Adenosine A2A Receptor as a Potential Drug Target - Current Status and Future Perspectives

Page: [2716 - 2740] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Adenosine receptors (ARs) are a class of G-protein coupled receptors (GPCRs) that are activated by the endogenous substance adenosine. ARs are classified into 4 subtype receptors, namely, the A1, A2A, A2B and A3 receptors. The wide distribution and expression of the ARs in various body tissues as well as the roles they have in controlling different functions in the body make them potential drug targets for the treatment of various pathological conditions, such as cardiac diseases, cancer, Parkinson’s disease, inflammation and glaucoma. Therefore, in the past decades, there have been extensive investigations of ARs with a high number of agonists and antagonists identified that can interact with these receptors. This review shall discuss the A2A receptor (A2AAR) subtype of the ARs. The structure, properties and the recent advances in the therapeutic potential of the receptor are discussed with an overview of the recent advances in the methods of studying the receptor. Also, molecular modeling approaches utilized in the design of A2AAR ligands are highlighted with various recent examples.

Keywords: Adenosine A2A receptor, molecular modeling, myocardial perfusion imaging, Parkinson’s disease, depression, cancer immunotherapy.

[1]
Jacobson KA. Introduction to adenosine receptors as therapeutic targets. Handb Exp Pharmacol 2009; (193): 1-24.
[2]
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 2011; 1808(5): 1290-308.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.017] [PMID: 21185259]
[3]
Hausler NE, Devine SM, McRobb FM, et al. Synthesis and pharmacological evaluation of dual acting antioxidant A(2A) adenosine receptor agonists. J Med Chem 2012; 55(7): 3521-34.
[http://dx.doi.org/10.1021/jm300206u] [PMID: 22432713]
[4]
Jorg M, Scammells PJ, Capuano B. The dopamine D2 and adenosine A2A receptors: past, present and future trends for the treatment of Parkinson’s disease. Curr Med Chem 2014; 21(27): 3188-210.
[http://dx.doi.org/10.2174/1389200215666140217110716] [PMID: 24533801]
[5]
Wang X, Han C, Xu Y, et al. Synthesis and Evaluation of Phenylxanthine Derivatives as Potential Dual A2AR Antagonists/MAO-B Inhibitors for Parkinson’s Disease. Molecules 2017; 22(6): 1010.
[http://dx.doi.org/10.3390/molecules22061010] [PMID: 28629145]
[6]
Rodríguez D, Gao Z-G, Moss SM, Jacobson KA, Carlsson J. Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 2015; 55(3): 550-63.
[http://dx.doi.org/10.1021/ci500639g] [PMID: 25625646]
[7]
Jaiteh M, Zeifman A, Saarinen M, et al. Docking screens for dual inhibitors of disparate drug targets for Parkinson’s disease. J Med Chem 2018; 61(12): 5269-78.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00204] [PMID: 29792714]
[8]
Vincenzi M, Bednarska K, Leśnikowski ZJ. Comparative Study of Carborane- and Phenyl-Modified Adenosine Derivatives as Ligands for the A2A and A3 Adenosine Receptors Based on a Rigid in Silico Docking and Radioligand Replacement Assay. Molecules 2018; 23(8): 1846.
[http://dx.doi.org/10.3390/molecules23081846] [PMID: 30044380]
[9]
Mustyala KK, Chitturi AR, Naikal James PS, Vuruputuri U. Pharmacophore mapping and in silico screening to identify new potent leads for A(2A) adenosine receptor as antagonists. J Recept Signal Transduct Res 2012; 32(2): 102-13.
[http://dx.doi.org/10.3109/10799893.2012.660532] [PMID: 22384789]
[10]
Ahmed SS, Ahameethunisa A, Santosh W. QSAR and pharmacophore modeling of 4-arylthieno [3, 2-D] pyrimidine derivatives against adenosine receptor of parkinson’s disease. J Theor Comput Chem 2010; 9(06): 975-91.
[http://dx.doi.org/10.1142/S0219633610006146]
[11]
Ahmed A, Ed. Safety and efficacy of Regadenoson in myocardial perfusion imaging (MPI) stress tests: A review Quantitative Phase Imaging IV. International Society for Optics and Photonics 2018.
[http://dx.doi.org/10.1117/12.2281326]
[12]
Guerrero A. A2A Adenosine Receptor Agonists and their Potential Therapeutic Applications. An Update. Curr Med Chem 2018; 25(30): 3597-612.
[http://dx.doi.org/10.2174/0929867325666180313110254] [PMID: 29532748]
[13]
Pape M, Zacho HD, Aarøe J, Eggert Jensen S, Petersen LJ. Safety and tolerability of regadenoson for myocardial perfusion imaging - first Danish experience. Scand Cardiovasc J 2016; 50(3): 180-6.
[http://dx.doi.org/10.3109/14017431.2016.1163415] [PMID: 26956081]
[14]
Hage FG, Ghimire G, Lester D, et al. The prognostic value of regadenoson myocardial perfusion imaging. J Nucl Cardiol 2015; 22(6): 1214-21.
