Influence of κ-Carrageenan, Modified Starch and Inulin Addition on Rheological and Sensory Properties of Non-fat and Non-added Sugar Dairy Dessert

Page: [462 - 469] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health.

Objective: This study aims to investigate the effects of κ-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert.

Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan δ) and complex viscosity (η*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated.

Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of κ-carrageenan and modified starch caused an increase in G′ and G″ as well as η* and a decrease in tan δ. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% κ-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert.

Conclusion: It can be concluded that the concentration of κ-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.

Keywords: Dairy desserts, inulin, modified starch, rheological properties, sensory properties, κ-carrageenan.

Graphical Abstract

[1]
Morais EC, Morais AR, Cruz AG, Bolini HM. Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. J Dairy Sci 2014; 97(5): 2600-9.
[http://dx.doi.org/10.3168/jds.2013-7603] [PMID: 24612793]
[2]
Arcia PL, Costell E, Tárrega A. Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology. J Dairy Sci 2011; 94(5): 2192-200.
[http://dx.doi.org/10.3168/jds.2010-3873] [PMID: 21524509]
[3]
Saad N, Delattre C, Urdaci M, Schmitter J-M, Bressollier P. An overview of the last advances in probiotic and prebiotic field. Food Sci Technol 2013; 50(1): 1-16.
[http://dx.doi.org/10.1016/j.lwt.2012.05.014]
[4]
Franck A. Technological functionality of inulin and oligofructose. Br J Nutr 2002; 87(S2)(Suppl. 2): S287-91.
[http://dx.doi.org/10.1079/BJN/2002550] [PMID: 12088531]
[5]
Tárrega A, Rocafull A, Costell E. Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. Food Sci Technol 2010; 43(3): 556-62.
[http://dx.doi.org/10.1016/j.lwt.2009.10.002]
[6]
Villegas B, Costell E. Flow behaviour of inulin-milk beverages. Influence of inulin average chain length and of milk fat content. Int Dairy J 2007; 17(7): 776-81.
[http://dx.doi.org/10.1016/j.idairyj.2006.09.007]
[7]
De Castro FP, Cunha TM, Barreto PL, Amboni RDD, Prudencio ES. Effect of oligofructose incorporation on the properties of fermented probiotic lactic beverages. Int J Dairy Technol 2009; 62(1): 68-74.
[http://dx.doi.org/10.1111/j.1471-0307.2008.00447.x]
[8]
Roberfroid MB. Introducing inulin-type fructans. Br J Nutr 2005; 93(S1)(Suppl. 1): S13-25.
[http://dx.doi.org/10.1079/BJN20041350] [PMID: 15877886]
[9]
Franck A. Food applications of prebiotics. In: Gibson GR, Roberfroid MB, Eds.. Handbook of Prebiotics. 2nd ed. . CRC Press: Boca Raton, FL 2008; pp. 437-48.
[http://dx.doi.org/10.1201/9780849381829.ch22]
[10]
Tandel KR. Sugar substitutes: Health controversy over perceived benefits. J Pharmacol Pharmacother 2011; 2(4): 236-43.
[http://dx.doi.org/10.4103/0976-500X.85936] [PMID: 22025850]
[11]
Porto-Pinto E, Teixeira A, Lopes-Sopena L, Pires-da-Rosa V, Mello-Luvielmo M. Sucralose in the development of light milky desserts. Bol Cent Pesqui Process Aliment 2003; 21: 49-60.
[12]
Gonzalez-Tomás L, Coll-Marqués J, Costell E. Viscoelasticity of inulin-starch-based dairy systems. Influence of inulin average chain length. Food Hydrocoll 2008; 22(7): 1372-80.
[http://dx.doi.org/10.1016/j.foodhyd.2007.08.001]
[13]
González-Tomás L, Bayarri S, Costell E. Inulin-enriched dairy desserts: physicochemical and sensory aspects. J Dairy Sci 2009; 92(9): 4188-99.
[http://dx.doi.org/10.3168/jds.2009-2241] [PMID: 19700679]
[14]
Tárrega A, Torres JD, Costell E. Influence of the chain-length distribution of inulin on the rheology and microstructure of prebiotic dairy desserts. J Food Eng 2011; 104(3): 356-63.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.12.028]
[15]
Kim Y, Faghih MN, Wang SS. Factors affecting gel formation of inulin. Carbohydr Polym 2001; 46: 135-45.
[http://dx.doi.org/10.1016/S0144-8617(00)00296-4]
[16]
Tarrega A, Costell E. Effect of composition on the rheological behaviour and sensory properties of semisolid dairy dessert. Food Hydrocoll 2006; 20(6): 914-22.
[http://dx.doi.org/10.1016/j.foodhyd.2005.09.006]
[17]
