PMID: 14745247]
[16]
Yeo, A.; Boyd, P.; Lumsden, S.; Saunders, T.; Handley, A.; Stubbins, M.; Knaggs, A.; Asquith, S.; Taylor, I.; Bahari, B.; Crocker, N.; Rallan, R.; Varsani, S.; Montgomery, D.; Alpers, D.H.; Dukes, G.E.; Purvis, I.; Hicks, G.A. Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut, 2004, 53(10), 1452-1458.
[http://dx.doi.org/10.1136/gut.2003.035451] [PMID: 15361494]
[17]
Kim, D.Y.; Camilleri, M. Serotonin: A mediator of the brain-gut connection. Am. J. Gastroenterol., 2000, 95(10), 2698-2709.
[PMID: 11051338]
[18]
Wang, B.M.; Wang, Y.M.; Zhang, W.M.; Zhang, Q.Y.; Liu, W.T.; Jiang, K.; Zhang, J. Serotonin transporter gene polymorphism in irritable bowel syndrome. Zhonghua Nei Ke Za Zhi, 2004, 43(6), 439-441.
[PMID: 15312441]
[19]
Coates, M.D.; Mahoney, C.R.; Linden, D.R.; Sampson, J.E.; Chen, J.; Blaszyk, H.; Crowell, M.D.; Sharkey, K.A.; Gershon, M.D.; Mawe, G.M.; Moses, P.L. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology, 2004, 126(7), 1657-1664.
[http://dx.doi.org/10.1053/j.gastro.2004.03.013] [PMID: 15188158]
[20]
Chang, C.M.; Hsieh, M.S.; Yang, T.C.; Hsieh, V.C.; Chiang, J.H.; Huang, H.H.; How, C.K.; Hu, S.Y.; Yen, D.H. Selective serotonin reuptake inhibitors and the risk of hepatocellular carcinoma in hepatitis B virus-infected patients. Cancer Manag. Res., 2017, 9, 709-720.
[http://dx.doi.org/10.2147/CMAR.S148097] [PMID: 29238221]
[21]
Stasi, C.; Bellini, M.; Gambaccini, D.; Duranti, E.; de Bortoli, N.; Fani, B.; Albano, E.; Russo, S.; Sudano, I.; Laffi, G.; Taddei, S.; Marchi, S.; Bruno, R.M. Neuroendocrine dysregulation in irritable bowel syndrome patients: A pilot study. J. Neurogastroenterol. Motil., 2017, 23(3), 428-434.
[http://dx.doi.org/10.5056/jnm16155] [PMID: 28460516]
[22]
Drossman, D.A.; Hasler, W.L.; Rome, I.V.; Functional, G.I. Rome IV-functional GI disorders: Disorders of gut-brain interaction. Gastroenterology, 2016, 150(6), 1257-1261.
[http://dx.doi.org/10.1053/j.gastro.2016.03.035] [PMID: 27147121]
[23]
Stasi, C.; Rosselli, M.; Bellini, M.; Laffi, G.; Milani, S. Altered neuro-endocrine-immune pathways in the irritable bowel syndrome: The top-down and the bottom-up model. J. Gastroenterol., 2012, 47(11), 1177-1185.
[http://dx.doi.org/10.1007/s00535-012-0627-7] [PMID: 22766747]
[24]
Stasi, C.; Bellini, M.; Costa, F.; Mumolo, M.G.; Ricchiuti, A.; Grosso, M.; Duranti, E.; Metelli, M.R.; Gambaccini, D.; Bianchi, L.; Di Tanna, G.L.; Laffi, G.; Taddei, S.; Marchi, S. Neuroendocrine markers and psychological features in patients with irritable bowel syndrome. Int. J. Colorectal Dis., 2013, 28(9), 1203-1208.
[http://dx.doi.org/10.1007/s00384-013-1646-4] [PMID: 23377858]
[25]
Stasi, C.; Caserta, A.; Nisita, C.; Cortopassi, S.; Fani, B.; Salvadori, S.; Pancetti, A.; Bertani, L.; Gambaccini, D.; de Bortoli, N.; Dell’Osso, L.; Blandizzi, C.; Marchi, S.; Bellini, M. The complex interplay between gastrointestinal and psychiatric symptoms in irritable bowel syndrome: A longitudinal assessment. J. Gastroenterol. Hepatol., 2019, 34(4), 713-719.