[http://dx.doi.org/10.1007/s12350-014-0050-y] [PMID: 25677160]
[15]
Congreve M, Brown GA, Borodovsky A, Lamb ML. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discov 2018; 13(11): 997-1003.
[http://dx.doi.org/10.1080/17460441.2018.1534825] [PMID: 30336706]
[16]
Cacciari B, Spalluto G, Federico S. A2A adenosine receptor antagonists as therapeutic candidates: Are they still an interesting challenge? Mini Rev Med Chem 2018; 18(14): 1168-74.
[http://dx.doi.org/10.2174/1389557518666180423113051] [PMID: 29692248]
[17]
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35(4): 790-848.
[http://dx.doi.org/10.1002/med.21344] [PMID: 25821194]
[18]
Franco R, Navarro G. Adenosine A2A receptor antagonists in neurodegenerative diseases: Huge potential and huge challenges. Front Psychiatry 2018; 9: 68.
[http://dx.doi.org/10.3389/fpsyt.2018.00068] [PMID: 29593579]
[19]
Bennett KA, Tehan B, Lebon G, et al. Pharmacology and structure of isolated conformations of the adenosine A2A receptor define ligand efficacy. Mol Pharmacol 2013; 83(5): 949-58.
[http://dx.doi.org/10.1124/mol.112.084509]
[20]
Costanzi S, Ivanov AA, Tikhonova IG, Jacobson KA. Structure and function of G protein-coupled receptors studied using sequence analysis, molecular modeling, and receptor engineering: Adenosine receptors. Front Drug Design Disc 2007; 3: 63-79.
[21]
White KL, Eddy MT, Gao Z-G, et al. Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. Structure 2018; 26(2): 259-69.
[http://dx.doi.org/10.1016/j.str.2017.12.013]
[22]
Lebon G, Edwards PC, Leslie AG, Tate CG. Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 2015; 87(6): 907-15.
[http://dx.doi.org/10.1124/mol.114.097360]
[23]
Cheng RK, Segala E, Robertson N, et al. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure 2017; 25(8): 1275-1285.e4.
[24]
Segala E, Guo D, Cheng RK, et al. Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 2016; 59(13): 6470-9.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00653] [PMID: 27312113]
[25]
Eddy MT, Lee M-Y, Gao Z-G, et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 2018; 172(1-2): 68-80.
[http://dx.doi.org/10.1016/j.cell.2017.12.004]
[26]
Sun B, Bachhawat P, Chu ML-H, et al. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA 2017; 114(8): 2066-71.
[27]
Rucktooa P, Cheng RKY, Segala E, et al. Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals. Sci Rep 2018; 8(1): 41.
[http://dx.doi.org/10.1038/s41598-017-18570-w] [PMID: 29311713]
[28]
Weinert T, Olieric N, Cheng R, et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun 2017; 8(1): 542.
[http://dx.doi.org/10.1038/s41467-017-00630-4] [PMID: 28912485]
[29]
Carlsson J, Yoo L, Gao Z-G, Irwin JJ, Shoichet BK, Jacobson KA. Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 2010; 53(9): 3748-55.
[http://dx.doi.org/10.1021/jm100240h] [PMID: 20405927]
[30]
Guo D, Pan AC, Dror RO, et al. Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 2016; 89(5): 485-91.
[http://dx.doi.org/10.1124/mol.115.102657]
[31]
Doré AS, Robertson N, Errey JC, et al. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 2011; 19(9): 1283-93.
[http://dx.doi.org/10.1016/j.str.2011.06.014] [PMID: 21885291]
[32]
Jaakola V-P, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008; 322(5905): 1211-7.
[http://dx.doi.org/10.1126/science.1164772] [PMID: 18832607]
[33]
Xu F, Wu H, Katritch V, et al. Structure of an agonist-bound human A2A adenosine receptor. Science 2011; 332(6027): 322-7.
[http://dx.doi.org/10.1126/science.1202793] [PMID: 21393508]
[34]
Fredholm BB, Cunha RA, Svenningsson P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem 2003; 3(4): 413-26.
[http://dx.doi.org/10.2174/1568026033392200] [PMID: 12570759]
[35]
Diniz C, Borges F, Santana L, et al. Ligands and therapeutic perspectives of adenosine A(2A) receptors. Curr Pharm Des 2008; 14(17): 1698-722.
[http://dx.doi.org/10.2174/138161208784746842] [PMID: 18673194]
[36]
de Lera Ruiz M, Lim Y-H, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem 2014; 57(9): 3623-50.
[http://dx.doi.org/10.1021/jm4011669] [PMID: 24164628]
[37]
Fresco P, Diniz C, Gonçalves J. Facilitation of noradrenaline release by activation of adenosine A(2A) receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc Res 2004; 63(4): 739-46.
[http://dx.doi.org/10.1016/j.cardiores.2004.05.015] [PMID: 15306230]
[38]
Fredholm BB, Chern Y, Franco R, Sitkovsky M. Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 2007; 83(5): 263-76.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.005] [PMID: 17804147]
[39]
Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol 2016; 16(3): 177-92.
