[1]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; de Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7, e35671.
[2]
Rub, A.; Arish, M.; Husain, S.A.; Ahmed, N.; Akhter, Y. Host-lipidome as a potential target of protozoan parasites. Microbes Infect., 2013, 15, 649-660.
[3]
Kashif, M.; Manna, P.P.; Akhter, Y.; Alaidarous, M.; Rub, A. Screening of novel inhibitors against Leishmania donovani calcium ion channel to fight leishmaniasis. Infect. Disord. Drug Targets, 2017, 17, 120-129.
[4]
Bates, P.A. Transmission of leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol., 2007, 37, 1097-1106.
[5]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366, 1561-1577.
[6]
Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS Negl. Trop. Dis., 2016, 3, 10.
[7]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392, 951-970.
[8]
Rub, A.; Dey, R.; Jadhav, M.; Kamat, R.; Chakkaramakkil, S.; Majumdar, S.; Mukhopadhyaya, R.; Saha, B. Cholesterol depletion associated with leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat. Immunol., 2009, 10, 273-280.
[9]
Arish, M.; Husein, A.; Kashif, M.; Sandhu, P.; Hasnain, S.E.; Akhter, Y.; Rub, A. Orchestration of membrane receptor signaling by membrane lipids. Biochimie, 2015, 113, 111-124.
[10]
Arish, M.; Husein, A.; Ali, R.; Tabrez, S.; Naz, F.; Ahmad, M.Z.; Rub, A. Sphingosine-1-phosphate signaling in Leishmania donovani infection in macrophages. PLoS Negl. Trop. Dis., 2018, 12, e0006647.
[11]
Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int., 2011, 2011, 571242.
[12]
Sundar, S.; Jha, T.K.; Thakur, C.P.; Engel, J.; Sindermann, H.; Fischer, C.; Junge, K.; Bryceson, A.; Berman, J. Oral miltefosine for Indian visceral leishmaniasis. N. Engl. J. Med., 2002, 347, 1739-1746.
[13]
Sundar, S. Treatment of visceral leishmaniasis. Med. Microbiol. Immunol., 2001, 190, 89-92.
[14]
Charlton, R.L.; Rossi-Bergmann, B.; Denny, P.W.; Steel, P.G. Repurposing as a Strategy for the discovery of new anti-leishmanials: The-state-of-the-art. Parasitology, 2018, 145, 219-236.
[15]
de Menezes, J.; Guedes, C.; Petersen, A.; Fraga, D.; Veras, P. Leishmaniasis treatment: Update of possibilities for drug repurposing. BioMed Res. Int., 2015, 23, 967-996.
[16]
Ryu, R.J.; Hays, K.E.; Hebert, M.F. Gestational diabetes mellitus management with oral hypoglycemic agents. Semin. Perinatol., 2014, 38, 508-515.
[17]
Young, A.M.; Allen, C.E.; Audus, K.L. Efflux transporters of the human placenta. Adv. Drug Deliv. Rev., 2003, 55, 125-132.
[18]
Gedeon, C.; Behravan, J.; Koren, G.; Piquette-Miller, M. Transport of glyburide by placental ABC transporters: Implications in fetal drug exposure. Placenta, 2006, 27, 1096-1102.
[19]
Kashif, M.; Tabrez, S.; Husein, A.; Arish, M.; Kalaiarasan, P.; Manna, P.P.; Subbarao, N.; Akhter, Y.; Rub, A. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis. J. Cell. Biochem., 2018, 119, 2653-2665.
[20]
Ascenzi, P.; Bocedi, A.; Gradoni, L. The anti-parasitic effects of nitric oxide. IUBMB Life, 2003, 55, 573-578.
[21]
Comini, M.A.; Guerrero, S.A.; Haile, S.; Menge, U.; Lünsdorf, H.; Flohé, L. Valdiation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med., 2004, 36, 1289-1302.
[22]
Piacenza, L.; Zago, M.P.; Peluffo, G.; Alvarez, M.N.; Basombrio, M.A.; Radi, R. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int. J. Parasitol., 2009, 39, 1455-1464.
[23]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43, W174-W181.
[24]
Roy, A.; Yang, J.; Zhang, Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res., 2012, 40, W471-W477.
[25]
Laskowski, R.A.; Rullmann, J.A.C.; McArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR, 1996, 8, 477-486.
[26]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22, 4673-4680.
[27]
Oleg Trott, A.J.O.; Schroer, A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[28]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25, 13-19.
[29]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19, 111-126.
[30]
Torrie, L.S.; Wyllie, S.; Spinks, D.; Oza, S.L.; Thompson, S.; Harrison, J.R.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H.; Frearson, J.A. Chemical validation of trypanothione synthetase: A potential drug target for human trypanosomiasis. J. Biol. Chem., 2009, 284, 36137-36145.