Biomarkers in Pediatric Lung Diseases Including Cystic Fibrosis

Page: [163 - 173] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

In recent decades, scientific studies of chemical processes involving metabolites have been steadily increasing, indicating that we are well into the metabolomics era. This has resulted in numerous studies that explore the field of biomarkers. One of the medical areas most concerned with these innovations is certainly that of childhood respiratory disorders, including asthma and cystic fibrosis. This current study is a review of the literature about biomarkers used or studied in the field of pediatric pulmonology, including asthma and cystic fibrosis.

Keywords: Asthma, biomarkers, children, cystic fibrosis, lungs, pediatric pulmonology.

Graphical Abstract

[1]
Global Initiative for Asthma. GINA guidelines Global strategy for Asthma Management and Prevention Accessed 2018, August, Available at. http://www.ginasthma.org/
[2]
Corren J. Asthma phenotypes and endotypes: An evolving paradigm for classification. Discov Med 2013; 15(83): 243-9.
[PMID: 23636141]
[3]
Fitzpatrick AM. Biomarkers of asthma and allergic airway diseases. Ann Allergy Asthma Immunol 2015; 115(5): 335-40.
[http://dx.doi.org/10.1016/j.anai.2015.09.003] [PMID: 26505931]
[4]
Parisi GF, Cutello S, Di Dio G, Rotolo N, La Rosa M, Leonardi S. Phenotypic expression of the p.Leu1077Pro CFTR mutation in Sicilian cystic fibrosis patients. BMC Res Notes 2013; 6: 461.
[http://dx.doi.org/10.1186/1756-0500-6-461] [PMID: 24225052]
[5]
Dodig S, Richter D, Zrinski-Topić R. Inflammatory markers in childhood asthma. Clin Chem Lab Med 2011; 49(4): 587-99.
[http://dx.doi.org/10.1515/CCLM.2011.094] [PMID: 21303302]
[6]
Smith AD, Cowan JO, Taylor DR. Exhaled nitric oxide levels in asthma: Personal best versus reference values. J Allergy Clin Immunol 2009; 124(4): 714-8.e4.
[http://dx.doi.org/10.1016/j.jaci.2009.07.020] [PMID: 19767074]
[7]
Borland C, Cox Y, Higenbottam T. Measurement of exhaled nitric oxide in man. Thorax 1993; 48(11): 1160-2.
[http://dx.doi.org/10.1136/thx.48.11.1160] [PMID: 8296262]
[8]
Nelson BV, Sears S, Woods J, et al. Expired nitric oxide as a marker for childhood asthma. J Pediatr 1997; 130(3): 423-7.
[http://dx.doi.org/10.1016/S0022-3476(97)70204-X] [PMID: 9063418]
[9]
Covar RA, Szefler SJ, Martin RJ, et al. Relations between exhaled nitric oxide and measures of disease activity among children with mild-to-moderate asthma. J Pediatr 2003; 142(5): 469-75.
[http://dx.doi.org/10.1067/mpd.2003.187] [PMID: 12756375]
[10]
Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications Am J Respir Crit Care Med 2011; 184 602e615
[11]
Miraglia Del Giudice M, Marseglia GL, Leonardi S, et al. Fractional exhaled nitric oxide measurements in rhinitis and asthma in children. Int J Immunopathol Pharmacol 2011; 24(4)(Suppl.): 29-32.
[http://dx.doi.org/10.1177/03946320110240S407] [PMID: 22032784]
[12]
Baraldi E, de Jongste JC. European Respiratory Society/American Thoracic Society (ERS/ATS) Task force. Measurement of exhaled nitric oxide in children. Eur Respir J 2002; 20: 223-37.
[PMID: 12166573]
[13]
Dinacar C, Chipps BE. AAP section on allergy and immunology, AAP section on pediatric pulmonology and sleep medicine. clinical tools to assess asthma control in children. Pediatrics 2017; 139(1)e20163438
[http://dx.doi.org/10.1542/peds.2016-3438] [PMID: 28025241]
[14]
Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. Eur Respir J 2002; 19 1015e9
[http://dx.doi.org/10.1183/09031936.02.01582001]
[15]
Global Initiative for Asthma. Global strategy for asthma management and prevention http://www.ginasthma.org2016 Published
[16]
Pijnenburg MW, Baraldi E, Brand PLP, et al. Monitoring asthma in children. Eur Respir J 2015; 45(4): 906-25.
