Gallium Sulphide (Ga2S3): Green, Reusable, and Efficient Nanocatalyst for the Synthesis of 3,3-(arylmethylene)-bis-(4-hydroxycoumarin) Under Solvent-free Condition

Page: [1064 - 1074] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Our current work's primary goal is to create novel heterogeneous gallium sulfide (Ga2S3) nanocatalysts and investigate their catalytic activity in the synthesis of 3,3-(arylmethylene)-bis-(4- hydroxycoumarin) derivatives without use of solvent. FT-IR, XRD, SEM, and EDX analysis characterized the synthesized gallium sulfide (Ga2S3) nanomaterial catalysts. This method's main benefits are its short reaction time, solvent-free conditions, extremely mild reaction conditions, good product yield, and, most importantly, its ability to recover catalysts after at least four runs.

[1]
Maresca, A.; Scozzafava, A. Bioorg. Med. Chem. Lett., 2010, 20, 7255-7258.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.094] [PMID: 21067924]
[2]
Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. Food Chem., 2010, 120(4), 1011-1018.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.040]
[3]
Carta, F.; Maresca, A.; Scozzafava, A.; Supuran, C.T. Bioorg. Med. Chem., 2012, 20(7), 2266-2273.
[http://dx.doi.org/10.1016/j.bmc.2012.02.014] [PMID: 22377674]
[4]
Hayat, P.; Eghbali, K.; Rezaei, R. Res. Chem. Intermed., 2019, 45, 5067-5089.
[http://dx.doi.org/10.1007/s11164-019-03881-6]
[5]
Ranjitha, C.; Vijayan, K.K.; Praveen, V.K.; Kumar, S.N.S. Spectrochim. Acta A, 2010, 75, 1610-1616.
[http://dx.doi.org/10.1016/j.saa.2010.02.027]
[6]
Shamsaddini, A.; Sheikhhosseini, E. Int. J. Org. Chem., 2014, 4(2), 135-141.
[http://dx.doi.org/10.4236/ijoc.2014.42015]
[7]
Bahe, A.K.; Harit, A.K.; Raghuvansi, J.; Dohare, S.; Das, R. J Med Pharm Allied Sci, 2022, 11, 4788-4793.
[http://dx.doi.org/10.55522/jmpas.V11I3.2221]
[8]
Karimian, R.; Piri, F.; Safari, A.A.; Davarpanah, S.J. J. Nanostructure Chem., 2013, 3(1), 52.
[http://dx.doi.org/10.1186/2193-8865-3-52]
[9]
Kidwa, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R.K.; Dey, S.; Singh, T.P. J. Mol. Catal. Chem., 2007, 268, 76-81.
[http://dx.doi.org/10.1016/j.molcata.2006.11.054]
[10]
Sangshetti, J.N.; Kokare, N.D.; Shinde, D.B. Green Chem. Lett. Rev., 2009, 2(4), 233-235.
[http://dx.doi.org/10.1080/17518250903393874]
[11]
Wu, X.; Peng, W. J. Chin. Chem. Soc., 2020, 67, 1.
[12]
Mahmoodi, N.O.; Jalalifard, Z.; Fathanbari, G.P. J. Chin. Chem. Soc., 2019, 67, 1-11.
[13]
Bavandi, H.; Habibi, Z.; Yousefi, M. Bioorg. Chem., 2020, 103, 104139.
[http://dx.doi.org/10.1016/j.bioorg.2020.104139] [PMID: 32745756]
[14]
Daneshvar, N.; Jolodar, G.O.; Chayjani, K.R.; Langarudi, N.M.S.; Shirini, F. ChemistrySelect, 2019, 4(5), 1562-1566.
[http://dx.doi.org/10.1002/slct.201803210]
[15]
Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Synth. Commun., 2021, 51(7), 1045-1057.
[http://dx.doi.org/10.1080/00397911.2020.1856877]
[16]
Ziarani, G.M.; Moradi, R.; Ahmadi, T.; Gholamzadeh, P. Mol. Divers., 2019, 23, 1029.
[http://dx.doi.org/10.1007/s11030-019-09918-7] [PMID: 30697671]
[17]
Sadat-Jalali, M.; Manafi, M.; Homami, S.S.; Gorji, B.; Monzavi, A. Rev. Roum. Chim., 2020, 65(5), 473-480.
