Classification of Fish Sauce Origin by Means of Electronic Nose Fingerprint and Gas Chromatography-Mass Spectrometry of Volatile Compounds

Page: [166 - 175] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Volatile compounds in fish sauce may vary due to the species of fish, ingredients, processing period, temperature, and even the preference of people in each area. It is necessary to study a method of distinguishing the origins of fish sauce. The aims of this paper are to introduce a method to classification of fish sauce origin by means of electronic nose fingerprint and gas chromatography- mass spectrometry of volatile compounds and the two artificial neural networks are used to predict the origins of fish sauce.

Methods: Headspace sampling-solid phase microextraction combined with gas chromatography-mass spectrometric analysis and electronic nose were used to analysze volatile compounds in different origins of fish sauce, and these dates predicted the origins of fish sauce by artificial neural networks.

Results: 94 volatile compounds were identified by Automatic mass spectral deconvolution and identification system, out of which 44 are from Guangdong, 53 from our laboratory, 51 from Vietnam, 47 and 45 from Thailand. Then electronic nose was applied to identify the origin of fish sauce, and the data were analyzed using principal component analysis and load analysis. The fish sauce from different origin can be classified well on the PCA plot. Lastly, two artificial neural networks are used to predict the origins of fish sauce, and the accuracy rates of radial basis and gradient descent both are 93.33%.

Conclusion: That illustrates that we can provide a quick method to distinguish fish sauce products of different origins. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for product development.

Keywords: ANN, EN, fish sauce, HS-SPME-GC-MS, volatile compounds, product development.

