BRAF Status in Papillary Microcarcinomas of the Thyroid Gland: a Brief Review

Page: [665 - 672] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Papillary thyroid microcarcinoma (PTMC) is defined by the World Health Organization as papillary cancer measuring 10 mm or less in diameter. Generally, PTMC shows an indolent clinical behavior with a good prognosis, although a minority of PTMC is characterized by an aggressive course. However, efforts to identify this aggressive subset of PTMC after surgery remain inconclusive.

Several oncogenic pathways have been identified in thyroid cancer and have been applied translationally to improve prognosis and clinical management. In particular, the BRAFV600E mutation was found more frequently in large, aggressive, recurrent and advanced tumors.

We aimed at reviewing studies on BRAFV600E mutation as a prognostic factor in PTMC.

Keywords: Thyroid papillary microcarcinoma, cancer, prognosis, BRAF, mutation.

[1]
Salamanca-Fernández E, Rodriguez-Barranco M, Chang-Chan YL, et al. Thyroid Cancer Epidemiology in South Spain: a population-based time trend study. Endocrine 2018; 62(2): 423-31.
[http://dx.doi.org/10.1007/s12020-018-1681-6] [PMID: 30043094]
[2]
Ieni A, Barresi V, Cardia R, et al. The micropapillary/hobnail variant of papillary thyroid carcinoma: A review of series described in the literature compared to a series from one southern Italy pathology institution. Rev Endocr Metab Disord 2016; 17(4): 521-7.
[http://dx.doi.org/10.1007/s11154-016-9398-4] [PMID: 27896649]
[3]
Vita R, Ieni A, Tuccari G, Benvenga S. The increasing prevalence of chronic lymphocytic thyroiditis in papillary microcarcinoma. Rev Endocr Metab Disord 2018; 19(4): 301-9.
[http://dx.doi.org/10.1007/s11154-018-9474-z] [PMID: 30456477]
[4]
Ieni A, Vita R, Magliolo E, et al. One-third of an archivial series of papillary thyroid cancer (Years 2007-2015) has coexistent chronic lymphocytic thyroiditis, which is associated with a more favorable tumor-node-metastasis staging. Front Endocrinol (Lausanne) 2017; 8: 337.
[http://dx.doi.org/10.3389/fendo.2017.00337] [PMID: 29250033]
[5]
Vigneri R, Malandrino P, Vigneri P. The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol 2015; 27(1): 1-7.
[http://dx.doi.org/10.1097/CCO.0000000000000148] [PMID: 25310641]
[6]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[7]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[8]
Soares P, Celestino R, Gaspar da Rocha A, Sobrinho-Simões M. Papillary thyroid microcarcinoma: how to diagnose and manage this epidemic? Int J Surg Pathol 2014; 22(2): 113-9.
[http://dx.doi.org/10.1177/1066896913517394] [PMID: 24401191]
[9]
Hughes DT, Haymart MR, Miller BS, Gauger PG, Doherty GM. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years. Thyroid 2011; 21(3): 231-6.
[http://dx.doi.org/10.1089/thy.2010.0137] [PMID: 21268762]
[10]
Kaliszewski K, Zubkiewicz-Kucharska A, Kiełb P, Maksymowicz J, Krawczyk A, Krawiec O. Comparison of the prevalence of incidental and non-incidental papillary thyroid microcarcinoma during 2008-2016: a single-center experience. World J Surg Oncol 2018; 16(1): 202.
[http://dx.doi.org/10.1186/s12957-018-1501-8] [PMID: 30305094]
[11]
Lubitz CC, Sosa JA. The changing landscape of papillary thyroid cancer: Epidemiology, management, and the implications for patients. Cancer 2016; 122(24): 3754-9.
[http://dx.doi.org/10.1002/cncr.30201] [PMID: 27517675]
[12]
Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: A review of active surveillance trials. Eur J Surg Oncol 2018; 44(3): 307-15.
