The Therapeutic Potential of Novel Kappa Opioid Receptor-based Treatments

Page: [2012 - 2020] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Similarly to the μ opioid receptor, kappa opioid receptor (KOR), is present either in the central nervous system or in peripheral tissues. In the last years, several molecules, able to interact with KOR, have been the focus of basic research for their therapeutic potential in the field of chronic pain, as well as in depression, autoimmune disorders and neurological diseases.

Discussion: The role of KOR system and the consequent clinical effects derived by its activation or inhibition are discussed. Their potential therapeutic utilization in conditions of stress and drug relapse, besides chronic pain, is presented here, including the possible use of KORagonists in drug addiction. Moreover, the potential role of KOR-antagonists, KOR agonistantagonists and peripheral KOR agonists is proposed.

Conclusion: Other than pain, KORs have a role in regulating reward and mood. Due to its location, KORs seem to mediate interactions between psychiatric disorders, addiction and depression. Experimental studies in animal models have identified brain mechanisms that may contribute to clarify specific pathophysiological processes.

Keywords: Kappa-receptors, opioids, analgesia, depression, addiction, stress, drug.

[1]
Günther, T.; Dasgupta, P.; Mann, A.; Miess, E.; Kliewer, A.; Fritzwanker, S.; Steinborn, R.; Schulz, S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br. J. Pharmacol., 2018, 175(14), 2857-2868.
[http://dx.doi.org/10.1111/bph.13809] [PMID: 28378462]
[2]
Cox, B.M.; Christie, M.J.; Devi, L.; Toll, L.; Traynor, J.R. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br. J. Pharmacol., 2015, 172(2), 317-323.
[http://dx.doi.org/10.1111/bph.12612] [PMID: 24528283]
[3]
Chen, Y.; Chen, C.; Liu-Chen, L.Y. Dynorphin peptides differentially regulate the human kappa opioid receptor., Life Sci., 2007, 80(15), 1439-1448. [Relevant research paper assessing the role of dynorphin on KOR].
[http://dx.doi.org/dx.doi.org/10.1016/j.lfs.2007.01.018] [PMID: 17316701]
[4]
McLaughlin, J.P.; Land, B.B.; Li, S.; Pintar, J.E.; Chavkin, C. Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology, 2006, 31(4), 787-794.
[http://dx.doi.org/10.1038/sj.npp.1300860] [PMID: 16123754]
[5]
Wang, W.; Qiao, Y.; Li, Z. New Insights into Modes of GPCR Activation, Trends in Pharmacological Sci. Cell Press Rev., 2018, 39, 367-386.
[6]
Zhou, L.; Stahl, E.L.; Lovell, K.M.; Frankowski, K.J.; Prisinzano, T.E.; Aubé, J.; Bohn, L.M. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology, 2015, 99, 131-141.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.001] [PMID: 26160155]
[7]
Chavkin, C.; James, I.F.; Goldstein, A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982, 215(4531), 413-415.
[http://dx.doi.org/10.1126/science.6120570] [PMID: 6120570]
[8]
Mansour, A.; Khachaturian, H.; Lewis, M.E.; Akil, H.; Watson, S.J. Anatomy of CNS opioid receptors. Trends Neurosci., 1988, 11(7), 308-314.
[http://dx.doi.org/10.1016/0166-2236(88)90093-8] [PMID: 2465635]
[9]
Taylor, G.T.; Manzella, F. Kappa Opioids, Salvinorin A and Major Depressive Disorder. Curr. Neuropharmacol., 2016, 14(2), 165-176.
[http://dx.doi.org/10.2174/1570159X13666150727220944] [PMID: 26903446]
[10]
Kivell, B.; Prisinzano, T.E. Kappa opioids and the modulation of pain. Psychopharmacology (Berl.), 2010, 210(2), 109-119.
[http://dx.doi.org/10.1007/s00213-010-1819-6] [PMID: 20372880]
[11]
Pan, Z.Z. mu-Opposing actions of the kappa-opioid receptor. Trends Pharmacol. Sci., 1998, 19(3), 94-98.
[http://dx.doi.org/10.1016/S0165-6147(98)01169-9] [PMID: 9584625]
[12]
Bruijnzeel, A.W. kappa-Opioid receptor signaling and brain reward function. Brain Res. Brain Res. Rev., 2009, 62(1), 127-146.