[http://dx.doi.org/10.1111/jgh.14375] [PMID: 29971822]
[26]
Lea, R.; Whorwell, P.J. New insights into the psychosocial aspects of irritable bowel syndrome. Curr. Gastroenterol. Rep., 2003, 5(4), 343-350.
[http://dx.doi.org/10.1007/s11894-003-0073-z] [PMID: 12864966]
[27]
Kelly, J.R.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbiota axis: Challenges for translation in psychiatry. Ann. Epidemiol., 2016, 26(5), 366-372.
[http://dx.doi.org/10.1016/j.annepidem.2016.02.008] [PMID: 27005587]
[28]
Pigrau, M.; Rodiño-Janeiro, B.K.; Casado-Bedmar, M.; Lobo, B.; Vicario, M.; Santos, J.; Alonso-Cotoner, C. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: Implications for irritable bowel syndrome. Neurogastroenterol. Motil., 2016, 28(4), 463-486.
[http://dx.doi.org/10.1111/nmo.12717] [PMID: 26556786]
[29]
MacQueen, G.; Surette, M.; Moayyedi, P. The gut microbiota and psychiatric illness. J. Psychiatry Neurosci., 2017, 42(2), 75-77.
[http://dx.doi.org/10.1503/jpn.170028] [PMID: 28245172]
[30]
Malan-Muller, S.; Valles-Colomer, M.; Raes, J.; Lowry, C.A.; Seedat, S.; Hemmings, S.M.J. The gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. OMICS, 2018, 22(2), 90-107.
[http://dx.doi.org/10.1089/omi.2017.0077] [PMID: 28767318]
[31]
Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress, 2016, 4, 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[32]
Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M-L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol. Psychiatry, 2016, 21(6), 738-748.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[33]
Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K.; Wang, B. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci. Rep., 2017, 7(1), 10322.
[http://dx.doi.org/10.1038/s41598-017-10835-8] [PMID: 28871143]
[34]
Gershon, M.D. Serotonin and its implication for the management of irritable bowel syndrome. Rev. Gastroenterol. Disord., 2003, 3(Suppl. 2), S25-S34.
[PMID: 12776000]
[35]
Papadimas, G.K.; Tzirogiannis, K.N.; Mykoniatis, M.G.; Grypioti, A.D.; Manta, G.A.; Panoutsopoulos, G.I. The emerging role of serotonin in liver regeneration. Swiss Med. Wkly., 2012, 142w13548
[http://dx.doi.org/10.4414/smw.2012.13548] [PMID: 22495635]
[36]
Thomas, R.H.; Luthin, D.R. Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: Focus on prosecretory agents. Pharmacotherapy, 2015, 35(6), 613-630.
[http://dx.doi.org/10.1002/phar.1594] [PMID: 26016701]
[37]
Bearcroft, C.P.; Perrett, D.; Farthing, M.J. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome: A pilot study. Gut, 1998, 42(1), 42-46.
[http://dx.doi.org/10.1136/gut.42.1.42] [PMID: 9505884]
[38]
Colucci, R.; Gambaccini, D.; Ghisu, N.; Rossi, G.; Costa, F.; Tuccori, M.; De Bortoli, N.; Fornai, M.; Antonioli, L.; Ricchiuti, A.; Mumolo, M.G.; Marchi, S.; Blandizzi, C.; Bellini, M. Influence of the serotonin transporter 5HTTLPR polymorphism on symptom severity in irritable bowel syndrome. PLoS One, 2013, 8(2)e54831
[http://dx.doi.org/10.1371/journal.pone.0054831] [PMID: 23393559]
[39]
Ruddell, R.G.; Mann, D.A.; Ramm, G.A. The function of serotonin within the liver. J. Hepatol., 2008, 48(4), 666-675.
[http://dx.doi.org/10.1016/j.jhep.2008.01.006] [PMID: 18280000]
[40]
Blakely, R.D.; De Felice, L.J.; Hartzell, H.C. Molecular physiology of norepinephrine and serotonin transporters. J. Exp. Biol., 1994, 196, 263-281.
[PMID: 7823027]
[41]
Ramamoorthy, S.; Bauman, A.L.; Moore, K.R.; Han, H.; Yang-Feng, T.; Chang, A.S.; Ganapathy, V.; Blakely, R.D. Antidepressant- and cocaine-sensitive human serotonin transporter: Molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA, 1993, 90(6), 2542-2546.
[http://dx.doi.org/10.1073/pnas.90.6.2542] [PMID: 7681602]
[42]
Gelernter, J.; Pakstis, A.J.; Kidd, K.K. Linkage mapping of serotonin transporter protein gene SLC6A4 on chromosome 17. Hum. Genet., 1995, 95(6), 677-680.