[http://dx.doi.org/10.1183/09031936.00088814] [PMID: 25745042]
[17]
Petsky HL, Kew KM, Chang AB. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst Rev 2016; 11 CD011439
[http://dx.doi.org/10.1002/14651858.CD011439.pub2] [PMID: 27825189]
[18]
Petsky HL, Kew KM, Turner C, Chang AB. Exhaled nitric oxide levels to guide treatment for adults with asthma. Cochrane Database Syst Rev 2016; 9 CD011440
[http://dx.doi.org/10.1002/14651858.CD011440.pub2] [PMID: 27580628]
[19]
Hofer M, Mueller L, Rechsteiner T, Benden C, Boehler A. Extended nitric oxide measurements in exhaled air of cystic fibrosis and healthy adults. Lung 2009; 187(5): 307-13.
[http://dx.doi.org/10.1007/s00408-009-9160-8] [PMID: 19669109]
[20]
Korten I, Liechti M, Singer F, et al. SCILD and BILD study group. Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls. J Cyst Fibros 2018; 17(1): 105-8.
[http://dx.doi.org/10.1016/j.jcf.2017.05.005] [PMID: 28716479]
[21]
Kharitonov SA, Barnes PJ. Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 2001; 163(7): 1693-722.
[http://dx.doi.org/10.1164/ajrccm.163.7.2009041] [PMID: 11401895]
[22]
van de Kant KD, van Berkel JJ, Jöbsis Q, et al. Exhaled breath profiling in diagnosing wheezy preschool children. Eur Respir J 2013; 41(1): 183-8.
[http://dx.doi.org/10.1183/09031936.00122411] [PMID: 23277518]
[23]
Paredi P, Kharitonov SA, Barnes PJ. Exhaled breath temperature in asthma. Eur Respir J 2003; 21(1): 195.
[http://dx.doi.org/10.1183/09031936.03.00067103] [PMID: 12570129]
[24]
Piacentini GL, Bodini A, Zerman L, et al. Relationship between exhaled air temperature and exhaled nitric oxide in childhood asthma. Eur Respir J 2002; 20(1): 108-11.
[http://dx.doi.org/10.1183/09031936.02.00237702] [PMID: 12166556]
[25]
Piacentini GL, Bodini A, Peroni D, Ress M, Costella S, Boner AL. Exhaled air temperature and eosinophil airway inflammation in allergic asthmatic children. J Allergy Clin Immunol 2004; 114(1): 202-4.
[http://dx.doi.org/10.1016/j.jaci.2004.04.010] [PMID: 15282940]
[26]
Popov TA, Dunev S, Kralimarkova TZ, Kraeva S, DuBuske LM. Evaluation of a simple, potentially individual device for exhaled breath temperature measurement. Respir Med 2007; 101(10): 2044-50.
[http://dx.doi.org/10.1016/j.rmed.2007.06.005] [PMID: 17624752]
[27]
Leonardi S, Cuppari C, Lanzafame A, et al. Exhaled breath temperature in asthmatic children. J Biol Regul Homeost Agents 2015; 29(2)(Suppl. 1): 47-54.
[PMID: 26634587]
[28]
Wojsyk-Banaszak I, Mikoś M, Szczepankiewicz A, et al. Evaluation of exhaled breath temperature (EBT) as a marker and predictor of asthma exacerbation in children and adolescents. J Asthma 2017; 54(7): 699-705.
[http://dx.doi.org/10.1080/02770903.2017.1290104] [PMID: 28282228]
[29]
Ntontsi P, Bakakos P, Papathanasiou E, et al. Exhaled breath temperature in optimally treated asthmatics: Severity and underlying mechanisms. J Breath Res 2018; 12(2) 026013
[http://dx.doi.org/10.1088/1752-7163/aa9d46] [PMID: 29176061]
[30]
Hamill L, Ferris K, Kapande K, et al. Exhaled breath temperature measurement and asthma control in children prescribed inhaled corticosteroids: A cross sectional study. Pediatr Pulmonol 2016; 51(1): 13-21.