[http://dx.doi.org/10.1016/j.brainresrev.2009.09.008] [PMID: 19804796]
[13]
Chefer, V.I.; Czyzyk, T.; Bolan, E.A.; Moron, J.; Pintar, J.E.; Shippenberg, T.S. Endogenous κ-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine. J. Neurosci., 2005, 25(20), 5029-5037.
[http://dx.doi.org/10.1523/JNEUROSCI.0854-05.2005] [PMID: 15901784]
[14]
Shippenberg, T.S.; Chefer, V.I.; Zapata, A.; Heidbreder, C.A. Modulation of the behavioral and neurochemical effects of psychostimulants by κ-opioid receptor systems. Ann. N. Y. Acad. Sci., 2001, 937, 50-73.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03558.x] [PMID: 11458540]
[15]
Wang, Y.J.; Tao, Y.M.; Li, F.Y.; Wang, Y.H.; Xu, X.J.; Chen, J.; Cao, Y.L.; Chi, Z.Q.; Neumeyer, J.L.; Zhang, A.; Liu, J.G. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior. J. Pharmacol. Exp. Ther., 2009, 329(1), 306-313.
[http://dx.doi.org/10.1124/jpet.108.142802] [PMID: 19136637]
[16]
Knoll, A.T.; Carlezon, W.A., Jr Dynorphin, stress, and depression. Brain Res., 2010, 1314, 56-73.
[http://dx.doi.org/10.1016/j.brainres.2009.09.074] [PMID: 19782055]
[17]
Bruchas, M.R.; Land, B.B.; Chavkin, C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res., 2010, 1314, 44-55.
[http://dx.doi.org/10.1016/j.brainres.2009.08.062] [PMID: 19716811]
[18]
Wadenberg, M.L. A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. CNS Drug Rev., 2003, 9(2), 187-198.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00248.x] [PMID: 12847558]
[19]
Carlezon, W.A., Jr; Béguin, C.; DiNieri, J.A.; Baumann, M.H.; Richards, M.R.; Todtenkopf, M.S.; Rothman, R.B.; Ma, Z.; Lee, D.Y.; Cohen, B.M. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J. Pharmacol. Exp. Ther., 2006, 316(1), 440-447.
[http://dx.doi.org/10.1124/jpet.105.092304] [PMID: 16223871]
[20]
Carlezon, W.A., Jr; Béguin, C.; Knoll, A.T.; Cohen, B.M. Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol. Ther., 2009, 123(3), 334-343.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.008] [PMID: 19497337]
[21]
Land, B.B.; Bruchas, M.R.; Lemos, J.C.; Xu, M.; Melief, E.J.; Chavkin, C. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J. Neurosci., 2008, 28(2), 407-414.
[http://dx.doi.org/10.1523/JNEUROSCI.4458-07.2008] [PMID: 18184783]
[22]
Bruchas, M.R.; Land, B.B.; Lemos, J.C.; Chavkin, C. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One, 2009, 4(12)e8528
[http://dx.doi.org/10.1371/journal.pone.0008528] [PMID: 20052275]
[23]
Belcheva, M.M.; Clark, A.L.; Haas, P.D.; Serna, J.S.; Hahn, J.W.; Kiss, A.; Coscia, C.J. Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J. Biol. Chem., 2005, 280(30), 27662-27669.
[http://dx.doi.org/10.1074/jbc.M502593200] [PMID: 15944153]
[24]
Cahill, C.M.; Taylor, A.M.; Cook, C.; Ong, E.; Morón, J.A.; Evans, C.J. Does the kappa opioid receptor system contribute to pain aversion? Front. Pharmacol., 2014, 5, 253.
[http://dx.doi.org/10.3389/fphar.2014.00253]
[25]
Massaly, N.; Morón, J.A.; Al-Hasani, R. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System. Front. Neurosci., 2016, 10(480)
[26]
Yamaotsu, N.; Hirono, S. 3D-pharmacophore identification for kappa-opioid agonists using ligand-based drug-design techniques. Top. Curr. Chem., 2011, 299, 277-307.
[http://dx.doi.org/10.1007/128_2010_84] [PMID: 21630511]
[27]
DeHaven-Hudkins, D.L.; Dolle, R.E. Peripherally restricted opioid agonists as novel analgesic agents. Curr. Pharm. Des., 2004, 10(7), 743-757.
[http://dx.doi.org/10.2174/1381612043453036] [PMID: 15032700]
[28]
Rivière, P.J. Peripheral kappa-opioid agonists for visceral pain. Br. J. Pharmacol., 2004, 141(8), 1331-1334.