[http://dx.doi.org/10.1016/j.ejso.2017.03.004] [PMID: 28343733]
[13]
Shafique K. LiVolsi VA, Montone K, Baloch ZW. Papillary Thyroid Microcarcinoma: Reclassification to Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP): a Retrospective Clinicopathologic Study. Endocr Pathol 2018; 29(4): 339-45.
[http://dx.doi.org/10.1007/s12022-018-9546-3] [PMID: 30196478]
[14]
Lloyd RV, Osamura RY, Kloppel G, Rosai J. WHO classification of tumours of the endocrine organs. 4th ed. Lyon: International Agency for Research on Cancer 2017.
[15]
Huang M, Yan C, Wei H, Lv Y, Ling R. Clinicopathological characteristics and prognosis of thyroid cancer in northwest China: A population-based retrospective study of 2490 patients. Thorac Cancer 2018; 9(11): 1453-60.
[http://dx.doi.org/10.1111/1759-7714.12858] [PMID: 30209893]
[16]
Wang TS, Sosa JA. Thyroid surgery for differentiated thyroid cancer - recent advances and future directions. Nat Rev Endocrinol 2018; 14(11): 670-83.
[http://dx.doi.org/10.1038/s41574-018-0080-7] [PMID: 30131586]
[17]
Yi D, Song P, Huang T, Tang X, Sang J. A meta-analysis on the effect of operation modes on the recurrence of papillary thyroid microcarcinoma. Oncotarget 2017; 8(4): 7148-56.
[http://dx.doi.org/10.18632/oncotarget.12698] [PMID: 27756889]
[18]
Wu LS, Milan SA. Management of microcarcinomas (papillary and medullary) of the thyroid. Curr Opin Oncol 2013; 25(1): 27-32.
[http://dx.doi.org/10.1097/CCO.0b013e328359feea] [PMID: 23042124]
[19]
Haugen BR, Alexander EK, Bible KC, et al. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26(1): 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[20]
Yu XM, Wan Y, Sippel RS, Chen H. Should all papillary thyroid microcarcinomas be aggressively treated? An analysis of 18,445 cases. Ann Surg 2011; 254(4): 653-60.
[http://dx.doi.org/10.1097/SLA.0b013e318230036d] [PMID: 21876434]
[21]
Zheng W, Li J, Lv P, Chen Z, Fan P. Treatment efficacy between total thyroidectomy and lobectomy for patients with papillary thyroid microcarcinoma: A systemic review and meta-analysis. Eur J Surg Oncol 2018; 44(11): 1679-84.
[http://dx.doi.org/10.1016/j.ejso.2018.08.004] [PMID: 30158063]
[22]
Liu LS, Liang J, Li JH, et al. The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: a meta-analysis. Eur Arch Otorhinolaryngol 2017; 274(3): 1327-38.
[http://dx.doi.org/10.1007/s00405-016-4302-0] [PMID: 27645473]
[23]
Jeon MJ, Kim WG, Choi YM, et al. Features Predictive of Distant Metastasis in Papillary Thyroid Microcarcinomas. Thyroid 2016; 26(1): 161-8.
[http://dx.doi.org/10.1089/thy.2015.0375] [PMID: 26563473]
[24]
Ardito G, Revelli L, Giustozzi E, et al. Aggressive papillary thyroid microcarcinoma: prognostic factors and therapeutic strategy. Clin Nucl Med 2013; 38(1): 25-8.
[http://dx.doi.org/10.1097/RLU.0b013e318279bc65] [PMID: 23242040]
[25]
Zhi J, Zhao J, Gao M, et al. Impact of major different variants of papillary thyroid microcarcinoma on the clinicopathological characteristics: the study of 1041 cases. Int J Clin Oncol 2018; 23(1): 59-65.
[http://dx.doi.org/10.1007/s10147-017-1170-6] [PMID: 28744725]
[26]
Tao Y, Wang C, Li L, et al. Clinicopathological features for predicting central and lateral lymph node metastasis in papillary thyroid microcarcinoma: Analysis of 66 cases that underwent central and lateral lymph node dissection. Mol Clin Oncol 2017; 6(1): 49-55.