[http://dx.doi.org/10.1038/nri.2016.4] [PMID: 26922909]
[40]
Khasim S, Pran Kishore D, Raghuprasad M, et al. 7-Amino-2-aryl/heteroaryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: Synthesis and Adenosine Receptor Binding Studies. Chem Biol Drug Des 2019; 94(2): 1568-73.
[http://dx.doi.org/10.1111/cbdd.13528]
[41]
El-Tayeb A, Gollos S. Synthesis and structure-activity relationships of 2-hydrazinyladenosine derivatives as A(2A) adenosine receptor ligands. Bioorg Med Chem 2013; 21(2): 436-47.
[http://dx.doi.org/10.1016/j.bmc.2012.11.021] [PMID: 23245803]
[42]
Lebon G, Warne T, Edwards PC, et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 2011; 474(7352): 521-5.
[http://dx.doi.org/10.1038/nature10136] [PMID: 21593763]
[43]
Deflorian F, Kumar TS, Phan K, et al. Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A2A adenosine receptor. J Med Chem 2012; 55(1): 538-52.
[http://dx.doi.org/10.1021/jm201461q] [PMID: 22104008]
[44]
Hou X, Majik MS, Kim K, et al. Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A2A and A3 adenosine receptor ligands. J Med Chem 2012; 55(1): 342-56.
[http://dx.doi.org/10.1021/jm201229j] [PMID: 22142423]
[45]
Preti D, Baraldi PG, Saponaro G, et al. Design, synthesis, and biological evaluation of novel 2-((2-(4-(substituted) phenylpiperazin-1-yl)ethyl)amino)-5′-N-ethylcarboxamidoadenosines as potent and selective agonists of the A2A adenosine receptor. J Med Chem 2015; 58(7): 3253-67.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00215] [PMID: 25780876]
[46]
El-Tayeb A, Michael S, Abdelrahman A, et al. Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2011; 2(12): 890-5.
[http://dx.doi.org/10.1021/ml200189u] [PMID: 24900277]
[47]
Moss SM, Jayasekara PS, Paoletta S, Gao Z-G, Jacobson KA. Structure-based design of reactive nucleosides for site-specific modification of the A2A adenosine receptor. ACS Med Chem Lett 2014; 5(9): 1043-8.
[http://dx.doi.org/10.1021/ml5002486] [PMID: 25221664]
[48]
van Tilburg EW, Gremmen M, von Frijtag Drabbe Künzel J, de Groote M, IJzerman AP. 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorg Med Chem 2003; 11(10): 2183-92.
[http://dx.doi.org/10.1016/S0968-0896(03)00123-8] [PMID: 12713828]
[49]
Bharate SB, Singh B, Kachler S, et al. Discovery of 7-(prolinol-N-yl)-2-phenylamino-thiazolo [5, 4-d] pyrimidines as novel non-nucleoside partial agonists for the A2A adenosine receptor: Prediction from molecular modeling. J Med Chem 2016; 59(12): 5922-8.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00552] [PMID: 27227326]
[50]
Shook BC, Jackson PF. Adenosine A2A receptor antagonists and Parkinson’s disease. ACS Chem Neurosci 2011; 2(10): 555-67.
[http://dx.doi.org/10.1021/cn2000537] [PMID: 22860156]
[51]
Squarcialupi L, Falsini M, Catarzi D, et al. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorg Med Chem 2016; 24(12): 2794-808.
[http://dx.doi.org/10.1016/j.bmc.2016.04.048] [PMID: 27161878]
[52]
Shook BC, Rassnick S, Wallace N, et al. Design and characterization of optimized adenosine A2A/A1 receptor antagonists for the treatment of Parkinson’s disease. J Med Chem 2012; 55(3): 1402-17.
[http://dx.doi.org/10.1021/jm201640m] [PMID: 22239465]
[53]
Saku O, Saki M, Kurokawa M, Ikeda K, Takizawa T, Uesaka N. Synthetic studies on selective adenosine A2A receptor antagonists: synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 2010; 20(3): 1090-3.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.028] [PMID: 20034788]
[54]
Saku O, Saki M, Kurokawa M, et al. Synthetic studies on selective adenosine A2A receptor antagonists. Part II: synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 2010; 20(12): 3768-71.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.058] [PMID: 20483600]
[55]
Mikkelsen GK, Langgård M, Schrøder TJ, et al. Synthesis and SAR studies of analogues of 4-(3,3-dimethyl-butyrylamino)-3,5-difluoro-N-thiazol-2-yl-benzamide (Lu AA41063) as adenosine A2A receptor ligands with improved aqueous solubility. Bioorg Med Chem Lett 2015; 25(6): 1212-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.062] [PMID: 25701253]
[56]
Duroux R, Agouridas L, Renault N, et al. Antagonists of the adenosine A2A receptor based on a 2-arylbenzoxazole scaffold: Investigation of the C5- and C7-positions to enhance affinity. Eur J Med Chem 2018; 144: 151-63.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.007] [PMID: 29268131]
[57]
Jörg M, May LT, Mak FS, et al. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson’s disease. J Med Chem 2015; 58(2): 718-38.