[http://dx.doi.org/10.1002/ppul.23204] [PMID: 25917297]
[31]
Licari A, Castagnoli R, Brambilla I, et al. Asthma Endotyping and Biomarkers in Childhood Asthma. Pediatr Allergy Immunol Pulmonol 2018; 31(2): 44-55.
[http://dx.doi.org/10.1089/ped.2018.0886] [PMID: 30069422]
[32]
Ferraro V, Carraro S, Bozzetto S, Zanconato S, Baraldi E. Exhaled biomarkers in childhood asthma: old and new approaches. Asthma Res Pract 2018; 4: 9.
[http://dx.doi.org/10.1186/s40733-018-0045-6] [PMID: 30094051]
[33]
van der Schee MP, Paff T, Brinkman P, van Aalderen WMC, Haarman EG, Sterk PJ. Breathomics in lung disease. Chest 2015; 147(1): 224-31.
[http://dx.doi.org/10.1378/chest.14-0781] [PMID: 25560860]
[34]
Fens N, van der Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy 2013; 43(7): 705-15.
[http://dx.doi.org/10.1111/cea.12052] [PMID: 23786277]
[35]
Dallinga JW, Robroeks CM, van Berkel JJ, et al. Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. Clin Exp Allergy 2010; 40(1): 68-76.
[PMID: 19793086]
[36]
Van Vliet D, Smolinska A, Jöbsis Q, et al. Association between exhaled inflammatory markers and asthma control in children. J Breath Res 2016; 10(1) 016014
[http://dx.doi.org/10.1088/1752-7155/10/1/016014] [PMID: 26893372]
[37]
Brinkman P, van de Pol MA, Gerritsen MG, et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin Exp Allergy 2017; 47(9): 1159-69.
[http://dx.doi.org/10.1111/cea.12965] [PMID: 28626990]
[38]
Robroeks CM, van Berkel JJ, Dallinga JW, et al. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 2010; 68(1): 75-80.
[http://dx.doi.org/10.1203/PDR.0b013e3181df4ea0] [PMID: 20351658]
[39]
Wolak JE, Esther CR Jr, O’Connell TM. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers 2009; 14(1): 55-60.
[http://dx.doi.org/10.1080/13547500802688194] [PMID: 19283525]
[40]
Paredi P, Kharitonov SA, Barnes PJ. Analysis of expired air for oxidation products. Am J Respir Crit Care Med 2002; 166(12 Pt 2): S31-7.
[http://dx.doi.org/10.1164/rccm.2206012] [PMID: 12471086]
[41]
Montuschi P, Kharitonov SA, Ciabattoni G, et al. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 2000; 55(3): 205-9.
[http://dx.doi.org/10.1136/thorax.55.3.205] [PMID: 10679539]
[42]
Teng Y, Sun P, Zhang J, et al. Hydrogen peroxide in exhaled breath condensate in patients with asthma: A promising biomarker? Chest 2011; 140(1): 108-16.
[http://dx.doi.org/10.1378/chest.10-2816] [PMID: 21436249]
[43]
Formanek W, Inci D, Lauener RP, Wildhaber JH, Frey U, Hall GL. Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J 2002; 19(3): 487-91.
[http://dx.doi.org/10.1183/09031936.02.00101202] [PMID: 11936527]
[44]
Carraro S, Cogo PE, Isak I, et al. EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma. Eur Respir J 2010; 35(6): 1364-9.
[http://dx.doi.org/10.1183/09031936.00074909] [PMID: 19897556]
[45]
Samitas K, Chorianopoulos D, Vittorakis S, et al. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Med 2009; 103(5): 750-6.
[http://dx.doi.org/10.1016/j.rmed.2008.11.009] [PMID: 19110408]
[46]
Caballero Balanzá S, Martorell Aragonés A, Cerdá Mir JC, et al. Leukotriene B4 and 8-isoprostane in exhaled breath condensate of children with episodic and persistent asthma. J Investig Allergol Clin Immunol 2010; 20(3): 237-43.
[PMID: 20635789]
[47]
Carraro S, Folesani G, Corradi M, Zanconato S, Gaston B, Baraldi E. Acid-base equilibrium in exhaled breath condensate of allergic asthmatic children. Allergy 2005; 60(4): 476-81.