[http://dx.doi.org/10.1007/BF00209486] [PMID: 7789954]
[43]
Di Bella, D.; Catalano, M.; Balling, U.; Smeraldi, E.; Lesch, K.P. Systematic screening for mutations in the coding region of the human serotonin transporter (5-HTT) gene using PCR and DGGE. Am. J. Med. Genet., 1996, 67(6), 541-545.
[http://dx.doi.org/10.1002/(SICI)1096-8628(19961122)67:6<541:AID-AJMG5>3.0.CO;2-K] [PMID: 8950411]
[44]
Kilic, F.; Murphy, D.L.; Rudnick, G. A human serotonin transporter mutation causes constitutive activation of transport activity. Mol. Pharmacol., 2003, 64(2), 440-446.
[http://dx.doi.org/10.1124/mol.64.2.440] [PMID: 12869649]
[45]
Robinson, M.B. Regulated trafficking of neurotransmitter transporters: Common notes but different melodies. J. Neurochem., 2002, 80(1), 1-11.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00698.x] [PMID: 11796738]
[46]
Vega, E.; Rudolph, M.I. Characterization of oxytocin receptors and serotonin transporters in mast cells. Endocrine, 2002, 18, 167-172.
[http://dx.doi.org/10.1385/ENDO:18:2:167] [PMID: 12374464]
[47]
Wade, P.R.; Chen, J.; Jaffe, B.; Kassem, I.S.; Blakely, R.D.; Gershon, M.D. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci., 1996, 16(7), 2352-2364.
[http://dx.doi.org/10.1523/JNEUROSCI.16-07-02352.1996] [PMID: 8601815]
[48]
Rudnick, G. Active transport of 5-hydroxytryptamine by plasma membrane vesicles isolated from human blood platelets. J. Biol. Chem., 1977, 252(7), 2170-2174.
[PMID: 849926]
[49]
Qian, Y.; Melikian, H.E.; Rye, D.B.; Levey, A.I.; Blakely, R.D. Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J. Neurosci., 1995, 15(2), 1261-1274.
[http://dx.doi.org/10.1523/JNEUROSCI.15-02-01261.1995] [PMID: 7869097]
[50]
Cool, D.R.; Leibach, F.H.; Ganapathy, V. Modulation of serotonin uptake kinetics by ions and ion gradients in human placental brush-border membrane vesicles. Biochemistry, 1990, 29(7), 1818-1822.
[http://dx.doi.org/10.1021/bi00459a022] [PMID: 2331465]
[51]
Chen, J.X.; Pan, H.; Rothman, T.P.; Wade, P.R.; Gershon, M.D. Guinea pig 5-HT transporter: Cloning, expression, distribution, and function in intestinal sensory reception. Am. J. Physiol., 1998, 275(3), G433-G448.
[PMID: 9724254]
[52]
Piñeyro, G.; Blier, P. Autoregulation of serotonin neurons: Role in antidepressant drug action. Pharmacol. Rev., 1999, 51(3), 533-591.
[PMID: 10471417]
[53]
Maxton, D.G.; Morris, J.; Whorwell, P.J. Selective 5-hydroxytryptamine antagonism: A role in irritable bowel syndrome and functional dyspepsia? Aliment. Pharmacol. Ther., 1996, 10(4), 595-599.
[http://dx.doi.org/10.1046/j.1365-2036.1996.30172000.x] [PMID: 8853764]
[54]
Marra, F.; Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol., 2018, 68(2), 280-295.
[http://dx.doi.org/10.1016/j.jhep.2017.11.014] [PMID: 29154964]
[55]
Sjögren, K.; Engdahl, C.; Henning, P.; Lerner, U.H.; Tremaroli, V.; Lagerquist, M.K.; Bäckhed, F.; Ohlsson, C. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res., 2012, 27(6), 1357-1367.
[http://dx.doi.org/10.1002/jbmr.1588] [PMID: 22407806]
[56]
Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3698-3703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[57]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[58]
Ge, X.; Ding, C.; Zhao, W.; Xu, L.; Tian, H.; Gong, J.; Zhu, M.; Li, J.; Li, N. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med., 2017, 15(1), 13.
[http://dx.doi.org/10.1186/s12967-016-1105-4] [PMID: 28086815]
[59]
Uribe, A.; Alam, M.; Johansson, O.; Midtvedt, T.; Theodorsson, E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology, 1994, 107(5), 1259-1269.