[http://dx.doi.org/10.1021/jm501254d] [PMID: 25490054]
[58]
Janse van Rensburg HD. Terre’Blanche G, van der Walt MM, Legoabe LJ. 5-Substituted 2-benzylidene-1-tetralone analogues as A1 and/or A2A antagonists for the potential treatment of neurological conditions. Bioorg Chem 2017; 74: 251-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.013] [PMID: 28881253]
[59]
Harmse R, van der Walt MM, Petzer JP. Terre’Blanche G. Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A1 and A2A receptor antagonists. Bioorg Med Chem Lett 2016; 26(24): 5951-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.086] [PMID: 27836398]
[60]
van der Walt MM, Terre’Blanche G. Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorg Chem 2018; 77: 136-43.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.004] [PMID: 29353730]
[61]
Kenakin T. What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci 2014; 35(9): 434-41.
[http://dx.doi.org/10.1016/j.tips.2014.06.003] [PMID: 25042457]
[62]
Fernández-Dueñas V, Gómez-Soler M, López-Cano M, et al. Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS Chem Biol 2014; 9(11): 2496-501.
[http://dx.doi.org/10.1021/cb5005383] [PMID: 25268872]
[63]
Varano F, Catarzi D, Vincenzi F, et al. Design, synthesis, and pharmacological characterization of 2-(2-furanyl) thiazolo [5, 4-d] pyrimidine-5, 7-diamine derivatives: new highly potent A2A adenosine receptor inverse agonists with antinociceptive activity. J Med Chem 2016; 59(23): 10564-76.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01068] [PMID: 27933962]
[64]
Varano F, Catarzi D, Falsini M, et al. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Bioorg Med Chem 2018; 26(12): 3688-95.
[http://dx.doi.org/10.1016/j.bmc.2018.05.048] [PMID: 29880250]
[65]
Foster DJ, Conn PJ. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 2017; 94(3): 431-46.
[http://dx.doi.org/10.1016/j.neuron.2017.03.016] [PMID: 28472649]
[66]
Yuan G, Gedeon NG, Jankins TC, Jones GB. Novel approaches for targeting the adenosine A2A receptor. Expert Opin Drug Discov 2015; 10(1): 63-80.
[http://dx.doi.org/10.1517/17460441.2015.971006] [PMID: 25311639]
[67]
Massink A, Gutiérrez-de-Terán H, Lenselink EB, et al. Sodium ion binding pocket mutations and adenosine A2A receptor function. Mol Pharmacol 2015; 87(2): 305-13.
[http://dx.doi.org/10.1124/mol.114.095737] [PMID: 25473121]
[68]
Massink A, Louvel J, Adlere I, et al. 5′-Substituted amiloride derivatives as allosteric modulators binding in the sodium ion pocket of the adenosine A2A receptor. J Med Chem 2016; 59(10): 4769-77.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00142] [PMID: 27124340]
[69]
Deb PK, Al-Attraqchi O, Al-Qattan MN, Prasad MR, Tekade RK. Applications of Computers in Pharmaceutical Product Formulation Dosage Form Design Parameters. Elsevier 2018; pp. 665-703.
[http://dx.doi.org/10.1016/B978-0-12-814421-3.00019-1]
[70]
Chandrasekaran B, Abed SN, Al-Attraqchi O, Kuche K, Tekade RK. Computer-aided prediction of pharmacokinetic (ADMET) properties Dosage Form Design Parameters. Elsevier 2018; pp. 731-55.
[71]
Mahmod Al-Qattan MN, Mordi MN. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624] [PMID: 30834826]
[72]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006] [PMID: 30848185]
[73]
Samanta PN, Kar S, Leszczynski J. Recent Advances of In-Silico Modeling of Potent Antagonists for the Adenosine Receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545] [PMID: 30836910]
[74]
Deb PK. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. Curr Pharm Des 2019; 25(7): 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510] [PMID: 31232230]
[75]
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: current status and future perspectives. Drug Discov Today 2019; pii: S1359-6446(19): 30045-5..
[http://dx.doi.org/10.1016/j.drudis.2019.05.011] [PMID: 31103731]
[76]
Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz K-N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido [2, 3-d] pyrimidines and quinazolines. Med Chem Res 2018; 27(3): 756-67.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[77]
Fan F, Toledo Warshaviak D, Hamadeh HK, Dunn RT II. The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. PLoS One 2019; 14(1)e0204378
[http://dx.doi.org/10.1371/journal.pone.0204378] [PMID: 30605479]
[78]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. Bioorg Med Chem Lett 2011; 21(2): 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094] [PMID: 21163647]
[79]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]
[80]
Al-Shar’i NA, Al-Balas QA. Molecular dynamics simulations of adenosine receptors: Advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414] [PMID: 30834825]
[81]
Liao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem 2011; 3(8): 1057-85.
[http://dx.doi.org/10.4155/fmc.11.63] [PMID: 21707404]
[82]
Khanfar MA, Al-Qtaishat S, Habash M, Taha MO. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Chem Biol Interact 2016; 254: 93-101.
