Equibiotic-GI Consumption Improves Intestinal Microbiota in Subjects with Functional Dyspepsia

Page: [220 - 227] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: At present, the interpretation of any dysfunction by pathogenic microbial colonization of the digestive tract can be considered as the rupture of the microbiotic balance in the injured or infected area. Phytodrugs with useful properties to balance the intestinal microbiota equibiotics represent an alternative recently proposed by the Medicinal Plant Research Company Phytomedicamenta S.A. The Equibiotic-GI® is a phytodrug developed as a combination of two plant extracts, obtained from the leaves of Psidium guajava L, (Myrtaceae) and the roots of Coptis chinensis Franch. (Racunculaceae). Both plants used traditionally for the treatment of several gastrointestinal disorders.

Objective: The aim of the current study was to assess the effect of Equibiotic-GI® suspension on intestinal microbiota of subjects with functional dyspepsia.

Methods: An open-label study performed in 8 adult subjects with functional dyspepsia receiving orally 20 mL of the suspension, daily for two weeks. Fecal samples were collected at baseline and the end of treatment for assessing gut microbiota composition by sequencing the V3-V4 region of the 16S rRNA gene.

Results: Equibiotic-GI modified the Bacteriodetes/Firmicutes proportion increasing the richness of the microbiota composition and Rikenellaceae and Alistipes abundance.

Conclusion: Together with the improvement in the gastrointestinal symptomatology after the consumption of the product, the present study is the first clinical demonstration of the capacity of the Equibiotic-GI® to restore and balance the intestinal microbiota.

Keywords: Equibiotics, intestinal microbiota, dyspesia, Rikenellacea, Alistipes, Psidium guajava, Coptis chinensis.