[http://dx.doi.org/10.1016/0016-5085(94)90526-6] [PMID: 7926490]
[60]
Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One, 2017, 12(7)e0180745
[http://dx.doi.org/10.1371/journal.pone.0180745] [PMID: 28683093]
[61]
Wu, Y.; Liu, W.; Li, Q.; Li, Y.; Yan, Y.; Huang, F.; Wu, X.; Zhou, Q.; Shu, X.; Ruan, Z. Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. Int. J. Food Sci. Nutr., 2018, 69(5), 566-573.
[http://dx.doi.org/10.1080/09637486.2017.1394449] [PMID: 29141471]
[62]
Bhattarai, Y.; Schmidt, B.A.; Linden, D.R.; Larson, E.D.; Grover, M.; Beyder, A.; Farrugia, G.; Kashyap, P.C. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G80-G87.
[http://dx.doi.org/10.1152/ajpgi.00448.2016] [PMID: 28408644]
[63]
Saraf, M.K.; Piccolo, B.D.; Bowlin, A.K.; Mercer, K.E.; LeRoith, T.; Chintapalli, S.V.; Shankar, K.; Badger, T.M.; Yeruva, L. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome, 2017, 5(1), 77.
[http://dx.doi.org/10.1186/s40168-017-0297-z] [PMID: 28705171]
[64]
Distrutti, E.; Monaldi, L.; Ricci, P.; Fiorucci, S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol., 2016, 22(7), 2219-2241.
[http://dx.doi.org/10.3748/wjg.v22.i7.2219] [PMID: 26900286]
[65]
Choi, W.; Namkung, J.; Hwang, I.; Kim, H.; Lim, A.; Park, H.J.; Lee, H.W.; Han, K.H.; Park, S.; Jeong, J.S.; Bang, G.; Kim, Y.H.; Yadav, V.K.; Karsenty, G.; Ju, Y.S.; Choi, C.; Suh, J.M.; Park, J.Y.; Park, S.; Kim, H. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat. Commun., 2018, 9(1), 4824.
[http://dx.doi.org/10.1038/s41467-018-07287-7] [PMID: 30446669]
[66]
Haub, S.; Ritze, Y.; Ladel, I.; Saum, K.; Hubert, A.; Spruss, A.; Trautwein, C.; Bischoff, S.C. Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice. J. Pharmacol. Exp. Ther., 2011, 339(3), 790-798.
[http://dx.doi.org/10.1124/jpet.111.181834] [PMID: 21903748]
[67]
Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F., III; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J., 2015, 29(4), 1395-1403.
[http://dx.doi.org/10.1096/fj.14-259598] [PMID: 25550456]
[68]
El Aidy, S.; Ramsteijn, A.S.; Dini-Andreote, F.; van Eijk, R.; Houwing, D.J.; Salles, J.F.; Olivier, J.D.A. Serotonin transporter genotype modulates the gut microbiota composition in young rats, an effect augmented by early life stress. Front. Cell. Neurosci., 2017, 11, 222.
[http://dx.doi.org/10.3389/fncel.2017.00222] [PMID: 28824378]
[69]
Layunta, E.; Latorre, E.; Forcén, R.; Grasa, L.; Plaza, M.A.; Arias, M.; Alcalde, A.I.; Mesonero, J.E. NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors. J. Cell. Physiol., 2018, 233(5), 4183-4193.
[http://dx.doi.org/10.1002/jcp.26229] [PMID: 29030987]
[70]
Olivier, B.; Soudijn, W.; Van Wijngaarden, I. Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog. Drug Res., 2000, 54, 59-119.
[http://dx.doi.org/10.1007/978-3-0348-8391-7_3] [PMID: 10857386]
[71]
Luna, R.A.; Oezguen, N.; Balderas, M.; Venkatachalam, A.; Runge, J.K.; Versalovic, J.; Veenstra-VanderWeele, J.; Anderson, G.M.; Savidge, T.; Williams, K.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol., 2016, 3(2), 218-230.