[http://dx.doi.org/10.1016/j.cbi.2016.05.023] [PMID: 27216633]
[83]
Zhang L, Liu T, Wang X, et al. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. Biosystems 2014; 115: 13-22.
[http://dx.doi.org/10.1016/j.biosystems.2013.04.003] [PMID: 23665268]
[84]
Muñoz-Gutiérrez C, Caballero J, Morales-Bayuelo A. HQSAR and molecular docking studies of furanyl derivatives as adenosine A2A receptor antagonists. Med Chem Res 2016; 25(7): 1316-28.
[http://dx.doi.org/10.1007/s00044-016-1575-1]
[85]
He S-B. Ben Hu, Kuang Z-K, Wang D, Kong D-X. Predicting subtype selectivity for adenosine receptor ligands with three-dimensional biologically relevant spectrum (BRS-3D). Sci Rep 2016; 6: 36595.
[http://dx.doi.org/10.1038/srep36595] [PMID: 27812030]
[86]
Qing X, Lee XY, De Raeymaecker J, et al. Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J Receptor Ligand Channel Res 2014; 7: 81-92.
[87]
Bhayye SS, Roy K, Saha A. Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAOB inhibitors. SAR QSAR Environ Res 2016; 27(3): 183-202.
[http://dx.doi.org/10.1080/1062936X.2015.1136840] [PMID: 26873265]
[88]
Fan F, Hamadeh H, Warshaviak DT, Dunn R. The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. PLoS One 2019; 14(1)e0204378
[89]
Bacilieri M, Ciancetta A, Paoletta S, et al. Revisiting a receptor-based pharmacophore hypothesis for human A(2A) adenosine receptor antagonists. J Chem Inf Model 2013; 53(7): 1620-37.
[http://dx.doi.org/10.1021/ci300615u] [PMID: 23705857]
[90]
Andrews SP, Mason JS, Hurrell E, Congreve M. Structure-based drug design of chromone antagonists of the adenosine A2A receptor. MedChemComm 2014; 5(5): 571-5.
[http://dx.doi.org/10.1039/C3MD00338H]
[91]
Ciancetta A, Cuzzolin A, Moro S. Alternative quality assessment strategy to compare performances of GPCR-ligand docking protocols: the human adenosine A(2A) receptor as a case study. J Chem Inf Model 2014; 54(8): 2243-54.
[http://dx.doi.org/10.1021/ci5002857] [PMID: 25046649]
[92]
Anighoro A, Bajorath J. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor. J Comput Aided Mol Des 2016; 30(6): 447-56.
[http://dx.doi.org/10.1007/s10822-016-9918-z] [PMID: 27334985]
[93]
Katritch V, Jaakola V-P, Lane JR, et al. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem 2010; 53(4): 1799-809.
[http://dx.doi.org/10.1021/jm901647p] [PMID: 20095623]
[94]
Pourbasheer E, Shokouhi Tabar S, Masand VH, Aalizadeh R, Ganjali MR. 3D-QSAR and docking studies on adenosine A2A receptor antagonists by the CoMFA method. SAR QSAR Environ Res 2015; 26(6): 461-77.
[http://dx.doi.org/10.1080/1062936X.2015.1049666] [PMID: 26055215]
[95]
Deng Q, Lim Y-H, Anand R, et al. Use of molecular modeling aided design to dial out hERG liability in adenosine A(2A) receptor antagonists. Bioorg Med Chem Lett 2015; 25(15): 2958-62.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.036] [PMID: 26048804]
[96]
Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 2015; 8: 37-47.
[PMID: 26604800]
[97]
Ng HW, Laughton CA, Doughty SW. Molecular dynamics simulations of the adenosine A2a receptor: structural stability, sampling, and convergence. J Chem Inf Model 2013; 53(5): 1168-78.
[http://dx.doi.org/10.1021/ci300610w] [PMID: 23514445]
[98]
Sabbadin D, Ciancetta A, Moro S. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 2014; 54(1): 169-83.
[http://dx.doi.org/10.1021/ci400532b] [PMID: 24359090]
[99]
Lappas CM, Sullivan GW, Linden J. Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 2005; 14(7): 797-806.
[http://dx.doi.org/10.1517/13543784.14.7.797] [PMID: 16022569]
[100]
Csóka B, Németh ZH, Virág L, et al. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 2007; 110(7): 2685-95.
[http://dx.doi.org/10.1182/blood-2007-01-065870] [PMID: 17525287]
[101]
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16(1): 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[102]
Alfaro TM, Rodrigues DI, Tomé ÂR, Cunha RA, Robalo Cordeiro C. Adenosine A2A receptors are up-regulated and control the activation of human alveolar macrophages. Pulm Pharmacol Ther 2017; 45: 90-4.
[http://dx.doi.org/10.1016/j.pupt.2017.04.009] [PMID: 28499635]
[103]
Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA, Khalili M, Keyhanmanesh R. The effect of adenosine A2A and A2B antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in guinea pig model of asthma. Adv Pharm Bull 2014; 4(2): 131-8.