[http://dx.doi.org/10.1111/j.1398-9995.2005.00718.x] [PMID: 15727579]
[48]
Baraldi E, Carraro S, Alinovi R, et al. Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 2003; 58(6): 505-9.
[http://dx.doi.org/10.1136/thorax.58.6.505] [PMID: 12775861]
[49]
Lucidi V, Ciabattoni G, Bella S, Barnes PJ, Montuschi P. Exhaled 8-isoprostane and prostaglandin E(2) in patients with stable and unstable cystic fibrosis. Free Radic Biol Med 2008; 45(6): 913-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.026] [PMID: 18634869]
[50]
Spicuzza L, Parisi GF, Tardino L, et al. Exhaled markers of antioxidant activity and oxidative stress in stable cystic fibrosis patients with moderate lung disease. J Breath Res 2018; 12(2)026010
[http://dx.doi.org/10.1088/1752-7163/aa9b39] [PMID: 29146889]
[51]
Horvath I, Barnes PJ, Loukides S, et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Resp J 2017; 49(4) pii: 1600965
[http://dx.doi.org/10.1183/13993003.00965-2016]
[52]
Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford) 2016; 55(10): 1714-25.
[http://dx.doi.org/10.1093/rheumatology/kev410] [PMID: 26790456]
[53]
Takayama G, Arima K, Kanaji T, et al. Periostin: A novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 2006; 118(1): 98-104.
[http://dx.doi.org/10.1016/j.jaci.2006.02.046] [PMID: 16815144]
[54]
Busse W, Spector S, Rosén K, Wang Y, Alpan O. High eosinophil count: a potential biomarker for assessing successful omalizumab treatment effects. J Allergy Clin Immunol 2013; 132(2): 485-6.e11.
[http://dx.doi.org/10.1016/j.jaci.2013.02.032] [PMID: 23591271]
[55]
Maxfield AZ, Landegger LD, Brook CD, et al. Periostin as biomarker for nasal polyps in chronic rhinosinusitis. Otolaryngol Head Neck Surg 2018; 158(1): 181-6.
[http://dx.doi.org/10.1177/0194599817737967] [PMID: 29040053]
[56]
Song JS, You JS, Jeong SI, et al. Serum periostin levels correlate with airway hyper-responsiveness to methacholine and mannitol in children with asthma. Allergy 2015; 70(6): 674-81.
[http://dx.doi.org/10.1111/all.12599] [PMID: 25703927]
[57]
Inoue T, Akashi K, Watanabe M, et al. Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr Allergy Immunol 2016; 27(5): 521-6.
[http://dx.doi.org/10.1111/pai.12575] [PMID: 27062336]
[58]
Sung M, Lee KS, Ha EG, et al. An association of periostin levels with the severity and chronicity of atopic dermatitis in children. Pediatr Allergy Immunol 2017; 28(6): 543-50.
[http://dx.doi.org/10.1111/pai.12744] [PMID: 28631851]
[59]
Nagasaki T, Matsumoto H, Izuhara K. KiHAC Respiratory Medicine Group. Utility of serum periostin in combination with exhaled nitric oxide in the management of asthma. Allergol Int 2017; 66(3): 404-10.
[http://dx.doi.org/10.1016/j.alit.2017.02.003] [PMID: 28256388]
[60]
Kudo A. Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 2011; 68(19): 3201-7.
[http://dx.doi.org/10.1007/s00018-011-0784-5] [PMID: 21833583]
[61]
Ober C, Chupp GL. The chitinase and chitinase-like proteins: A review of genetic and functional studies in asthma and immune-mediated diseases. Curr Opin Allergy Clin Immunol 2009; 9(5): 401-8.
[http://dx.doi.org/10.1097/ACI.0b013e3283306533] [PMID: 19644363]
[62]
Johansen JS, Schultz NA, Jensen BV. Plasma YKL-40: A potential new cancer biomarker? Future Oncol 2009; 5(7): 1065-82.
[http://dx.doi.org/10.2217/fon.09.66] [PMID: 19792974]
[63]
Huang K, Wu LD. YKL-40: a potential biomarker for osteoarthritis. J Int Med Res 2009; 37(1): 18-24.
