Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis

Page: [371 - 376] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Leishmaniasis is caused by a protozoan parasite, Leishmania. It is common in more than 98 countries throughout the world. Due to insufficient availability of antileishmanial chemotherapeutics, it is an urgent need to search for new molecules which have better efficacy, low toxicity and are available at low cost.

Objectives: There is a high rate of diabetic cases throughout the world that is why we planned to test the antileishmanial activity of glyburide, an effective sugar lowering drug used for the treatment of diabetes. In this study, glyburide showed a significant decrease in the parasite growth and survival in vitro in a dose-dependent manner.

Methods: Anti-leishmanial activity of glyburide was checked by culturing Leishmania donovani promastigotes in the presence of glyburide in a dose and time dependent manner. Docking study against Leishmania donovani-Trypanothione synthetase (LdTrySyn) protein was performed using Autodock Vina tool.

Results: Growth reversibility assay shows that growth of treated parasite was not reversed when transferred to fresh culture media after 7 days. Moreover, docking studies show efficient interactions of glyburide with key residues in the catalytic site of Leishmania donovani- Trypanothione synthetase (LdTrySyn), a very important leishmanial enzyme involved in parasite’s survival by detoxification of Nitric Oxide (NO) species, generated by the mammalian host as a defense molecule. Thus this study proves that the drug-repurposing is a beneficial strategy for identification of new and potent antileishmanial molecules.

Conclusion: The results suggest that glyburide binds to LdTrySyn and inhibits its activity which further leads to the altered parasite morphology and inhibition of parasite growth. Glyburide may also be used in combination with other anti-leishmanial drugs to potentiate the response of the chemotherapy. Overall this study provides information about combination therapy as well as a single drug treatment for the infected patients suffering from diabetes. This study also provides raw information for further in vivo disease model studies to confirm the hypothesis.

Keywords: Leishmaniasis, protozoan, Leishmania, drug repurposing, glyburide, Trypanothione synthetase, docking.

Graphical Abstract

[1]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; de Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7, e35671.
[2]
Rub, A.; Arish, M.; Husain, S.A.; Ahmed, N.; Akhter, Y. Host-lipidome as a potential target of protozoan parasites. Microbes Infect., 2013, 15, 649-660.
[3]
Kashif, M.; Manna, P.P.; Akhter, Y.; Alaidarous, M.; Rub, A. Screening of novel inhibitors against Leishmania donovani calcium ion channel to fight leishmaniasis. Infect. Disord. Drug Targets, 2017, 17, 120-129.
[4]
Bates, P.A. Transmission of leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol., 2007, 37, 1097-1106.
[5]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366, 1561-1577.
[6]
Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS Negl. Trop. Dis., 2016, 3, 10.
[7]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392, 951-970.
[8]
Rub, A.; Dey, R.; Jadhav, M.; Kamat, R.; Chakkaramakkil, S.; Majumdar, S.; Mukhopadhyaya, R.; Saha, B. Cholesterol depletion associated with leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat. Immunol., 2009, 10, 273-280.
[9]
Arish, M.; Husein, A.; Kashif, M.; Sandhu, P.; Hasnain, S.E.; Akhter, Y.; Rub, A. Orchestration of membrane receptor signaling by membrane lipids. Biochimie, 2015, 113, 111-124.
[10]
Arish, M.; Husein, A.; Ali, R.; Tabrez, S.; Naz, F.; Ahmad, M.Z.; Rub, A. Sphingosine-1-phosphate signaling in Leishmania donovani infection in macrophages. PLoS Negl. Trop. Dis., 2018, 12, e0006647.
[11]
Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int., 2011, 2011, 571242.
[12]
Sundar, S.; Jha, T.K.; Thakur, C.P.; Engel, J.; Sindermann, H.; Fischer, C.; Junge, K.; Bryceson, A.; Berman, J. Oral miltefosine for Indian visceral leishmaniasis. N. Engl. J. Med., 2002, 347, 1739-1746.
[13]
Sundar, S. Treatment of visceral leishmaniasis. Med. Microbiol. Immunol., 2001, 190, 89-92.
[14]
Charlton, R.L.; Rossi-Bergmann, B.; Denny, P.W.; Steel, P.G. Repurposing as a Strategy for the discovery of new anti-leishmanials: The-state-of-the-art. Parasitology, 2018, 145, 219-236.
[15]
de Menezes, J.; Guedes, C.; Petersen, A.; Fraga, D.; Veras, P. Leishmaniasis treatment: Update of possibilities for drug repurposing. BioMed Res. Int., 2015, 23, 967-996.
[16]
Ryu, R.J.; Hays, K.E.; Hebert, M.F. Gestational diabetes mellitus management with oral hypoglycemic agents. Semin. Perinatol., 2014, 38, 508-515.
[17]
Young, A.M.; Allen, C.E.; Audus, K.L. Efflux transporters of the human placenta. Adv. Drug Deliv. Rev., 2003, 55, 125-132.
[18]
Gedeon, C.; Behravan, J.; Koren, G.; Piquette-Miller, M. Transport of glyburide by placental ABC transporters: Implications in fetal drug exposure. Placenta, 2006, 27, 1096-1102.
[19]
Kashif, M.; Tabrez, S.; Husein, A.; Arish, M.; Kalaiarasan, P.; Manna, P.P.; Subbarao, N.; Akhter, Y.; Rub, A. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis. J. Cell. Biochem., 2018, 119, 2653-2665.
[20]
Ascenzi, P.; Bocedi, A.; Gradoni, L. The anti-parasitic effects of nitric oxide. IUBMB Life, 2003, 55, 573-578.
[21]
Comini, M.A.; Guerrero, S.A.; Haile, S.; Menge, U.; Lünsdorf, H.; Flohé, L. Valdiation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med., 2004, 36, 1289-1302.
[22]
Piacenza, L.; Zago, M.P.; Peluffo, G.; Alvarez, M.N.; Basombrio, M.A.; Radi, R. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int. J. Parasitol., 2009, 39, 1455-1464.
[23]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43, W174-W181.
[24]
Roy, A.; Yang, J.; Zhang, Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res., 2012, 40, W471-W477.
[25]
Laskowski, R.A.; Rullmann, J.A.C.; McArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR, 1996, 8, 477-486.
[26]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22, 4673-4680.
[27]
Oleg Trott, A.J.O.; Schroer, A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[28]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25, 13-19.
[29]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19, 111-126.
[30]
Torrie, L.S.; Wyllie, S.; Spinks, D.; Oza, S.L.; Thompson, S.; Harrison, J.R.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H.; Frearson, J.A. Chemical validation of trypanothione synthetase: A potential drug target for human trypanosomiasis. J. Biol. Chem., 2009, 284, 36137-36145.