Ethnopharmacology, Phytochemistry and Pharmacology of Lens culinaris Medikus Seeds: An Update

Page: [121 - 129] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The seeds of Lens culinaris Medikus belong to family Leguminosae and are commonly known as masoor pulses, Lentils, and Lens esculenta Moench.

Objective: The present review provides an up-to-date information on the therapeutic potential of Lentil seeds including its synonyms, taxonomical classification, geographical distribution, cultivation, pharmacognosy, phytochemistry, ethnopharmacology and reported biological uses.

Updated Information: Geographically, L. culinaris seeds are grown throughout North India. They are lens shaped, grayish brown in color with mucilaginous taste and characteristic odor. They are well known for their nutritional properties and are also considered as a vital part of a balanced diet. Besides their contribution to health due to the presence of essential macro- and micro- nutrients, they also contain various bioactive phytochemicals such as phenolic compounds, saponins, etc. which are responsible for exhibiting various pharmacological properties. The Lentil seeds are traditionally used to treat gastrointestinal problems such as dysentery, diarrhea, constipation, strangury, cardiac disorders, skin diseases, anemia, etc. Due to such an attractive ethnopharmacological profile, various studies have been conducted on Lentil seeds which recommend the use of Lentil seeds as antioxidant, antibacterial, antifungal antihyperlipidemic, etc.

Conclusion: This would assist the researchers to get a better insight into Lentil seeds.

Keywords: Edible pulse, Lens culinaris, Lens esculenta, lentils, pharmacological uses, phytoconstituents.