[http://dx.doi.org/10.1177/147323000903700102] [PMID: 19215669]
[64]
Mathiasen AB, Henningsen KM, Harutyunyan MJ, Mygind ND, Kastrup J. YKL-40: a new biomarker in cardiovascular disease? Biomarkers Med 2010; 4(4): 591-600.
[http://dx.doi.org/10.2217/bmm.10.58] [PMID: 20701447]
[65]
Kronborg G, Ostergaard C, Weis N, et al. Serum level of YKL-40 is elevated in patients with Streptococcus pneumoniae bacteremia and is associated with the outcome of the disease. Scand J Infect Dis 2002; 34(5): 323-6.
[http://dx.doi.org/10.1080/00365540110080233] [PMID: 12069012]
[66]
Matsuura H, Hartl D, Kang MJ, et al. Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema. Am J Respir Cell Mol Biol 2011; 44(6): 777-86.
[http://dx.doi.org/10.1165/rcmb.2010-0081OC] [PMID: 20656949]
[67]
Chupp GL, Lee CG, Jarjour N, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 2007; 357(20): 2016-27.
[http://dx.doi.org/10.1056/NEJMoa073600] [PMID: 18003958]
[68]
Hartl D, Lee CG, Da Silva CA, Chupp GL, Elias JA. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol 2009; 9(1): 60-6.
[http://dx.doi.org/10.1097/ACI.0b013e32831f8ee0] [PMID: 19532094]
[69]
Konradsen JR, James A, Nordlund B, et al. The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J Allergy Clin Immunol 2013; 132(2): 328-35.e5.
[http://dx.doi.org/10.1016/j.jaci.2013.03.003] [PMID: 23628340]
[70]
Leonardi S, Filippelli M, Lanzafame A, et al. Serum ykl-40 in children with asthma. J Biol Regul Homeost Agents 2015; 29(2)(Suppl. 1): 114-9.
[PMID: 26634596]
[71]
James A, Konradsen J, Nordlund B. Serum YKL-40 is increased in children with bronchopulmonary dysplasia compared to children with asthma. Am J Respir Crit Care Med 2013; 187: A2536.
[72]
Leonardi S, Parisi GF, Capizzi A, et al. YKL-40 as marker of severe lung disease in cystic fibrosis patients. J Cyst Fibros 2016; 15(5): 583-6.
[http://dx.doi.org/10.1016/j.jcf.2015.12.020] [PMID: 26778616]
[73]
Hector A, Kormann MS, Mack I, et al. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS One 2011; 6(9) e24399
[http://dx.doi.org/10.1371/journal.pone.0024399] [PMID: 21949714]
[74]
Manti S, Leonardi S, Parisi GF, et al. Focus on Pleiotropic Role of HMGB1 in the Onset of Allergic and Non-Allergic Respiratory Diseases. Curr Respir Med Rev 2017; 13: 1-5.
[http://dx.doi.org/10.2174/1573398X13666170529113627]
[75]
Chirico V, Lacquaniti A, Salpietro V, et al. High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 2014; 173(9): 1123-36.
[http://dx.doi.org/10.1007/s00431-014-2327-1] [PMID: 24809802]
[76]
Salpietro C, Cuppari C, Grasso L, et al. Nasal high-mobility group box-1 protein in children with allergic rhinitis. Int Arch Allergy Immunol 2013; 161(2): 116-21.
[http://dx.doi.org/10.1159/000345246] [PMID: 23343652]
[77]
Cavone L, Cuppari C, Manti S, et al. Increase in the Level of Proinflammatory Cytokine HMGB1 in Nasal Fluids of Patients With Rhinitis and its Sequestration by Glycyrrhizin Induces Eosinophil Cell Death. Clin Exp Otorhinolaryngol 2015; 8(2): 123-8.
[http://dx.doi.org/10.3342/ceo.2015.8.2.123] [PMID: 26045910]
[78]
Ma L, Zeng J, Mo B, et al. High mobility group box 1: A novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 2015; 7(10): 1732-41.
[PMID: 26623095]
[79]
Rowe SM, Jackson PL, Liu G, et al. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008; 178(8): 822-31.
[http://dx.doi.org/10.1164/rccm.200712-1894OC] [PMID: 18658107]
[80]
Gaggar A, Rowe SM, Matthew H, Blalock JE. Proline-Glycine-Proline (PGP) and High Mobility Group Box Protein-1 (HMGB1): Potential Mediators of Cystic Fibrosis Airway Inflammation. Open Respir Med J 2010; 4: 32-8.