Bayarri S, Chuliá I, Costell E. Comparing λ-carrageenan and an inulin blend as fat replacers in carboxymethyl cellulose dairy desserts. Rheological and sensory aspects. Food Hydrocoll 2010; 24(6-7): 578-87.
[http://dx.doi.org/10.1016/j.foodhyd.2010.02.004]
[18]
Torres JD, Tárrega A, Costell E. Storage stability of starch-based dairy desserts containing long-chain inulin: rheology and particle size distribution. Int Dairy J 2010; 20(1): 46-52.
[http://dx.doi.org/10.1016/j.idairyj.2009.08.001]
[19]
Arango O, Trujillo AJ, Castillo M. Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation, and syneresis of milk gels. J Dairy Sci 2013; 96(4): 1984-96.
[http://dx.doi.org/10.3168/jds.2012-5763] [PMID: 23415526]
[20]
Arango O, Trujillo AJ, Castillo M. Predicting coagulation and syneresis parameters of milk gels when inulin is added as fat substitute using infrared light backscatter. J Food Eng 2015; 157: 63-9.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.02.021]
[21]
Staffolo M, Martino M, Bevilacqua A. Texture and sensory properties of dairy desserts with dietary fibres of different sources. Acta Aliment 2007; 36(3): 343-54.
[http://dx.doi.org/10.1556/AAlim.36.2007.3.6]
[22]
de Vries J. Interaction of carrageenan with other ingredients in dairy dessert gels. In: Williams PA, Phillips GO, Eds.. Gums and stabilisers for the food industry. 2nd ed. The Royal Society of Chemistry: Cambridge 2002; pp. 201-10.
[23]
Verbeken D, Bael K, Thas O, Dewettinck K. Interactions between κ-carrageenan, milk proteins and modified starch in sterilized dairy desserts. Int Dairy J 2006; 16(5): 482-8.
[http://dx.doi.org/10.1016/j.idairyj.2005.06.006]
[24]
Langendorff V, Cuvelier G, Michon C, Launay B, Parker A. Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocoll 2000; 14(4): 273-80.
[http://dx.doi.org/10.1016/S0268-005X(99)00064-8]
[25]
de Wijk RA, van Gemert LJ, Terpstra MEJ, Wilkinson CL. Texture of semi-solids; sensory and instrumental measurements on vanilla custard desserts. Food Qual Prefer 2003; 14(4): 305-17.
[http://dx.doi.org/10.1016/S0950-3293(02)00107-6]
[26]
Trčková J, Štetina J, Kánský J. Influence of protein concentration on rheological properties of carrageenan gels in milk. Int Dairy J 2004; 14(4): 337-43.
[http://dx.doi.org/10.1016/j.idairyj.2003.10.004]
[27]
Verbeken D, Thas O, Dewettinck K. Textural properties of gelled dairy desserts containing κ-carrageenan and starch. Food Hydrocoll 2004; 18(5): 817-23.
[http://dx.doi.org/10.1016/j.foodhyd.2003.12.007]
[28]
González-Tomás L, Bayarri S, Taylor AJ, Costell E. Flavour release and perception from model dairy custards. Food Res Int 2007; 40(4): 520-8.
[http://dx.doi.org/10.1016/j.foodres.2006.10.002]
[29]
Depypere F, Verbeken D, Torres JD, Dewettinck K. Rheological properties of dairy desserts prepared in an indirect UHT pilot plant. J Food Eng 2009; 91(1): 140-5.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.08.017]
[30]
Balaghi S, Senge B. Structural development of semi-solid dairy desserts influenced by hydrocolloids and temperature: rheology and particle size distribution. Int Dairy J 2014; 39(1): 184-92.
[http://dx.doi.org/10.1016/j.idairyj.2014.06.007]
[31]
Bourne M. Food texture and viscosity: concept and measurement. 2nd ed. Academic press: San Diego 2002; pp. 182-6.
[http://dx.doi.org/10.1016/B978-012119062-0/50001-2]
[32]
González-Tomás L, Bayarri S, Taylor AJ, Costell E. Rheology, flavour release and perception of low-fat dairy desserts. Int Dairy J 2008; 18(8): 858-66.
[http://dx.doi.org/10.1016/j.idairyj.2007.09.010]
[33]
Schorsch C, Jones MG, Norton IT. Phase behaviour of pure micellar casein/k-carrageenan systems in milk salt ultrafiltrate. Food Hydrocoll 2000; 14(4): 347-58.
[http://dx.doi.org/10.1016/S0268-005X(00)00011-4]
[34]
Lin J-H, Liang C-W, Chang Y-H. Effect of starch source on gel properties of kappa-carrageenan-starch dispersions. Food Hydrocoll 2016; 60: 509-15.
[http://dx.doi.org/10.1016/j.foodhyd.2016.04.024]
[35]
Lobato LP, Grossmann MVE, Benassi MT. Inulin addition in starch-based dairy desserts: Instrumental texture and sensory aspects. Food Sci Technol Int 2009; 15(4): 317-23.
[http://dx.doi.org/10.1177/1082013209341331]
[36]
Ferry JD. Viscoelastic properties of polymers. 2nd ed. John Wiley & Sons: New York 1980; pp. 53-62.