Synthesis of a Series of Chalcones and Related Flavones and Evaluation of their Antibacterial and Antifungal Activities

Page: [93 - 100] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: A series of chalcones and flavones were synthesized from 2’-hydroxyacetophenone and substituted aromatic aldehydes via Simmons-Schmidt condensation followed by oxidative cyclization.

Methods: Characterization of the obtained structures was established on the basis of their spectroscopic data. The synthesized compounds were screened for their antimicrobial activities against five bacterial strains (Citrobacter freundii, Staphylococcus aureus, Listeria monocytogenes, Salmonella braenderup, Escherichia coli.) and two fungal strains (Candida albicans, Candida krusei).

Results: The in vitro bioassay results indicated that some target compounds displayed moderate (4d, 4e) to high (4a) antifungal activity against the pathogenic fungi C. albicans and C. krusei.

Conclusion: For the antibacterial activity, only products 3d and 4d showed a weak antibacterial activity. These compounds can lead to the design of new drugs with specific antifungal activity.

Keywords: Antibacterial activity, antifungal activity, chalcones, flavones, simmons-schmidt condensation, fluconazole.

Graphical Abstract

[1]
Noskin, G.A.; Rubin, R.J.; Schentag, J.J.; Kluytmans, J.; Hedblom, E.C. Smulders, Lapetina, M.E.; Gemmen E. The burden of Staphylococcus aureus infections on hospitals in the United States: An analysis of the 2000 and 2001 Nationwide Inpatient Sample database. Arch. Intern. Med., 2005, 165(15), 1756-1761.
[2]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26, 343-356.
[3]
Kacem, N.; Roumy, V.; Duhal, N.; Merouane, F.; Neut, C.; Christen, P.; Hostettmann, K.; Rhouati, S. Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities. Ind. Crops Prod., 2016, 90, 87-93.
[4]
Grundmann, H.; de Kraker, M.; Davey, P. Clinical impact of antimicrobial resistance: Design matters. Lancet Infect. Dis., 2011, 11, 344.
[5]
Lai, C.C.; Wang, C.Y.; Chu, C.C.; Tan, C.K.; Lu, C.L.; Lee, Y.C.; Huang, Y.T.; Lee, P.I.; Hsueh, P.R. Correlation between antibiotic consumption and resistance of Gram-negative bacteria causing healthcare-associated infections at a university hospital in Taiwan from 2000 to 2009. J. Antimicrob. Chemother., 2011, 66, 1374-1382.
[6]
Osório, T.M.; Monache, F.D.; Chiaradia, L.D.; Mascarello, A.; Stumpf, T.R.; Zanetti, C.R.; Silveira, D.B.; Barardi, C.R.M.; Smânia, E.F.A.; Viancelli, A.; Garcia, L.A.T.; Yunes, R.A.; Nunes, R.J.; Junior, A.S. Antibacterial activity of chalcones, hydrazones and oxadiazoles against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2012, 22, 225-230.
[7]
Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165, 496-504.
[8]
Zheng, W.F.; Tan, R.X.; Yang, L.; Liu, Z.L. Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med., 1996, 62, 160-162.
[9]
Sagrera, G.; Bertucci, A.; Vazquez, A.; Seoane, G. Synthesis and antifungal activities of natural and synthetic bioflavonoids. Bioorg. Med. Chem., 2011, 19, 3060-3073.
[10]
Venkatesan, P.; Maruthavanan, T. Synthesis of substituted flavone derivatives as potent antimicrobial agents. Bull. Chem. Soc. Ethiop., 2011, 25, 419-425.
[11]
Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett., 2007, 17, 239-242.
[12]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[13]
Lopez, S.N.; Castelli, M.V.; Zacchino, S.A.; Domınguez, J.N.; Lobo, G.; Charris-Charris, J.; Cortés, J.C.G.; Ribas, J.C.; Devia, C.; Rodrıguez, A.M.; Enriz, R.D. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem., 2001, 9, 199-201.
[14]
Tsuchiya, H.; Sato, M.; Akagiri, M.; Takagi, N.; Tanaka, T.; Iinuma, M. Anti-candida activity of synthetic hydroxychalcones. Pharmazie, 1994, 49(10), 756-758.