[http://dx.doi.org/10.2174/1874306401004010032] [PMID: 20448817]
[81]
Cuppari C, Manti S, Chirico V, et al. Sputum high mobility group box-1 in asthmatic children: a noninvasive sensitive biomarker reflecting disease status. Ann Allergy Asthma Immunol 2015; 115(2): 103-7.
[http://dx.doi.org/10.1016/j.anai.2015.06.008] [PMID: 26250770]
[82]
Manti S, Leonardi S, Parisi GF, et al. High mobility group box 1: Biomarker of inhaled corticosteroid treatment response in children with moderate-severe asthma. Allergy Asthma Proc 2017; 38(3): 197-203.
[http://dx.doi.org/10.2500/aap.2017.38.4047] [PMID: 28441990]
[83]
Chirico V, Lacquaniti A, Leonardi S, et al. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clin Microbiol Infect 2015; 21(4): 368.e1-9.
[http://dx.doi.org/10.1016/j.cmi.2014.11.004] [PMID: 25658530]
[84]
Gibson PG, Grootendor DC, Henry RL, et al. Sputum induction in children. Eur Respir J Suppl 2002; 37: 44s-6s.
[PMID: 12361363]
[85]
Moeller A, Carlsen KH, Sly PD, et al. ERS task force monitoring asthma in children. monitoring asthma in childhood: Lung function, bronchial responsiveness and inflammation. Eur Respir Rev 2015; 24(136): 204-15.
[http://dx.doi.org/10.1183/16000617.00003914] [PMID: 26028633]
[86]
Malerba M, Radaeli A, Olivini A, Ragnoli B, Ricciardolo F, Montuschi P. The combined impact of exhaled nitric oxide and sputum eosinophils monitoring in asthma treatment: A prospective cohort study. Curr Pharm Des 2015; 21(32): 4752-62.
[http://dx.doi.org/10.2174/1871524915666150710123415] [PMID: 26166613]
[87]
Mattarucchi E, Baraldi E, Guillou C. Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr 2012; 26(1): 89-94.
[http://dx.doi.org/10.1002/bmc.1631] [PMID: 21465502]
[88]
Wedes SH, Wu W, Comhair SA, et al. Urinary bromotyrosine measures asthma control and predicts asthma exacerbations in children. J Pediatr 2011; 159(2): 248-55.e1.
[http://dx.doi.org/10.1016/j.jpeds.2011.01.029] [PMID: 21392781]
[89]
Slupsky CM, Rankin KN, Fu H, et al. Pneumococcal pneumonia: potential for diagnosis through a urinary metabolic profile. J Proteome Res 2009; 8(12): 5550-8.
[http://dx.doi.org/10.1021/pr9006427] [PMID: 19817432]
[90]
Laiakis EC, Morris GA, Fornace AJ, Howie SR. Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study. PLoS One 2010; 5(9) e12655
[http://dx.doi.org/10.1371/journal.pone.0012655] [PMID: 20844590]
[91]
Wojewodka G, De Sanctis JB, Bernier J, et al. Candidate markers associated with the probability of future pulmonary exacerbations in cystic fibrosis patients. PLoS One 2014; 9(2) e88567
[http://dx.doi.org/10.1371/journal.pone.0088567] [PMID: 24533110]
[92]
Quon BS, Ngan DA, Wilcox PG, Man SF, Sin DD. Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS One 2014; 9(2) e89341
[http://dx.doi.org/10.1371/journal.pone.0089341] [PMID: 24586701]
[93]
Reid PA, McAllister DA, Boyd AC, et al. Measurement of serum calprotectin in stable patients predicts exacerbation and lung function decline in cystic fibrosis. Am J Respir Crit Care Med 2015; 191(2): 233-6.
[http://dx.doi.org/10.1164/rccm.201407-1365LE] [PMID: 25590159]
[94]
Parisi GF, Papale M, Rotolo N, et al. Severe disease in Cystic Fibrosis and fecal calprotectin levels. Immunobiology 2017; 222(3): 582-6.
[http://dx.doi.org/10.1016/j.imbio.2016.11.005] [PMID: 28012584]