Graphical Abstract

[1]
Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. PID: New Delhi 1991.
[2]
Satya S, Kaushik G, Naik S. Processing of food legumes: A boon to human nutrition. Med J Nutrition Metab 2010; 3(3): 183-95.
[3]
Jood S, Bishnoi S, Sharma A. Chemical analysis and physico‐chemical properties of chickpea and lentil cultivars. Mol Nutr Food Res 1998; 42(02): 71-4.
[4]
Solanki I, Kapoor A, Singh U. Nutritional parameters and yield evaluation of newly developed genotypes of lentil (Lens culinaris Medik.). Plant Foods Hum Nutr 1999; 54(1): 79-87.
[5]
Kāśyapa, Ayachit S Kashyapiyakrishisukti: A treatise on agriculture by kashyapa. Asian Agri-History Foundation 2002.
[6]
Nene Y. Indian pulses through the millennia. Asian Agrihist 2006; 10(3): 179-202.
[7]
Zeven AC, Zhukovsky PM. Dictionary of cultivated plants and their centers of diversity. Center for Agricultural Publishing and Documentation: Wageningen 1975.
[8]
Sharma S, Knox M, Ellis TN. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor Appl Genet 1996; 93(5-6): 751-8.
[9]
Aura JE, Carrión Y, Estrelles E, Jordà GP. Plant economy of hunter-gatherer groups at the end of the last Ice Age: Plant macroremains from the cave of Santa Maira (Alacant, Spain) ca. 12000-9000 BP. Veg Hist Archaeobot 2005; 14(4): 542-50.
[10]
Ljuština M, Mikić A. Ed. Grain legumes technology transfer in Old Europe-archaecological evidence: 2008: Grain Legumes Technology Transfer Platform (GL-TTP) Workshop; 2008 Nov 27-28, Novi Sad, Serbia. Institute of Field and Vegetable Crops 2008.
[11]
Cubero JI. Origin, domestication and evolution. In: CWaGCH Eds. Lentils. Commonwealth Agricultural Bureau: Slough, UK 1981; pp. 15-38.
[12]
Hanelt P. Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals). Springer Science & Business Media: Germany 2001.
[13]
Sehirali S. Grain legume crops. Ankara University, Faculty of Agricultural Engineering, Ankara, Turkey 1988; 1089(314): 435.
[14]
Kirtikar KR, Basu BD. Indian medicinal plants. Oriental Enterprises: Uttaranchal, India 2003.
[15]
Willcox G, Fornite S, Herveux L. Early Holocene cultivation before domestication in Northern Syria. Veg Hist Archaeobot 2008; 17(3): 313-25.
[16]
Kislev ME, Bar-Yosef O. The legumes: The earliest domesticated plants in the Near East? Curr Anthropol 1988; 29(1): 175-9.
[17]
Tanno K-i, Willcox G. The origins of cultivation of Cicer arietinum L. and Vicia faba L.: Early finds from Tell el-Kerkh, north-west Syria, late 10th millennium BP. Veg Hist Archaeobot 2006; 15(3): 197-204.
[18]
Erskine W, Damania A, Valkoun J, et al. Use of historical and archaeological information in lentil improvement today. In: Damania AB, Valkoun J, Willcox G, Qualset CO, Eds. Origins of Agriculture and Crop Domestication. ICARDA: Aleppo, Syria 1998; pp. 191-8.
[19]
Marinova E, Popova T. Cicer arietinum (chick pea) in the neolithic and chalcolithic of bulgaria: Implications for cultural contacts with the neighbouring regions? Veg Hist Archaeobot 2008; 17(1): 73.
[20]
Rösch M. The history of crops and crop weeds in South-Western Germany from the Neolithic period to modern times, as shown by archaeobotanical evidence. Veg Hist Archaeobot 1998; 7(2): 109-25.
[21]
Hovsepyan R, Willcox G. The earliest finds of cultivated plants in Armenia: Evidence from charred remains and crop processing residues in pisé from the Neolithic settlements of Aratashen and Aknashen. Veg Hist Archaeobot 2008; 17(1): 63-71.
[22]
Bakels C. Archaeobotanical investigations in the Aisne Valley, Northern France, from the Neolithic up to the early Middle Ages. Veg Hist Archaeobot 1999; 8(1): 71-7.
[23]
Medovic A. Archaobotanische Untersuchungen in der metallzeitlichen Siedlung Zidovar, Vojvodina/Jugoslawien: Ein Vorbericht’. Starinar 2003; 52: 181-90.
[24]
Arobba D, Caramiello R, Del Lucchese A. Archaeobotanical investigations in Liguria: Preliminary data on the early iron age at Monte Trabocchetto (Pietra Ligure, Italy). Veg Hist Archaeobot 2003; 12(4): 253-62.
[25]
Stika HP. Approaches to reconstruction of early Celtic land-use in the cent ral Neckar region in southwestern Germany. Veg Hist Archaeobot 1999; 8(1): 95-103.
[26]
Lens culinaris (PROTA). Available from http://uses.plantnet-project.org/en/Lens_culinaris_(PROTA) [cited 15 May, 2017].
[27]
Ayurvedic Pharmacopoeia of India (API). Govt. of India. Health and Family Welfare: New Delhi 2007.
[28]
Lens culinaris Medik. (Taxonomic Serial No.: 503364) Available from https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_ topic=TSN&search_value=503364#null [cited 15 May, 2017].
[29]
Ahlawat I. Agronomy-rabi crops, Lentil. Division of Agronomy Indian Agricultural Research Institute: New Delhi 2012; p. 10.
[30]
Cokkizgin A, Shtaya MJ. Lentil: Origin, cultivation techniques, utilization and advances in transformation. Agric Sci 2013; 1(1): 55-62.
[31]
Whyte R, Luissner G, Trumble H. Legumes in agriculture FAO Agric Studies, 21 Vigna radiata 1953.
[32]
Scippa GS, Rocco M, Ialicicco M, et al. The proteome of lentil (Lens culinaris Medik.) seeds: Discriminating between landraces. Electrophoresis 2010; 31(3): 497-506.
[33]
Ialicicco M, Viscosi V, Arena S, et al. Lens culinaris Medik. seed proteome: Analysis to identify landrace markers. Plant Sci 2012; 197: 1-9.
[34]
Vohra K, Gupta VK. Pharmacognostic evaluation of Lens culinaris Medikus seeds. Asian Pac J Trop Biomed 2012; 2(3): S1221-6.
[35]
El-Adawy T, Rahma E, El-Bedawey A, et al. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr 2003; 58(3): 1-13.
[36]
Bamdad F, Goli AH, Kadivar M. Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris). Food Res Int 2006; 39(1): 106-11.
[37]