[http://dx.doi.org/10.1038/sj.bjp.0705763] [PMID: 15051626]
[29]
Takemori, A.E.; Loh, H.H.; Lee, N.M. Suppression by dynorphin A and [des-Tyr1]dynorphin A peptides of the expression of opiate withdrawal and tolerance in morphine-dependent mice. J. Pharmacol. Exp. Ther., 1993, 266(1), 121-124.
[PMID: 8101214]
[30]
Vanderah, T.W. Delta and kappa opioid receptors as suitable drug targets for pain. Clin. J. Pain, 2010, 26(10)(Suppl. 10), S10-S15.
[http://dx.doi.org/10.1097/AJP.0b013e3181c49e3a] [PMID: 20026960]
[31]
Aldrich, J.V.; McLaughlin, J.P. Peptide kappa opioid receptor ligands: potential for drug development. AAPS J., 2009, 11(2), 312-322.
[http://dx.doi.org/10.1208/s12248-009-9105-4] [PMID: 19430912]
[32]
Brust, T.F.; Morgenweck, J.; Kim, S.A.; Rose, J.H.; Locke, J.L.; Schmid, C.L.; Zhou, L.; Stahl, E.L.; Cameron, M.D.; Scarry, S.M.; Aubé, J.; Jones, S.R.; Martin, T.J.; Bohn, L.M. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal., 2016, 9(456), ra117.
[http://dx.doi.org/10.1126/scisignal.aai8441] [PMID: 27899527]
[33]
Neumeyer, J.L.; Bidlack, J.M.; Zong, R.; Bakthavachalam, V.; Gao, P.; Cohen, D.J.; Negus, S.S.; Mello, N.K. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence. J. Med. Chem., 2000, 43(1), 114-122.
[http://dx.doi.org/10.1021/jm9903343] [PMID: 10633042]
[34]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[35]
Koob, G.F.; Volkow, N.D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773.
[http://dx.doi.org/10.1016/S2215-0366(16)00104-8] [PMID: 27475769]
[36]
Roth, B.L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K.C.; Steinberg, S.; Ernsberger, P.; Rothman, R.B. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11934-11939.
[http://dx.doi.org/10.1073/pnas.182234399] [PMID: 12192085]
[37]
Butelman, E.R.; Kreek, M.J. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders. Front. Pharmacol., 2015, 6, 190.
[PMID: 26441647]
[38]
Zhou, Y.; Crowley, R.S.; Ben, K.; Prisinzano, T.E.; Kreek, M.J. Synergistic blockade of alcohol escalation drinking in mice by a combination of novel kappa opioid receptor agonist Mesyl Salvinorin B and naltrexone. Brain Res., 2017, 1662, 75-86.
[http://dx.doi.org/10.1016/j.brainres.2017.02.027] [PMID: 28263712]
[39]
Vanderah, T.W.; Gardell, L.R.; Burgess, S.E.; Ibrahim, M.; Dogrul, A.; Zhong, C.M.; Zhang, E.T.; Malan, T.P., Jr; Ossipov, M.H.; Lai, J.; Porreca, F. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J. Neurosci., 2000, 20(18), 7074-7079.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-07074.2000] [PMID: 10995854]
[40]
Jamshidi, R.J.; Jacobs, B.A.; Sullivan, L.C.; Chavera, T.A.; Saylor, R.M.; Prisinzano, T.E.; Clarke, W.P.; Berg, K.A. Functional selectivity of kappa opioid receptor agonists in peripheral sensory neurons. J. Pharmacol. Exp. Ther., 2015, 355(2), 174-182.
[http://dx.doi.org/10.1124/jpet.115.225896] [PMID: 26297384]
[41]
Carroll, F.I.; Carlezon, W.A., Jr Development of κ opioid receptor antagonists. J. Med. Chem., 2013, 56(6), 2178-2195.
[http://dx.doi.org/10.1021/jm301783x] [PMID: 23360448]
[42]
Mitchell, J.M.; Liang, M.T.; Fields, H.L. A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology (Berl.), 2005, 182(3), 384-392.
[http://dx.doi.org/10.1007/s00213-005-0067-7] [PMID: 16001119]
[43]
Berger, A.L.; Williams, A.M.; McGinnis, M.M.; Walker, B.M. Affective cue-induced escalation of alcohol self-administration and increased 22-kHz ultrasonic vocalizations during alcohol withdrawal: role of kappa-opioid receptors. Neuropsychopharmacology, 2013, 38(4), 647-654.