[15]
Al-Saif, S.S.A.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci., 2014, 21(1), 57-64.
[16]
Hossion, A.M.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasak, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem., 2011, 54(11), 3686-3703.
[17]
Lee, K.A.; Moon, S.H.; Kim, K.T.; Mendonca, A.F.; Paik, H.D. Antimicrobial effects of various flavonoids on Escherichia coli O157: H7 cell growth and lipopolysaccharide production. Food Sci. Biotechnol., 2010, 19(1), 257-261.
[18]
Cushnie, T.; Lamb, A. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine, 2006, 13(3), 187-191.
[19]
Eumkeb, G.; Sakdarat, S.; Siriwong, S. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine, 2010, 18(1), 40-45.
[20]
Pepeljnjak, S.; Kosalec, I. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiol. Lett., 2004, 240(1), 111-116.
[21]
Ansari, J.A.; Naz, S.; Tarar, O.M. Siddiqi; R., Haider, M.S.; Jamil, K. Binding effect of Proline-Rich-Proteins (PRPs) on in vitro antimicrobial activity of the flavonoids. Braz. J. Microbiol., 2015, 46(1), 183-188.
[22]
Kamlesh, K.N.; Sivakumar, T.; Afroze, A. Antimicrobial activity of flavone analogues. J. App. Pharm, 2016, 9(1), 1-9.
[23]
Jayashree, B.S.; Alam, A.; Nayak, Y.; Kumar, D.V. Synthesis of 3-methylflavones and their antioxidant and antibacterial activities. Med. Chem. Res., 2012, 21, 1991-1996.
[24]
Walle, T. Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol. Pharm., 2007, 4, 826-832.
[25]
Verma, A.K.; Pratap, R. Chemistry of biologically important flavones. Tetrahedron, 2012, 68, 8523-8538.
[26]
Harborne, J.B.; Baxter, H. The handbook of natural flavonoids; Wiley & Sons: Chichester, UK, 1999, Vol. 1 and 2, .
[27]
Bendaha, H.; Yu, L.; Touzani, R.; Souane, R.; Giaever, G.; Nislow, C.; Boone, C.; El Kadiri, S.; Brown, G.W.; Bellaoui, M. New azole antifungal agents with novel modes of action: Synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem., 2011, 46(9), 4117-4124.
[28]
Gillum, A.M.; Tsay, E.Y.; Kirsch, D.R. Isolation of the candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae URA3 and E. coli pyrF mutations. Mol. Gen. Genet.: MGG, 1984, 198, 179-182.
[29]
Abrigach, F.; Bouchal, B.; Riant, O.; Macé, O.; Takfaoui, A.; Radi, S.; Bellaoui, M.; Touzani, R. New Antifungal agents: N, N,N′, N′-tetradentepyrazole synthesis and characterization. Med. Chem., 2016, 12(1), 83-89.
[30]
Ayari, B.; Riahi, L.; Ziadi, S.; Chograni, H.; Mliki, A. Evaluation of antioxidant and antimicrobial activities of Tunisian ajuga IVA l. essential oils. Revue F. S. B. 2013. XI
[31]
Société Française de Microbiologie Recommandations du Comité de l’Antibiogramme de la Société Française de Microbiologie. SFM, January. 2008. 49.
[32]
Adesokan, A.A.; Akanji, M.A.; Yakubu, M.T. Antibacterial potentials of aqueous extract of Enantia chlorantha stem bark. Afr. J. Biotechnol., 2007, 6(22), 2502-2505.
[33]
Performance Standards for Antimicrobial Disk Susceptibility Tests, 1997.
[34]
Abdel Ghani, S.B.; Mugisha, P.J.; Wilcox, J.C.; Gado, E.A.; Medu, E.O.; Lamb, A.J.; Brown, R.C. Convenient one-pot synthesis of chromone derivatives and their antifungal and antibacterial evaluation. Synth. Commun., 2013, 43(11), 1549-1556.
[35]
Harit, T.; Bellaouchi, R.; Asehraou, A.; Rahal, M.; Bouabdallah, I.; Malek, F. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. J. Mol. Struct., 2017, 1133, 74-79.
[36]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections. Food Res. Int., 2015, 77, 221-235.
[37]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013.
[38]
Basic, J.; Kalinic, M.; Ivkovic, B.; Eric, S.; Milenkovic, M.; Vladimirov, S.; Vujic, Z. Synthesis, QSAR analysis and mechanism of antybacterial activity of simple 2′-hydroxy chalcones. Dig. J. Nanomater. Biostruct., 2014, 9, 1537-1546.