[http://dx.doi.org/10.3892/mco.2016.1085] [PMID: 28123728]
[27]
Xu Y, Xu L, Wang J. Clinical predictors of lymph node metastasis and survival rate in papillary thyroid microcarcinoma: analysis of 3607 patients at a single institution. J Surg Res 2018; 221: 128-34.
[http://dx.doi.org/10.1016/j.jss.2017.08.007] [PMID: 29229118]
[28]
Mehanna H, Al-Maqbili T, Carter B, et al. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21 329 person-years of follow-up. J Clin Endocrinol Metab 2014; 99(8): 2834-43.
[http://dx.doi.org/10.1210/jc.2013-2118] [PMID: 24828487]
[29]
Tarasova VD, Tuttle RM. Current Management of Low Risk Differentiated Thyroid Cancer and Papillary Microcarcinoma. Clin Oncol (R Coll Radiol) 2017; 29(5): 290-7.
[http://dx.doi.org/10.1016/j.clon.2016.12.009] [PMID: 28087101]
[30]
Wada N, Duh QY, Sugino K, et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg 2003; 237(3): 399-407.
[http://dx.doi.org/10.1097/01.SLA.0000055273.58908.19] [PMID: 12616125]
[31]
Tam AA, Ozdemir D, Aydın C, et al. Association between preoperative thyrotrophin and clinicopathological and aggressive features of papillary thyroid cancer. Endocrine 2018; 59(3): 565-72.
[http://dx.doi.org/10.1007/s12020-018-1523-6] [PMID: 29374347]
[32]
Hay ID. Management of patients with low-risk papillary thyroid carcinoma. Endocr Pract 2007; 13(5): 521-33.
[http://dx.doi.org/10.4158/EP.13.5.521] [PMID: 17872355]
[33]
Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg 2010; 34(1): 28-35.
[http://dx.doi.org/10.1007/s00268-009-0303-0] [PMID: 20020290]
[34]
Sugitani I, Fujimoto Y. Management of low-risk papillary thyroid carcinoma: unique conventional policy in Japan and our efforts to improve the level of evidence. Surg Today 2010; 40(3): 199-215.
[http://dx.doi.org/10.1007/s00595-009-4034-5] [PMID: 20180072]
[35]
Benvenga S, Koch CA. Molecular pathways associated with aggressiveness of papillary thyroid cancer. Curr Genomics 2014; 15(3): 162-70.
[http://dx.doi.org/10.2174/1389202915999140404100958] [PMID: 24955023]
[36]
Acquaviva G, Visani M, Repaci A, et al. Molecular pathology of thyroid tumours of follicular cells: a review of genetic alterations and their clinicopathological relevance. Histopathology 2018; 72(1): 6-31.
[http://dx.doi.org/10.1111/his.13380] [PMID: 29239040]
[37]
Costa V, Esposito R, Pallante P, Ciccodicola A, Fusco A. The “next-generation” knowledge of papillary thyroid carcinoma. Cell Cycle 2015; 14(13): 2018-21.
[http://dx.doi.org/10.1080/15384101.2015.1049786] [PMID: 26030480]
[38]
Knauf JA, Sartor MA, Medvedovic M, et al. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 2011; 30(28): 3153-62.
[http://dx.doi.org/10.1038/onc.2011.44] [PMID: 21383698]
[39]
Ahmad F, Nathani R, Venkat J, et al. Molecular evaluation of BRAF gene mutation in thyroid tumors: Significant association with papillary tumors and extra thyroidal extension indicating its role as a biomarker of aggressive disease. Exp Mol Pathol 2018; 105(3): 380-6.
[http://dx.doi.org/10.1016/j.yexmp.2018.11.002] [PMID: 30414980]
[40]
Ferrari SM, Fallahi P, Ruffilli I, et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg 2018; 7(Suppl. 1): S19-29.