[http://dx.doi.org/10.1038/npp.2012.229] [PMID: 23212453]
[44]
Walker, B.M.; Zorrilla, E.P.; Koob, G.F. Systemic κ-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addict. Biol., 2011, 16(1), 116-119.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00226.x] [PMID: 20579007]
[45]
Reed, B.; Butelman, E.R.; Fry, R.S.; Kimani, R.; Kreek, M.J. Repeated Administration of Opra Kappa (LY2456302), a Novel, Short-Acting, Selective KOP-r Antagonist, in Persons with and without Cocaine Dependence. Neuropsychopharmacology, 2018, 43(4), 739-750.
[http://dx.doi.org/10.1038/npp.2017.205] [PMID: 28857070]
[46]
Cueva, J.P.; Roche, C.; Ostovar, M.; Kumar, V.; Clark, M.J.; Hillhouse, T.M.; Lewis, J.W.; Traynor, J.R.; Husbands, S.M. C7β-methyl analogues of the orvinols: the discovery of kappa opioid antagonists with nociceptin/orphanin FQ peptide (NOP) receptor partial agonism and low, or zero, efficacy at mu opioid receptors. J. Med. Chem., 2015, 58(10), 4242-4249.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00130] [PMID: 25898137]
[47]
Robinson, S.E. Buprenorphine: an analgesic with an expanding role in the treatment of opioid addiction. CNS Drug Rev., 2002, 8(4), 377-390.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00235.x] [PMID: 12481193]
[48]
Lutfy, K.; Eitan, S.; Bryant, C.D.; Yang, Y.C.; Saliminejad, N.; Walwyn, W.; Kieffer, B.L.; Takeshima, H.; Carroll, F.I.; Maidment, N.T.; Evans, C.J. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J. Neurosci., 2003, 23(32), 10331-10337.
[http://dx.doi.org/10.1523/JNEUROSCI.23-32-10331.2003] [PMID: 14614092]
[49]
Huang, P.; Kehner, G.B.; Cowan, A.; Liu-Chen, L.Y. Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J. Pharmacol. Exp. Ther., 2001, 297(2), 688-695.
[PMID: 11303059]
[50]
Bloms-Funke, P.; Gillen, C.; Schuettler, A.J.; Wnendt, S. Agonistic effects of the opioid buprenorphine on the nociceptin/OFQ receptor. Peptides, 2000, 21(7), 1141-1146.
[http://dx.doi.org/10.1016/S0196-9781(00)00252-7] [PMID: 10998549]
[51]
Fava, M.; Memisoglu, A.; Thase, M.E.; Bodkin, J.A.; Trivedi, M.H.; de Somer, M.; Du, Y.; Leigh-Pemberton, R.; DiPetrillo, L.; Silverman, B.; Ehrich, E. Opioid Modulation With Buprenorphine/Samidorphan as Adjunctive Treatment for Inadequate Response to Antidepressants: A Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry, 2016, 173(5), 499-508.
[http://dx.doi.org/10.1176/appi.ajp.2015.15070921] [PMID: 26869247]
[52]
Lanteri, C.; Doucet, E.L.; Hernández Vallejo, S.J.; Godeheu, G.; Bobadilla, A.C.; Salomon, L.; Lanfumey, L.; Tassin, J.P. Repeated exposure to MDMA triggers long-term plasticity of noradrenergic and serotonergic neurons. Mol. Psychiatry, 2014, 19(7), 823-833.
[http://dx.doi.org/10.1038/mp.2013.97] [PMID: 23958955]
[53]
Pietrzak, R.H.; Naganawa, M.; Huang, Y.; Corsi-Travali, S.; Zheng, M.Q.; Stein, M.B.; Henry, S.; Lim, K.; Ropchan, J.; Lin, S.F.; Carson, R.E.; Neumeister, A. Association of in vivo κ-opioid receptor availability and the transdiagnostic dimensional expression of trauma-related psychopathology. JAMA Psychiatry, 2014, 71(11), 1262-1271.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1221] [PMID: 25229257]
[54]
Lalanne, L.; Ayranci, G.; Kieffer, B.L.; Lutz, P.E. The kappa opioid receptor: from addiction to depression, and back. Front. Psychiatry, 2014, 5, 170.
[http://dx.doi.org/10.3389/fpsyt.2014.00170] [PMID: 25538632]
[55]
Pradhan, A.A.; Smith, M.L.; Kieffer, B.L.; Evans, C.J. Ligand-directed signalling within the opioid receptor family. Br. J. Pharmacol., 2012, 167(5), 960-969.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02075.x] [PMID: 22708627]