[http://dx.doi.org/10.1016/j.jcmgh.2016.11.008] [PMID: 28275689]
[72]
Wall, R.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.F.; Dinan, T.G.; Stanton, C. Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol., 2014, 817, 221-239.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_10] [PMID: 24997036]
[73]
Thomas, C.M.; Hong, T.; van Pijkeren, J.P.; Hemarajata, P.; Trinh, D.V.; Hu, W.; Britton, R.A.; Kalkum, M.; Versalovic, J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One, 2012, 7(2)e31951
[http://dx.doi.org/10.1371/journal.pone.0031951] [PMID: 22384111]
[74]
Golubeva, A.V.; Joyce, S.A.; Moloney, G.; Burokas, A.; Sherwin, E.; Arboleya, S.; Flynn, I.; Khochanskiy, D.; Moya-Pérez, A.; Peterson, V.; Rea, K.; Murphy, K.; Makarova, O.; Buravkov, S.; Hyland, N.P.; Stanton, C.; Clarke, G.; Gahan, C.G.M.; Dinan, T.G.; Cryan, J.F. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 2017, 24, 166-178.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.020] [PMID: 28965876]
[75]
Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_1] [PMID: 24997027]
[76]
Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Sawaki, E.; Koga, Y.; Benno, Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: A pilot study. Front. Syst. Neurosci., 2013, 7, 9.
[http://dx.doi.org/10.3389/fnsys.2013.00009] [PMID: 23630473]
[77]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[78]
Martins, I.J. Bacterial lipopolysaccharides and neuron toxicity in neurodegenerative diseases. Neurol. Res. Surg., 2018, 1, 1-3.
[http://dx.doi.org/10.33425/2641-4333.1001]
[79]
Mota, C.M.D.; Rodrigues-Santos, C.; Fernández, R.A.R.; Carolino, R.O.G.; Antunes-Rodrigues, J.; Anselmo-Franci, J.A.; Branco, L.G.S. Central serotonin attenuates LPS-induced systemic inflammation. Brain Behav. Immun., 2017, 66, 372-381.
[http://dx.doi.org/10.1016/j.bbi.2017.07.010] [PMID: 28723348]
[80]
Korte-Bouws, G.A.H.; van Heesch, F.; Westphal, K.G.C.; Ankersmit, L.M.J.; van Oosten, E.M.; Güntürkün, O.; Korte, S.M. Bacterial lipopolysaccharide increases serotonin metabolism in both medial prefrontal cortex and nucleus accumbens in male wild type rats, but not in serotonin transporter knockout rats. Pharmaceuticals (Basel), 2018, 11(3)E66
[http://dx.doi.org/10.3390/ph11030066] [PMID: 29976854]
[81]
Martins, I.J. Overnutrition determines LPS regulation of mycotoxin induced neurotoxicity in neurodegenerative diseases. Int. J. Mol. Sci., 2015, 16(12), 29554-29573.
[http://dx.doi.org/10.3390/ijms161226190] [PMID: 26690419]
[82]
Komossa, K.; Rummel-Kluge, C.; Hunger, H.; Schmid, F.; Schwarz, S.; Duggan, L.; Kissling, W.; Leucht, S. Olanzapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev., 2010, 3CD006654
[http://dx.doi.org/10.1002/14651858.CD006654.pub2] [PMID: 20238348]
[83]
Bak, M.; Fransen, A.; Janssen, J.; van Os, J.; Drukker, M. Almost all antipsychotics result in weight gain: A meta-analysis. PLoS One, 2014, 9(4)e94112
[http://dx.doi.org/10.1371/journal.pone.0094112] [PMID: 24763306]
[84]
Han, M.; Huang, X.F.; du Bois, T.M.; Deng, C. The effects of antipsychotic drugs administration on 5-HT1A receptor expression in the limbic system of the rat brain. Neuroscience, 2009, 164(4), 1754-1763.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.041] [PMID: 19778583]
[85]
Davey, K.J.; O’Mahony, S.M.; Schellekens, H.; O’Sullivan, O.; Bienenstock, J.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gender-dependent consequences of chronic olanzapine in the rat: Effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl.), 2012, 221(1), 155-169.
[http://dx.doi.org/10.1007/s00213-011-2555-2] [PMID: 22234378]
[86]
Kao, A.C.; Spitzer, S.; Anthony, D.C.; Lennox, B.; Burnet, P.W.J. Prebiotic attenuation of olanzapine-induced weight gain in rats: Analysis of central and peripheral biomarkers and gut microbiota. Transl. Psychiatry, 2018, 8(1), 66.
[http://dx.doi.org/10.1038/s41398-018-0116-8] [PMID: 29540664]
[87]
Quigley, E.M.M. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep., 2017, 17(12), 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[88]
Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(6), 356-365.
[http://dx.doi.org/10.1038/nrgastro.2017.20] [PMID: 28270698]
[89]
Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol., 2016, 12(1), 31-40.
[http://dx.doi.org/10.1517/17425255.2016.1121234] [PMID: 26569070]