[PMID: 24511476]
[104]
Bonneau O, Wyss D, Ferretti S, Blaydon C, Stevenson CS, Trifilieff A. Effect of adenosine A2A receptor activation in murine models of respiratory disorders. Am J Physiol Lung Cell Mol Physiol 2006; 290(5): L1036-43.
[http://dx.doi.org/10.1152/ajplung.00422.2005] [PMID: 16339780]
[105]
Narke D, Siddiquee A, Patel M, et al. Limonene-induced activation of A2A adenosine receptors reduces airway inflammation and reactivity in a mouse model of asthma. FASEB J 2017; 31(1): 820.
[106]
Yadav R, Bansal R, Kachler S, Klotz KN. Novel 8-(p-substituted-phenyl/benzyl)xanthines with selectivity for the A2A adenosine receptor possess bronchospasmolytic activity. Eur J Med Chem 2014; 75: 327-35.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.045] [PMID: 24556147]
[107]
Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J. Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol 2016; 51: 37-46.
[http://dx.doi.org/10.1016/j.matbio.2016.01.013] [PMID: 26844756]
[108]
Yan J, Tie G, Wang S, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 2018; 9(1): 33.
[http://dx.doi.org/10.1038/s41467-017-02425-z] [PMID: 29295997]
[109]
Ialenti A, Caiazzo E, Morello S, Carnuccio R, Cicala C. Adenosine A2A Receptor Agonist, 2-p-(2-Carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine Hydrochloride Hydrate, Inhibits Inflammation and Increases Fibroblast Growth Factor-2 Tissue Expression in Carrageenan-Induced Rat Paw Edema. J Pharmacol Exp Ther 2018; 364(2): 221-8.
[http://dx.doi.org/10.1124/jpet.117.244319] [PMID: 29212832]
[110]
Montesinos MC, Desai-Merchant A, Cronstein BN. Promotion of wound healing by an agonist of adenosine A2A receptor is dependent on tissue plasminogen activator. Inflammation 2015; 38(6): 2036-41.
[http://dx.doi.org/10.1007/s10753-015-0184-3] [PMID: 25991438]
[111]
Squadrito F, Bitto A, Altavilla D, et al. The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab 2014; 99(5): E746-53.
[PMID: 24483158]
[112]
Shaikh G, Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 2016; 12(2): 191-7.
[http://dx.doi.org/10.1007/s11302-016-9498-3] [PMID: 26847815]
[113]
Shaikh G, Zhang J, Perez-Aso M, Mediero A, Cronstein B. Adenosine A2A receptor promotes collagen type III synthesis via β-catenin activation in human dermal fibroblasts. Br J Pharmacol 2016; 173(23): 3279-91.
[http://dx.doi.org/10.1111/bph.13615] [PMID: 27595240]
[114]
Zoghbi GJ, Iskandrian AE. Selective adenosine agonists and myocardial perfusion imaging. J Nucl Cardiol 2012; 19(1): 126-41.
[http://dx.doi.org/10.1007/s12350-011-9474-9] [PMID: 22130964]
[115]
Gao Z-G, Jacobson KA. Emerging adenosine receptor agonists–an update. Expert Opin Emerg Drugs 2011; 16(4): 597-602.
[http://dx.doi.org/10.1517/14728214.2011.644786]
[116]
Johnson SG, Peters S. Advances in pharmacologic stress agents: focus on regadenoson. J Nucl Med Technol 2010; 38(3): 163-71.
[http://dx.doi.org/10.2967/jnmt.109.065581]
[117]
Gemignani AS, Abbott BG. The emerging role of the selective A2A agonist in pharmacologic stress testing. J Nucl Cardiol 2010; 17(3): 494-7.
[http://dx.doi.org/10.1007/s12350-010-9211-9] [PMID: 20221857]
[118]
Palani G, Ananthasubramaniam K. Regadenoson: review of its established role in myocardial perfusion imaging and emerging applications. Cardiol Rev 2013; 21(1): 42-8.
[http://dx.doi.org/10.1097/CRD.0b013e3182613db6] [PMID: 22643345]
[119]
Cieślak M, Komoszyński M, Wojtczak A. Adenosine A(2A) receptors in Parkinson’s disease treatment. Purinergic Signal 2008; 4(4): 305-12.
[http://dx.doi.org/10.1007/s11302-008-9100-8] [PMID: 18438720]
[120]
Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[121]
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[122]
Jones T, Murray R. Current research in and development of treatments for Parkinson’s disease. J Pharm 2011; 287: 293.
[123]
Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 2004; 127(Pt 5): 1075-84.
[http://dx.doi.org/10.1093/brain/awh128] [PMID: 15033896]
[124]
Chen J-F, Fredduzzi S, Bastia E, et al. Adenosine A2A receptors in neuroadaptation to repeated dopaminergic stimulation: implications for the treatment of dyskinesias in Parkinson’s disease. Neurology 2003; 61(11)(Suppl. 6): S74-81.
[http://dx.doi.org/10.1212/01.WNL.0000095218.26363.7B] [PMID: 14663016]
[125]
Bara-Jimenez W, Sherzai A, Dimitrova T, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 2003; 61(3): 293-6.