[http://dx.doi.org/10.21037/gs.2017.11.07] [PMID: 30175060]
[41]
Mesa C Jr, Mirza M, Mitsutake N, et al. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 2006; 66(13): 6521-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0739] [PMID: 16818623]
[42]
Wang J, Knauf JA, Basu S, et al. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol Endocrinol 2003; 17(7): 1425-36.
[http://dx.doi.org/10.1210/me.2003-0041] [PMID: 12690093]
[43]
Tang KT, Lee CH. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J Chin Med Assoc 2010; 73(3): 113-28.
[http://dx.doi.org/10.1016/S1726-4901(10)70025-3] [PMID: 20230995]
[44]
Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin North Am 2008; 37(2): 375-87. [viii-ix.]
[http://dx.doi.org/10.1016/j.ecl.2008.01.001] [PMID: 18502332]
[45]
Nowicki TS, Zhao H, Darzynkiewicz Z, et al. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle 2011; 10(1): 100-7.
[http://dx.doi.org/10.4161/cc.10.1.14362] [PMID: 21191179]
[46]
Mitsutake N, Miyagishi M, Mitsutake S, et al. BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology 2006; 147(2): 1014-9.
[http://dx.doi.org/10.1210/en.2005-0280] [PMID: 16254036]
[47]
Li F, Chen G, Sheng C, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocr Relat Cancer 2015; 22(2): 159-68.
[http://dx.doi.org/10.1530/ERC-14-0531] [PMID: 25593071]
[48]
Chen Y, Sadow PM, Suh H, et al. BRAF(V600E) Is Correlated with Recurrence of Papillary Thyroid Microcarcinoma: A Systematic Review, Multi-Institutional Primary Data Analysis, and Meta-Analysis. Thyroid 2016; 26(2): 248-55.
[http://dx.doi.org/10.1089/thy.2015.0391] [PMID: 26671072]
[49]
Wang Z, Chen JQ, Liu JL, Qin XG. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest 2016; 46(2): 146-57.
[http://dx.doi.org/10.1111/eci.12577] [PMID: 26648183]
[50]
Rodrigues AC, Penna G, Rodrigues E, Castro P, Sobrinho-Simões M, Soares P. The genetics of papillary microcarcinomas of the thyroid: Diagnostic and prognostic implications. Curr Genomics 2017; 18(3): 244-54.
[http://dx.doi.org/10.2174/1389202918666170105094459] [PMID: 28659720]
[51]
Ugolini C, Giannini R, Lupi C, et al. Presence of BRAF V600E in very early stages of papillary thyroid carcinoma. Thyroid 2007; 17(5): 381-8.
[http://dx.doi.org/10.1089/thy.2006.0305] [PMID: 17542667]
[52]
Frasca F, Nucera C, Pellegriti G, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer 2008; 15(1): 191-205.
[http://dx.doi.org/10.1677/ERC-07-0212] [PMID: 18310287]
[53]
Mussazhanova Z, Matsuda K, Naruke Y, et al. Significance of p53-binding protein 1 (53BP1) expression in thyroid papillary microcarcinoma: association with BRAFV600E mutation status. Histopathology 2013; 63(5): 726-34.
[http://dx.doi.org/10.1111/his.12233] [PMID: 24004175]
[54]
Lee ST, Kim SW, Ki CS, et al. Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab 2012; 97(7): 2299-306.
[http://dx.doi.org/10.1210/jc.2011-3135] [PMID: 22500044]
[55]
Joo JY, Park JY, Yoon YH, et al. Prediction of occult central lymph node metastasis in papillary thyroid carcinoma by preoperative BRAF analysis using fine-needle aspiration biopsy: a prospective study. J Clin Endocrinol Metab 2012; 97(11): 3996-4003.
[http://dx.doi.org/10.1210/jc.2012-2444] [PMID: 22930785]
[56]
Jung CK, Im SY, Kang YJ, et al. Mutational patterns and novel mutations of the BRAF gene in a large cohort of Korean patients with papillary thyroid carcinoma. Thyroid 2012; 22(8): 791-7.