[http://dx.doi.org/10.33224/rrch.2020.65.5.07]
[18]
Teimuri-Mofrad, R.; Tahmasebi, S.; Payami, E. Appl. Organomet. Chem., 2019, 33(6), e4773.
[http://dx.doi.org/10.1002/aoc.4773]
[19]
Nikpassand, M.; Fekri, L.Z. Chem Rev Lett, 2019, 2, 7.
[20]
Akbari, Z.Z.; Dastmalchi, S.; Edjlali, L.; Dinparast, L.; Es’haghi, M. Appl. Organomet. Chem., 2020, 34(7), e5649.
[http://dx.doi.org/10.1002/aoc.5649]
[21]
Mitra, B.; Ghosh, P. ChemistrySelect, 2021, 6(1), 68-81.
[http://dx.doi.org/10.1002/slct.202004245]
[22]
Sethiya, A.; Teli, P.; Manhas, A.; Agarwal, D.; Soni, J.; Sahiba, N.; Jha, P.; Agarwal, S. Synth. Commun., 2020, 50(16), 2440-2460.
[http://dx.doi.org/10.1080/00397911.2020.1780613]
[23]
Padalkar, V.; Phatangare, K.; Takale, S.; Pisal, R.; Chaskar, A. J. Saudi Chem. Soc., 2015, 19(1), 42-45.
[http://dx.doi.org/10.1016/j.jscs.2011.12.015]
[24]
Zaheer, Z.; Kalam Khan, F.A.; Sangshetti, J.N.; Patil, R.H. EXCLI J., 2015, 14, 35.
[25]
Rezaei, R.; Sheikhi, M.R. Res. Chem. Intermed., 2015, 41(3), 1283-1292.
[http://dx.doi.org/10.1007/s11164-013-1272-3]
[26]
Kiasat, A.R.; Hemat-Alian, L. Res. Chem. Intermed., 2015, 41(2), 873-880.
[http://dx.doi.org/10.1007/s11164-013-1239-4]
[27]
Zolfigol, M.A.; Nasrabadi, A.R.; Baghery, S. Appl. Organomet. Chem., 2016, 30(7), 500-509.
[http://dx.doi.org/10.1002/aoc.3461]
[28]
Nazarifar, M.R. J. Catal., 2015, 5, 351.
[29]
Karimi-Jaberi, Z.; Nazarifar, M.R.; Pooladian, B. Chin. Chem. Lett., 2012, 23(7), 781-784.
[http://dx.doi.org/10.1016/j.cclet.2012.05.003]
[30]
Karimi-Jaberi, Z. M. ECB 2014, 3, 512.
[31]
Pawar, B.; Shinde, V.; Chaskar, A. Green. Sust. Chem., 2013, 3(2), 56-60.
[http://dx.doi.org/10.4236/gsc.2013.32010]
[32]
Ziarani, G.M.; Badiei, A.; Azizi, M.; Lashgari, N. J. Chin. Chem. Soc. (Taipei), 2013, 60(5), 499-502.
[http://dx.doi.org/10.1002/jccs.201200530]
[33]
Zolfigol, M.A.; Zare, M.A.R.; Zarei, M. C. R. Chim., 2014, 17(12), 1264-1267.
[http://dx.doi.org/10.1016/j.crci.2014.03.002]
[34]
Tabatabaeian, K.; Heidari, H.; Khorshidi, A.; Mamaghani, M.; Mahmoodi, N. J. Serb. Chem. Soc., 2012, 77(4), 407-413.
[http://dx.doi.org/10.2298/JSC110427189T]
[35]
Boroujeni, K.P.; Ghasemi, P. Monatsh. Chem., 2014, 145, 1023-1026.
[36]
Yadav, U.N.; Shankarling, G.S. J. Mol. Liq., 2014, 191, 137-141.
[http://dx.doi.org/10.1016/j.molliq.2013.11.036]
[37]
Noroozizadeh, E.; Moosavi-Zare, A.R.; Zolfigol, M.A.; Zarei, M.; Karamian, R.; Asadbegy, M.; Yari, S.; Farida, S.H.M. J. Indian Chem. Soc., 2018, 15(2), 471-481.
[http://dx.doi.org/10.1007/s13738-017-1247-1]
[38]
Khurana, J.M.; Kumar, S. Tetrahedron Lett., 2009, 50(28), 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[39]
Zhu, A.; Bai, S.; Li, L.; Wang, M. Wang. J. Catal. Lett., 2015, 145(4), 1089-1093.