Rozan P, Kuo Y-H, Lambein F. Nonprotein amino acids in edible lentil and garden pea seedlings. Amino Acids 2001; 20(3): 319-24.
[38]
Hoover R, Hughes T, Chung H, et al. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res Int 2010; 43(2): 399-413.
[39]
Bednar GE, Patil AR, Murray SM, et al. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J Nutr 2001; 131(2): 276-86.
[40]
Vidal-Valverde C, Frias J, Sierra I, et al. New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol 2002; 215(6): 472-7.
[41]
Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. PID: New Delhi 1997; pp. 484-5.
[42]
Ryan E, Galvin K, O’Connor T, et al. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 2007; 62(3): 85-91.
[43]
Padovani RM, Lima DM, Colugnati FA, et al. Comparison of proximate, mineral and vitamin composition of common Brazilian and US foods. J Food Compos Anal 2007; 20(8): 733-8.
[44]
Demirbas A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 2005; 90(4): 773-7.
[45]
Takruri HR, Issa AY. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Med J Nutrition Metab 2013; 6(1): 3-16.
[46]
Tharanathan R, Mahadevamma S. Grain legumes- A boon to human nutrition. Trends Food Sci Technol 2003; 14(12): 507-18.
[47]
Amarowicz R, Estrella I, Hernández T, et al. Antioxidant activity of a red lentil extract and its fractions. Int J Mol Sci 2009; 10(12): 5513-27.
[48]
Dueñas M, Sun B, Hernández T, et al. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J Agric Food Chem 2003; 51(27): 7999-8004.
[49]
Dueñas M, Hernández T, Estrella I. Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur Food Res Technol 2002; 215(6): 478-83.
[50]
Xu B, Chang S. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 2007; 72(2): S159-66.
[51]
Salariya AM. The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. Int J Food Sci Technol 2005; 40(7): 695-700.
[52]
Kalogeropoulos N, Chiou A, Ioannou M, et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 2010; 121(3): 682-90.
[53]
Zadernowski R, Pierzynowska-Korniak G, Ciepielewska D, et al. Chemical characteristics and biological functions of phenolic acids of buckwheat and lentil seeds. Fagopyrum 1992; 12: 27-35.
[54]
Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. PID: New Delhi 1995.
[55]
Taylor WG, Fields PG, Sutherland DH. Fractionation of lentil seeds (Lens culinaris Medik.) for insecticidal and flavonol tetraglycoside components. J Agric Food Chem 2007; 55(14): 5491-8.
[56]
Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. PID: New Delhi 1993.
[57]
Jameel M, Ali A, Ali M. Isolation of antioxidant phytoconstituents from the seeds of Lens culinaris Medik. Food Chem 2015; 175: 358-65.
[58]
Yadav SS, McNeil D, Lentil PS. An Ancient Crop for Modern Times. Springer 2007.
[59]
Foriers A, Lebrun E, Van Rapenbusch R, et al. The structure of the lentil (Lens culinaris) lectin. Amino acid sequence determination and prediction of the secondary structure. J Biol Chem 1981; 256(11): 5550-60.
[60]
Chan YS, Yu H, Xia L, et al. Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chin Med 2015; 10(1): 25.
[61]
Mudryj AN, Yu N, Aukema HM. Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 2014; 39(11): 1197-204.
[62]
Vohra K, Dureja H, Garg V. An insight of pulses: From food to cancer treatment. J Pharmacogn Nat Prod 2015; 1(108): 2472- 0992.1000108.
[63]
Amarowicz R, Estrella I, Hernández T, et al. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem 2010; 121(3): 705-11.
[64]
Zhang B, Deng Z, Tang Y, et al. Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). J Agric Food Chem 2014; 62(52): 12585-94.
[65]
Khan DA, Hassan F, Ullah H, et al. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. Acta Pol Pharm Drug Res 2013; 70(5): 855-60.
[66]
Nair SS, Madembil NC, Nair P, et al. Comparative analysis of the antibacterial activity of some phytolectins. Int Curr Pharm J 2013; 2(2): 18-22.
[67]
Mostafa M, Hossain H, Hasan MM, et al. Antibacterial activity of six medicinal plants used in traditional medicine growing in Bangladesh. Int J Pharm Sci Res 2014; 5(6): 2210-5.
[68]
Wang H, Ng T. An antifungal peptide from red lentil seeds. Peptides 2007; 28(3): 547-52.
[69]
Shenkarev ZO, Gizatullina AK, Finkina EI, et al. Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochem Biophys Res Commun 2014; 451(2): 252-7.
[70]
Mollard R, Zykus A, Luhovyy B, et al. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br J Nutr 2012; 108(03): 509-17.
[71]
Vohra K, Gupta VK, Dureja H, et al. Antihyperlipidemic activity of Lens culinaris Medikus seeds in triton WR- 1339 induced hyperlipidemic rats. J Pharmacogn Nat Prod 2016; 2: 117.
[72]
Al-Tibi AM, Takruri HR, Ahmad MN. Effect of dehulling and cooking of lentils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays J Nutr 2010; 16(3): 409-18.
[73]
Shomaf MS, Takruri HR. Lentils (Lens culinaris L.) attenuate colonic lesions and neoplasms in Fischer 344 rats. Jordan Med J 2012; 45(3): 231-8.
[74]
Mo’ez Al-Islam EF, Takruri HR, Shomaf MS, et al. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr Res 2009; 29(5): 355-62.
[75]
Badria FA. Anticancer activity of plant-derived proteins against human tumor cell lines. J Drug Discov Ther 2014; 2(13): 60-9.
[76]
Adikay S. Phytoremedial effect of Lens culinaris against doxorubicin-induced nephrotoxicity in male Wistar rats. Int J Green Pharm 2016; 10(03): 172-7.
[77]
Kumada T, Toyoda H, Tada T, et al. High-sensitivity Lens culinaris agglutinin-reactive alpha-fetoprotein assay predicts early detection of hepatocellular carcinoma. J Gastroenterol 2014; 49(3): 555-63.
[78]
Sun Y, Qin L, Liu D, et al. Fast detection of alpha-fetoprotein-L3 using Lens culinaris agglutinin immobilized gold nanoparticles. J Nanosci Nanotechnol 2014; 14(6): 4078-81.