[http://dx.doi.org/10.1089/thy.2011.0123] [PMID: 22471241]
[57]
Lin X, Finkelstein SD, Zhu B, Silverman JF. Molecular analysis of multifocal papillary thyroid carcinoma. J Mol Endocrinol 2008; 41(4): 195-203.
[http://dx.doi.org/10.1677/JME-08-0063] [PMID: 18628356]
[58]
Min HS, Choe G, Kim SW, et al. S100A4 expression is associated with lymph node metastasis in papillary microcarcinoma of the thyroid. Mod Pathol 2008; 21(6): 748-55.
[http://dx.doi.org/10.1038/modpathol.2008.51] [PMID: 18360353]
[59]
Basolo F, Torregrossa L, Giannini R, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab 2010; 95(9): 4197-205.
[http://dx.doi.org/10.1210/jc.2010-0337] [PMID: 20631031]
[60]
Lin KL, Wang OC, Zhang XH, Dai XX, Hu XQ, Qu JM. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol 2010; 17(12): 3294-300.
[http://dx.doi.org/10.1245/s10434-010-1129-6] [PMID: 20953721]
[61]
Kurtulmus N, Duren M, Ince U, et al. BRAF(V600E) mutation in Turkish patients with papillary thyroid cancer: strong correlation with indicators of tumor aggressiveness. Endocrine 2012; 42(2): 404-10.
[http://dx.doi.org/10.1007/s12020-012-9651-x] [PMID: 22426956]
[62]
Lim JY, Hong SW, Lee YS, et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid 2013; 23(11): 1423-30.
[http://dx.doi.org/10.1089/thy.2013.0036] [PMID: 23496275]
[63]
Park AY, Son EJ, Kim JA, et al. Associations of the BRAF(V600E) mutation with sonographic features and clinicopathologic characteristics in a large population with conventional papillary thyroid carcinoma. PLoS One 2014; 9(10)e110868
[http://dx.doi.org/10.1371/journal.pone.0110868] [PMID: 25337709]
[64]
Yu L, Ma L, Tu Q, et al. Clinical significance of BRAF V600E mutation in 154 patients with thyroid nodules. Oncol Lett 2015; 9(6): 2633-8.
[http://dx.doi.org/10.3892/ol.2015.3119] [PMID: 26137119]
[65]
Choi YW, Kim YH, Lee J, Soh EY, Park TJ, Kim JH. Strong immunoexpression of midkine is associated with multiple lymph node metastases in BRAFV600E papillary thyroid carcinoma. Hum Pathol 2015; 46(10): 1557-65.
[http://dx.doi.org/10.1016/j.humpath.2015.06.018] [PMID: 26297257]
[66]
Choi SY, Park H, Kang MK, et al. The relationship between the BRAF(V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. World J Surg Oncol 2013; 11: 291.
[http://dx.doi.org/10.1186/1477-7819-11-291] [PMID: 24228637]
[67]
Kim TY, Kim WB, Rhee YS, et al. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2006; 65(3): 364-8.
[http://dx.doi.org/10.1111/j.1365-2265.2006.02605.x] [PMID: 16918957]
[68]
Walczyk A, Kowalska A, Kowalik A, et al. The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome? Clin Endocrinol (Oxf) 2014; 80(6): 899-904.
[http://dx.doi.org/10.1111/cen.12386] [PMID: 24354346]
[69]
Sedliarou I, Saenko V, Lantsov D, et al. The BRAFT1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int J Oncol 2004; 25(6): 1729-35.
[http://dx.doi.org/10.3892/ijo.25.6.1729] [PMID: 15547711]
[70]
Lee X, Gao M, Ji Y, et al. Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol 2009; 16(2): 240-5.
[http://dx.doi.org/10.1245/s10434-008-0233-3] [PMID: 19034577]
[71]
Zheng X, Wei S, Han Y, et al. Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol 2013; 20(7): 2266-73.