Graphical Abstract

[1]
Yang, Y.F.; Chen, S.R.; Ni, H.; Ye, X.Q. Analysis of volatile components in a Chinese fish sauce, Fuzhou Yulu, by gas chromatography-mass spectrometry. J. Zhejiang Univ. Sci. B, 2008, 9(12), 977-981.
[http://dx.doi.org/10.1631/jzus.B0820021] [PMID: 19067466]
[2]
Tsai, Y.H.; Lin, C.Y.; Chien, L.T.; Lee, T.M.; Wei, C.I.; Hwang, D.F. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem., 2006, 98(1), 64-70.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.036]
[3]
Shih, L.; Chen, L.G.; Yu, T.S.; Chang, W.T.; Wang, S.L. Microbial reclamation of fish processing wastes for the production of fish sauce. Enzyme Microb. Technol., 2003, 33(2-3), 154-162.
[http://dx.doi.org/10.1016/S0141-0229(03)00083-8]
[4]
Sanceda, N.G.; Kurata, T.; Arakawa, N. Study on the volatile compounds of fish sauces-Shottsuru, nampla and noucman. Agric. Biol. Chem., 1986, 50(5), 1201-1208.
[5]
Yimdee, T.; Wang, X.C. Comparison of odor and taste of commercial brand fish sauces from east and south east Asian countries. Int. J. Food Prop., 2016, 19(4), 873-896.
[http://dx.doi.org/10.1080/10942912.2015.1045517]
[6]
Fan, Y.; Xue, Y.; Li, Z.; Hou, H.; Xue, C. Analyzing the flavor compounds in Chinese traditional fermented shrimp pastes by HS-SPME-GC/MS and electronic nose. J. Ocean Univ. China, 2017, 16(2), 311-318.
[http://dx.doi.org/10.1007/s11802-017-3194-y]
[7]
Leduc, F.; Tournayre, P.; Kondjoyan, N.; Mercier, F.; Malle, P.; Kol, O.; Duflos, G. Evolution of volatile odorous compounds during the storage of European seabass (Dicentrarchus labrax). Food Chem., 2012, 131(4), 1304-1311.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.123]
[8]
Markham, K.R.; Mitchell, K.A.; Wilkins, A.L.; Daldy, J.A.; Lu, Y. HPLC and GC-MS identification of the major organic constituents in New Zeland propolis. Phytochemistry, 1996, 42(1), 205-211.
[http://dx.doi.org/10.1016/0031-9422(96)83286-9]
[9]
Sánchez-Palomo, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS. Talanta, 2005, 66(5), 1152-1157.
[http://dx.doi.org/10.1016/j.talanta.2005.01.015] [PMID: 18970103]
[10]
Cuevas, F.J.; Moreno-Rojas, J.M.; Ruiz-Moreno, M.J. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem., 2017, 221, 1930-1938.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.156] [PMID: 27979182]
[11]
Riu-Aumatell, M.; Castellari, M.; López-Tamames, E.; Galassi, S.; Buxaderas, S. Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chem., 2004, 87(4), 627-637.
[http://dx.doi.org/10.1016/j.foodchem.2003.12.033]
[12]
Behrends, V.; Tredwell, G.D.; Bundy, J.G. A software complement to AMDIS for processing GC-MS metabolomic data. Anal. Biochem., 2011, 415(2), 206-208.
[http://dx.doi.org/10.1016/j.ab.2011.04.009] [PMID: 21575589]
[13]
Wu, L.; Liu, W.; Cao, J.; Li, Q.; Huang, Y.; Min, S. Analysis of the aroma components in tobacco using combined GC-MS and AMDIS. Anal. Methods, 2013, 5(5), 1259-1263.
[http://dx.doi.org/10.1039/c2ay26102b]
[14]
Weingart, G.; Kluger, B.; Forneck, A.; Krska, R.; Schuhmacher, R. Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of Vitis vinifera by HS-SPME-GC-MS. Phytochem. Anal., 2012, 23(4), 345-358.
[http://dx.doi.org/10.1002/pca.1364] [PMID: 22009551]
[15]
Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem., 1994, 18(1-3), 210-211.
[http://dx.doi.org/10.1016/0925-4005(94)87085-3]
[16]
Gardner, J.W.; Shin, H.W.; Hines, E.L. An electronic nose system to diagnose illness. Sens. Actuators B Chem., 2000, 70(1-3), 19-24.
[http://dx.doi.org/10.1016/S0925-4005(00)00548-7]
[17]
Nicolas, J.; Romain, A.C.; Ledent, C. The electronic nose as a warning device of the odour emergence in a compost hall. Sens. Actuators B Chem., 2006, 116(1-2), 95-99.
[http://dx.doi.org/10.1016/j.snb.2005.11.085]
[18]
Baby, R.E.; Cabezas, M.; De Reca, E.W. Electronic nose: A useful tool for monitoring environmental contamination. Sens. Actuators B Chem., 2000, 69(3), 214-218.
[http://dx.doi.org/10.1016/S0925-4005(00)00491-3]
[19]
Uçar, A.; Özalp, R. Efficient android electronic nose design for recognition and perception of fruit odors using Kernel Extreme Learning Machines. Chemom. Intell. Lab. Syst., 2017, 166, 69-80.
[http://dx.doi.org/10.1016/j.chemolab.2017.05.013]
[20]
Kenjerić, F.Č.; Mannino, S.; Bennedetti, S.; Primorac, L.; Čačić Kenjerić, D. Honey botanical origin determination by electronic nose. J. Apic. Res., 2009, 48(2), 99-103.
[http://dx.doi.org/10.3896/IBRA.1.48.2.03]
[21]
Han, H.J.; Lee, S.H.; Moon, J.Y.; Park, S.; Dong, H.; Noh, B.S. Discrimination of the cultivar, growing region, and geographical origin of rice (Oryza sativa) using a mass spectrometer-based electronic nose. Food Sci. Biotechnol., 2016, 25(3), 695-700.
[http://dx.doi.org/10.1007/s10068-016-0121-8] [PMID: 30263325]
[22]
Luo, D.; Chen, J.; Gao, L.; Liu, Y.; Wu, J. Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography-mass spectrometry and olfactometry and electronic nose combined with principal component analysis. Int. J. Food Sci. Technol., 2017, 52(3), 714-723.
[http://dx.doi.org/10.1111/ijfs.13326]
[23]
Wu, Z.Y.; Chen, Y.H. Predicting protein subcellular localization using the algorithm of diversity finite coefficient combined with artificial neural network. Adv. Mat. Res., 2013, 756, 3760-3765.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.756-759.3760]
[24]
D’Addona, D.M.; Genna, S.; Leone, C.; Matarazzo, D. Prediction of poly-methyl-methacrylate laser milling process characteristics based on neural networks and fuzzy data. Procedia Cirp, 2016, 41, 981-986.
[http://dx.doi.org/10.1016/j.procir.2016.01.029]