[http://dx.doi.org/10.1212/01.WNL.0000073136.00548.D4] [PMID: 12913186]
[126]
Antonelli T, Fuxe K, Agnati L, et al. Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson’s disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 2006; 248(1-2): 16-22.
[http://dx.doi.org/10.1016/j.jns.2006.05.019] [PMID: 16765381]
[127]
Takahashi M, Fujita M, Asai N, Saki M, Mori A. Safety and effectiveness of istradefylline in patients with Parkinson’s disease: interim analysis of a post-marketing surveillance study in Japan. Expert Opin Pharmacother 2018; 19(15): 1635-42.
[http://dx.doi.org/10.1080/14656566.2018.1518433] [PMID: 30281377]
[128]
Hauser RA, Hubble JP, Truong DD. Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 2003; 61(3): 297-303.
[http://dx.doi.org/10.1212/01.WNL.0000081227.84197.0B] [PMID: 12913187]
[129]
Dalpiaz A, Cacciari B, Vicentini CB, et al. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach. Mol Pharm 2012; 9(3): 591-604.
[http://dx.doi.org/10.1021/mp200489d] [PMID: 22292533]
[130]
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther 2011; 132(3): 280-99.
[http://dx.doi.org/10.1016/j.pharmthera.2011.07.004] [PMID: 21810444]
[131]
Petzer JP, Steyn S, Castagnoli KP, et al. Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 2003; 11(7): 1299-310.
[http://dx.doi.org/10.1016/S0968-0896(02)00648-X] [PMID: 12628657]
[132]
Nobre HV Jr, Cunha GM, de Vasconcelos LM, et al. Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells. Neurochem Int 2010; 56(1): 51-8.
[http://dx.doi.org/10.1016/j.neuint.2009.09.001] [PMID: 19782116]
[133]
Duyckaerts C, Braak H, Brion J-P, et al. PART is part of Alzheimer disease. Acta Neuropathol 2015; 129(5): 749-56.
[http://dx.doi.org/10.1007/s00401-015-1390-7] [PMID: 25628035]
[134]
Maia L, de Mendonça A. Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 2002; 9(4): 377-82.
[http://dx.doi.org/10.1046/j.1468-1331.2002.00421.x] [PMID: 12099922]
[135]
Horgusluoglu-Moloch E, Nho K, Risacher SL, et al. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2017; 60: 92-103.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.08.010] [PMID: 28941407]
[136]
Laurent C, Burnouf S, Ferry B, et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry 2016; 21(1): 97-107.
[http://dx.doi.org/10.1038/mp.2014.151] [PMID: 25450226]
[137]
Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A(2a) receptor antagonists prevent β-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 2007; 203(1): 241-5.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[138]
Faivre E, Coelho JE, Zornbach K, et al. Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1de9 mouse model of Alzheimer’s Disease. Front Mol Neurosci 2018; 11: 235.
[http://dx.doi.org/10.3389/fnmol.2018.00235] [PMID: 30050407]
[139]
Sauer R, Maurinsh J, Reith U, Fülle F, Klotz K-N, Müller CE. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 2000; 43(3): 440-8.
[http://dx.doi.org/10.1021/jm9911480] [PMID: 10669571]
[140]
Collins LE, Galtieri DJ, Brennum LT, et al. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 2010; 94(4): 561-9.
[http://dx.doi.org/10.1016/j.pbb.2009.11.011] [PMID: 19958787]
[141]
Silva AC, Lemos C, Gonçalves FQ, et al. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2018; 117: 72-81.
[http://dx.doi.org/10.1016/j.nbd.2018.05.024] [PMID: 29859867]
[142]
Laurent C, Eddarkaoui S, Derisbourg M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol Aging 2014; 35(9): 2079-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.027] [PMID: 24780254]
[143]
Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primers 2016; 2: 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[144]
Kok RM, Reynolds CF III. Management of depression in older adults: a review. JAMA 2017; 317(20): 2114-22.
[http://dx.doi.org/10.1001/jama.2017.5706] [PMID: 28535241]
[145]
Yamada K, Kobayashi M, Kanda T. Involvement of adenosine A2A receptors in depression and anxiety. Int Rev Neurobiol 2014; 119: 373-93.
[146]
Hunter AM, Balleine BW, Minor TR. Helplessness and escape performance: glutamate-adenosine interactions in the frontal cortex. Behav Neurosci 2003; 117(1): 123-35.
[http://dx.doi.org/10.1037/0735-7044.117.1.123] [PMID: 12619915]
[147]
Lindquist BE, Shuttleworth CW. Evidence that adenosine contributes to Leao’s spreading depression in vivo. J Cereb Blood Flow Metab 2017; 37(5): 1656-69.
[http://dx.doi.org/10.1177/0271678X16650696] [PMID: 27217381]
[148]
Gubert C, Jacintho Moritz CE, Vasconcelos-Moreno MP, et al. Peripheral adenosine levels in euthymic patients with bipolar disorder. Psychiatry Res 2016; 246: 421-6.