[http://dx.doi.org/10.1245/s10434-012-2851-z] [PMID: 23370668]
[72]
Rossi ED, Martini M, Capodimonti S, et al. BRAF (V600E) mutation analysis on liquid-based cytology-processed aspiration biopsies predicts bilaterality and lymph node involvement in papillary thyroid microcarcinoma. Cancer Cytopathol 2013; 121(6): 291-7.
[http://dx.doi.org/10.1002/cncy.21258] [PMID: 23192956]
[73]
Kwak JY, Kim EK, Chung WY, Moon HJ, Kim MJ, Choi JR. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 2009; 253(3): 854-60.
[http://dx.doi.org/10.1148/radiol.2533090471] [PMID: 19710001]
[74]
Lin KL, Wang OC, Zhang XH, Dai XX, Hu XQ, Qu JM. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol 2010; 17(12): 3294-300.
[http://dx.doi.org/10.1245/s10434-010-1129-6] [PMID: 20953721]
[75]
Marchetti I, Iervasi G, Mazzanti CM, et al. Detection of the BRAF(V600E) mutation in fine needle aspiration cytology of thyroid papillary microcarcinoma cells selected by manual macrodissection: an easy tool to improve the preoperative diagnosis. Thyroid 2012; 22(3): 292-8.
[http://dx.doi.org/10.1089/thy.2011.0107] [PMID: 22181337]
[76]
Barbaro D, Incensati RM, Materazzi G, et al. The BRAF V600E mutation in papillary thyroid cancer with positive or suspected pre-surgical cytological finding is not associated with advanced stages or worse prognosis. Endocrine 2014; 45(3): 462-8.
[http://dx.doi.org/10.1007/s12020-013-0029-5] [PMID: 23925579]
[77]
Zhou YL, Zhang W, Gao EL, et al. Preoperative BRAF mutation is predictive of occult contralateral carcinoma in patients with unilateral papillary thyroid microcarcinoma. Asian Pac J Cancer Prev 2012; 13(4): 1267-72.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1267] [PMID: 22799316]
[78]
Pyo JS, Sohn JH, Kang G. BRAF Immunohistochemistry Using Clone VE1 is Strongly Concordant with BRAF(V600E) Mutation Test in Papillary Thyroid Carcinoma. Endocr Pathol 2015; 26(3): 211-7.
[http://dx.doi.org/10.1007/s12022-015-9374-7] [PMID: 25957797]
[79]
O’Brien O, Lyons T, Murphy S, Feeley L, Power D, Heffron CCBB. BRAF V600 mutation detection in melanoma: a comparison of two laboratory testing methods. J Clin Pathol 2017; 70(11): 935-40.
[http://dx.doi.org/10.1136/jclinpath-2017-204367] [PMID: 28424234]
[80]
Chen D, Qi W, Zhang P, et al. Investigation of BRAF V600E detection approaches in papillary thyroid carcinoma. Pathol Res Pract 2018; 214(2): 303-7.
[http://dx.doi.org/10.1016/j.prp.2017.09.001] [PMID: 29254799]
[81]
Spittle C, Ward MR, Nathanson KL, et al. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn 2007; 9(4): 464-71.
[http://dx.doi.org/10.2353/jmoldx.2007.060191] [PMID: 17690212]
[82]
Huang T, Zhuge J, Zhang WW. Sensitive detection of BRAF V600E mutation by Amplification Refractory Mutation System (ARMS)-PCR. Biomark Res 2013; 1(1): 3.
[http://dx.doi.org/10.1186/2050-7771-1-3] [PMID: 24252159]
[83]
Capper D, Preusser M, Habel A, et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 2011; 122(1): 11-9.
[http://dx.doi.org/10.1007/s00401-011-0841-z] [PMID: 21638088]
[84]
Koperek O, Kornauth C, Capper D, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol 2012; 36(6): 844-50.
[http://dx.doi.org/10.1097/PAS.0b013e318246b527] [PMID: 22592144]
[85]
Capper D, Berghoff AS, Magerle M, et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 2012; 123(2): 223-33.