Graphical Abstract

[1]
Talley NJ, Ford AC. Functional Dyspepsia. N Engl J Med 2015; 373(19): 1853-63.
[2]
Hantoro IF, Syam AF, Mudjaddid E, Setiati S, Abdullah M. Factors associated with health-related quality of life in patients with functional dyspepsia. Health Qual Life Outcomes 2018; 16(1): 83.
[3]
Pohl D, Van Oudenhove L, Tornblom H, Le Neve B, Tack J, Simren M. Functional dyspepsia and severity of psychologic symptoms associate with postprandial symptoms in patients with Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2018; 16(11): 1745-53.
[4]
Page AJ, Li H. Meal-Sensing Signaling Pathways in Functional Dyspepsia. Front Syst Neurosci 2018; 12(10): 1-9.
[5]
Black CJ, Houghton LA, Ford AC. Insights into the evaluation and management of dyspepsia: recent developments and new guidelines. Therap Adv Gastroenterol 2018; 111756284818805597
[6]
Moayyedi PM, Lacy BE, Andrews CN, Enns RA, Howden CW, Vakil N. ACG and CAG Clinical Guideline: Management of Dyspepsia. Am J Gastroenterol 2017; 112(7): 988-1013.
[7]
Pilichiewicz AN, Horowitz M, Russo A, et al. Effects of Iberogast on proximal gastric volume, antropyloroduodenal motility and gastric emptying in healthy men. Am J Gastroenterol 2007; 102(6): 1276-83.
[8]
Suzuki H, Matsuzaki J, Fukushima Y, et al. Randomized clinical trial: rikkunshito in the treatment of functional dyspepsia--a multicenter, double-blind, randomized, placebo-controlled study. Neurogastroenterol Motil 2014; 26(7): 950-61.
[9]
Hu Y, Bai Y, Hua Z, Yang J, Yang H, Chen W, et al. Effect of Chinese patent medicine Si-Mo-Tang oral liquid for functional dyspepsia: A systematic review and metaanalysis of randomized controlled trials. PLoS One 2017; 12(2): e0171878.
[10]
Barbara G, Feinle-Bisset C, Ghoshal UC, et al. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology 2016; 150(6): 1305-18.e8.
[11]
Tack J, Talley NJ, Camilleri M, et al. Functional gastroduodenal disorders. Gastroenterology 2006; 130(5): 1466-79.
[12]
Ismail FW, Abid S, Awan S, Lubna F. Frequency of food hypersensitivity in patients with Functional Gastrointestinal Disorders. Acta Gastroenterol Belg 2018; 81(2): 253-6.
[13]
Pilichiewicz AN, Feltrin KL, Horowitz M, Holtmann G, Wishart JM, Jones KL, et al. Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am J Gastroenterol 2008; 103(10): 2613-23.
[14]
Pilichiewicz AN, Horowitz M, Holtmann GJ, Talley NJ, Feinle-Bisset C. Relationship between symptoms and dietary patterns in patients with functional dyspepsia. Clin Gastroenterol Hepatol 2009; 7(3): 317-22.
[15]
Sgambato D, Miranda A, Romano L, Romano M. Gut microbiota and gastric disease. Minerva Gastroenterol Dietol 2017; 63(4): 345-54.
[16]
Zhong L, Shanahan ER, Raj A, et al. Dyspepsia and the microbiome: time to focus on the small intestine. Gut 2017; 66(6): 1168-9.
[17]
Marlicz W, Yung DE, Skonieczna-Zydecka K, et al. From clinical uncertainties to precision medicine: the emerging role of the gut barrier and microbiome in small bowel functional diseases. Expert Rev Gastroenterol Hepatol 2017; 11(10): 961-78.
[18]
Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013; 62(1): 159-76.
[19]
Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev 2004; 9(2): 180-97.
[20]
Larsen PE, Dai Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience 2015; 4(42): 1-16.
[21]
Lozoya X G-MM, Agüero J, Rivera-Arce E. inventorEquibiotic compositions for the treatment of periodontal disease and halitosis in animals. Mexico patent Mx/E/2012/ 014315. 2012.
[22]
Lozoya XG-MM, Agüero J, Rivera-Arce E. Propiedades anti-Helicobacter pylori de los extractos de Psidium guajava y Coptis chinensis. Revista de Fitoterapia 2015; 15(2): 101-13.
[23]
Lozoya XG-MM, Agüero J, et al. Los Equibióticos: ni combate ni resistencia. Rev Fitoterapia (Barcelona) 2012; 12(2): 145-8.
[24]
Lozoya XG-MM, Agüero J, Rivera-Arce E. inventorComposiciones equibioticas de extractos de plantas útiles para el tratamiento de la infección gástrica por Helicobacter pylori. Mexico2015.
[25]
Lozoya XG-MM, Agüero J, Rivera-Arce E. Equibiotics: a new type of phyto-drug equilibrating local microbiota. In: Budimir A, Ed. Fighting Antimicrobial Resistance. Croatia: IAPC Publishing 2018.
[26]
Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012; 6(8): 1621-4.
[27]
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7(5): 335-6.
[28]
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27(16): 2194-200.
[29]
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26(19): 2460-1.
[30]
DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72(7): 5069-72.
[31]
Chao A, Chazdon RL, Colwell RK, Shen TJ. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 2006; 62(2): 361-71.
[32]
Talley NJ. Functional Dyspepsia: Advances in Diagnosis and Therapy. Gut Liver 2017; 11(3): 349-57.
[33]
Borgaonkar MR, Irvine EJ. Quality of life measurement in gastrointestinal and liver disorders. Gut 2000; 47(3): 444-54.
[34]
Vanheel H, Tack J. Therapeutic options for functional dyspepsia. Dig Dis 2014; 32(3): 230-4.
[35]
Chen SL. A review of drug therapy for functional dyspepsia. J Dig Dis 2013; 14(12): 623-5.
[36]
Talley NJ, Holtmann G, Walker MM. Therapeutic strategies for functional dyspepsia and irritable bowel syndrome based on pathophysiology. J Gastroenterol 2015; 50(6): 601-13.
[37]
Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 2015; 17(12): 4954-64.
[38]
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415): 220-30.
[39]
Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes Gastroenterology 2010; 139(6): 1844-54 e1.
[40]
Wang J, Gu J, Wang Y, et al. 16S rDNA gene sequencing analysis in functional dyspepsia treated with fecal microbiota transplantation. J Pediatr Gastroenterol Nutr 2017; 64(3): e80-2.
[41]
Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci USA 2009; 106(14): 5859-64.
[42]
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011; 2(93): 1-16.
[43]
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3(4): 289-306.
[44]
Gargari G, Taverniti V, Balzaretti S, et al. Consumption of a bifidobacterium bifidum strain for 4 weeks modulates dominant intestinal bacterial taxa and fecal butyrate in healthy adults. Appl Environ Microbiol 2016; 82(19): 5850-9.
[45]
Lippert K, Kedenko L, Antonielli L, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes 2017; 8(4): 545-56.
[46]
Oki K, Toyama M, Banno T, Chonan O, Benno Y, Watanabe K. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol 2016; 16(1): 284.
[47]
Bomar L, Maltz M, Colston S, Graf J. Directed culturing of microorganisms using metatranscriptomics. MBio 2011; 2(2): e00012-11.
[48]
Dubin K, Callahan MK, Ren B, et al. intestinal microbiome analysis identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016; 7(10381): 1-8.
[49]
Lopetuso LR, Petito V, Graziani C, et al. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders? Dig Dis 2017; 36(1): 56-65.
[50]
Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014; 588(22): 4223-33.
[51]
Alard J, Lehrter V, Rhimi M, et al. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol 2016; 18(5): 1484-97.
[52]
Ma G, Kimatu BM, Zhao L, Yang W, Pei F, Hu Q. In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response. Food Funct 2017; 8(5): 1810-21.
[53]
Wu M, Wu Y, Deng B, et al. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 2016; 7(51): 85318-31.
[54]
Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 2015; 64(8): 2847-58.
[55]
Loh G, Blaut M. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 2012; 3(6): 544-55.
[56]
Wang L, Zeng B, Zhang X, et al. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Funct 2016; 7(12): 4956-66.
[57]
Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5(8096): 1-7.
[58]
Zhang X, Zhao Y, Zhang M, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 2012; 7(8)e42529 [1].