[http://dx.doi.org/10.1016/j.psychres.2016.10.007] [PMID: 27788463]
[149]
Hart E, Conoscenti M, Minor T. Animal models of depression: A focus on adenosine signaling at A2A receptors. Ann Depress Anxiety 2014; 1: 1285-92.
[150]
Coelho JE, Alves P, Canas PM, et al. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 2014; 5: 67.
[http://dx.doi.org/10.3389/fpsyt.2014.00067] [PMID: 24982640]
[151]
López-Cruz L, Carbó-Gas M, Pardo M, et al. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behav Brain Res 2017; 321: 8-17.
[http://dx.doi.org/10.1016/j.bbr.2016.12.020] [PMID: 28007538]
[152]
Wei CJ, Augusto E, Gomes CA, et al. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol Psychiatry 2014; 75(11): 855-63.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.003] [PMID: 23820821]
[153]
Caetano L, Pinheiro H, Patrício P, et al. Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry 2017; 22(7): 1035-43.
[http://dx.doi.org/10.1038/mp.2016.173] [PMID: 27725661]
[154]
El Yacoubi M, Costentin J, Vaugeois J-M. Adenosine A2A receptors and depression. Neurology 2003; 61(11)(Suppl. 6): S82-7.
[http://dx.doi.org/10.1212/01.WNL.0000095220.87550.F6] [PMID: 14663017]
[155]
Dziubina A, Zygmunt M, Filipek B, et al. The role of adenosine A2A receptors in antidepressant activity in experimental animal model of depression. Int Med Rev 2017; 27(109): 228-36.
[156]
Köhler S, Cierpinsky K, Kronenberg G, Adli M. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J Psychopharmacol (Oxford) 2016; 30(1): 13-22.
[http://dx.doi.org/10.1177/0269881115609072] [PMID: 26464458]
[157]
Poleszak E, Szopa A, Bogatko K, et al. Antidepressant-Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A 2A Receptor Antagonist. Neurotox Res 2019; 35(2): 344-52.
[PMID: 30267268]
[158]
Padilla KM, Quintanar-Setephano A, López-Vallejo F, Berumen LC, Miledi R, García-Alcocer G. Behavioral changes induced through adenosine A2A receptor ligands in a rat depression model induced by olfactory bulbectomy. Brain Behav 2018; 8(5)e00952
[http://dx.doi.org/10.1002/brb3.952] [PMID: 29761007]
[159]
Matsiko A. Cancer immunotherapy making headway. Nat Mater 2018; 17(6): 472.
[http://dx.doi.org/10.1038/s41563-018-0091-8] [PMID: 29795216]
[160]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[161]
Lumniczky K, Candéias SM, Gaipl US, Frey B. Editorial: Radiation and the Immune System: Current Knowledge and Future Perspectives. Front Immunol 2018; 8: 1933.
[http://dx.doi.org/10.3389/fimmu.2017.01933] [PMID: 29410662]
[162]
Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018; 16(4): 4105-13.
[http://dx.doi.org/10.3892/ol.2018.9219] [PMID: 30214551]
[163]
Gourdin N, Bossennec M, Rodriguez C, et al. Autocrine Adenosine regulates tumor polyfunctional CD73+ CD4+ effector T cells devoid of immune checkpoints. Cancer Res 2018; 78(13): 3604-18.
[164]
Vinay DS, Kwon BS. Harnessing immune checkpoints for cancer therapy. Immunotherapy 2018; 10(14): 1265-84.
[http://dx.doi.org/10.2217/imt-2017-0168] [PMID: 30326786]
[165]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[166]
Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414(6866): 916-20.
[http://dx.doi.org/10.1038/414916a] [PMID: 11780065]
[167]
Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother 2012; 61(6): 917-26.
[http://dx.doi.org/10.1007/s00262-011-1155-7] [PMID: 22116345]
[168]
Mediavilla-Varela M, Castro J, Chiappori A, et al. A novel antagonist of the immune checkpoint protein adenosine A2a receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia 2017; 19(7): 530-6.
[http://dx.doi.org/10.1016/j.neo.2017.02.004] [PMID: 28582704]
[169]
Chiappori A, Williams CC, Creelan BC, Tanvetyanon T, Gray JE, Haura EB, et al. Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J Clin Oncol 2018; 36(15): 9089-9.
[170]
Ma S-R, Deng W-W, Liu J-F, et al. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer 2017; 16(1): 99.
[http://dx.doi.org/10.1186/s12943-017-0665-0] [PMID: 28592285]
[171]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol 2017; 174(13): 1945-60.
[http://dx.doi.org/10.1111/bph.13763] [PMID: 28252203]
[172]
Mediavilla-Varela M, Luddy K, Noyes D, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther 2013; 14(9): 860-8.
[http://dx.doi.org/10.4161/cbt.25643] [PMID: 23917542]
[173]
Gessi S, Bencivenni S, Battistello E, et al. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front Pharmacol 2017; 8: 888.
[http://dx.doi.org/10.3389/fphar.2017.00888] [PMID: 29249971]