[http://dx.doi.org/10.1007/s10562-015-1487-6]
[40]
Karmakar, B.; Nayak, A.; Banerji, J. Tetrahedron Lett., 2012, 53(33), 4343-4346.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.024]
[41]
Kiyani, H.; Darbandi, H.; Tazari, M. J. Chem., 2016, 11, 77-84.
[42]
Tavakoli-Hoseini, N.; Heravi, M.M.; Bamoharram, F.F.; Davoodnia, A.; Ghassemzadeh, M. J. Mol. Liq., 2011, 163(3), 122-127.
[http://dx.doi.org/10.1016/j.molliq.2011.08.007]
[43]
Kazemi, M.; Ghobadi, M.; Mirzaie, A. Nanotechnol. Rev., 2018, 7(1), 43-68.
[http://dx.doi.org/10.1515/ntrev-2017-0138]
[44]
Jadhav, S.A.; Sarkate, A.P.; Raut, A.V.; Shinde, D.B. Res. Chem. Intermed., 2017, 43(8), 4531-4547.
[http://dx.doi.org/10.1007/s11164-017-2894-7]
[45]
Manouchehri, F.; Sadeghi, B.; Najafi, F.; Mosslemin, M.H. J. Indian Chem. Soc., 2018, 15(8), 1673-1683.
[http://dx.doi.org/10.1007/s13738-018-1326-y]
[46]
Sadeghzadeh, S.M.; Zhiani, R.; Emrani, S. Appl. Organomet. Chem., 2018, 32(1), e3941.
[http://dx.doi.org/10.1002/aoc.3941]
[47]
Sharghi, H.; Ghaderi, I.; Doroodmand, M.M. Appl. Organomet. Chem., 2017, 31(12), e3869.
[http://dx.doi.org/10.1002/aoc.3869]
[48]
Aute, D.; Kshirsagar, A.; Kadnor, V.; Uphade, B.; Gadhave, A. Indian J. Heterocycl. Chem., 2020, 30, 599-605.
[49]
Gadhave, A.G.; Uphade, B.K. Indian J. Heterocycl. Chem., 2020, 30, 387-394.
[50]
Aute, D.; Kshirsagar, A.; Uphade, B.; Gadhave, A. J. Chem. Sci., 2020, 132(1), 147.
[http://dx.doi.org/10.1007/s12039-020-01850-w]
[51]
Gadhave, A.G.; Kadnor, V.A.; Shirole, G.D.; Uphade, B.K. Heterocycl lett, 2021, 11, 87.
[52]
Aute, D.; Kshirsagar, A.; Uphade, B.; Gadhave, A. J. Heterocycl. Chem., 2020, 57(10), 3691-3702.
[http://dx.doi.org/10.1002/jhet.4090]
[53]
Parhad, A.; Aute, D.; Gadhave, A.; Uphade, B. Polycycl. Aromat. Compd., 2022, 42(8), 5809-5823.
[http://dx.doi.org/10.1080/10406638.2021.1957950]
[54]
Parhad, A.R.; Aute, D.S.; Gadhave, A.G.; Uphade, B.K. Lett. Org. Chem., 2023, 20, 143-153.
[http://dx.doi.org/10.2174/1570178619666220818163337]
[55]
Borhade, A.V.; Uphade, B.K. J. Indian Chem. Soc., 2015, 12(6), 1107-1113.
[http://dx.doi.org/10.1007/s13738-014-0571-y]
[56]
Parhad, A.R.; Aute, D.S.; Gadhave, A.G.; Uphade, B.K. Polycycl. Aromat. Compd., 2023, 2023, 1-18.
[http://dx.doi.org/10.1080/10406638.2023.2264446]
[57]
Abdullaeva, A.S.; Bakhtiyarly, I.B.; Kurbanova, R.D. Glass Phys. Chem., 2020, 46(4), 298-304.
[http://dx.doi.org/10.1134/S1087659620040021]
[58]
Dénoue, K.; Cheviré, F.; Calers, C.; Verger, L.; Le Coq, D.; Calvez, L. J. Solid State Chem., 2020, 292, 121743.
[http://dx.doi.org/10.1016/j.jssc.2020.121743]
[59]
Ahamad, T.; Alshehri, S.M. Nano Hybrids, 2014, 6, 37-46.
[http://dx.doi.org/10.4028/www.scientific.net/NH.6.37]