[http://dx.doi.org/10.1007/s00401-011-0887-y] [PMID: 22012135]
[86]
Tan YH, Liu Y, Eu KW, et al. Detection of BRAF V600E mutation by pyrosequencing. Pathology 2008; 40(3): 295-8.
[http://dx.doi.org/10.1080/00313020801911512] [PMID: 18428050]
[87]
Kim WY, Kim H, Hwang TS, Oh SY. Comparison between real-time PCR and pyrosequencing for detection of BRAF V600E mutation in thyroid fine-needle aspirates. Appl Immunohistochem Mol Morphol 2017; 25(5): 358-65.
[http://dx.doi.org/10.1097/PAI.0000000000000308] [PMID: 26657877]
[88]
Rowe LR, Bentz BG, Bentz JS. Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clin Pathol 2007; 60(11): 1211-5.
[http://dx.doi.org/10.1136/jcp.2006.040105] [PMID: 17298986]
[89]
Salvatore G, Giannini R, Faviana P, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 2004; 89(10): 5175-80.
[http://dx.doi.org/10.1210/jc.2003-032221] [PMID: 15472223]
[90]
James MR, Dumeni T, Stark MS, et al. Rapid screening of 4000 individuals for germ-line variations in the BRAF gene. Clin Chem 2006; 52(9): 1675-8.
[http://dx.doi.org/10.1373/clinchem.2006.070169] [PMID: 16873291]
[91]
Kim IJ, Kang HC, Jang SG, Ahn SA, Yoon HJ, Park JG. Development and applications of a BRAF oligonucleotide microarray. J Mol Diagn 2007; 9(1): 55-63.
[http://dx.doi.org/10.2353/jmoldx.2007.060072] [PMID: 17251336]
[92]
Baloch Z, Mete O, Asa SL. Immunohistochemical Biomarkers in Thyroid Pathology. Endocr Pathol 2018; 29(2): 91-112.
[http://dx.doi.org/10.1007/s12022-018-9532-9] [PMID: 29744727]
[93]
Dvorak K, Aggeler B, Palting J, McKelvie P, Ruszkiewicz A, Waring P. Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: impact of pre-analytical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma. Pathology 2014; 46(6): 509-17.
[http://dx.doi.org/10.1097/PAT.0000000000000119] [PMID: 25014730]
[94]
Orchard GE, Wojcik K, Rickaby W, et al. Immunohistochemical detection of V600E BRAF mutation is a useful primary screening tool for malignant melanoma. Br J Biomed Sci 2019; 76(2): 77-82.
[http://dx.doi.org/10.1080/09674845.2019.1592885] [PMID: 30870099]
[95]
Zhao J, Liu P, Yu Y, et al. Comparison of diagnostic methods for the detection of a BRAF mutation in papillary thyroid cancer. Oncol Lett 2019; 17(5): 4661-6.
[http://dx.doi.org/10.3892/ol.2019.10131] [PMID: 30988823]
[96]
Straccia P, Brunelli C, Rossi ED, et al. The immunocytochemical expression of VE-1 (BRAF V600E-related) antibody identifies the aggressive variants of papillary thyroid carcinoma on liquid-based cytology. Cytopathology 2019; 30(5): 460-7.
[http://dx.doi.org/10.1111/cyt.12690] [PMID: 30875124]
[97]
Kim JK, Seong CY, Bae IE, et al. Comparison of immunohistochemistry and direct sequencing methods for identification of the BRAFV600E mutation in papillary thyroid carcinoma. Ann Surg Oncol 2018; 25(6): 1775-81.
[http://dx.doi.org/10.1245/s10434-018-6460-3] [PMID: 29611028]
[98]
Szymonek M, Kowalik A, Kopczyński J, et al. Immunohistochemistry cannot replace DNA analysis for evaluation of BRAF V600E mutations in papillary thyroid carcinoma. Oncotarget 2017; 8(43): 74897-909.
[http://dx.doi.org/10.18632/oncotarget.20451] [PMID: 29088832]