Substituted 4H-3,1-benzoxazine-4-one Derivatives as Inhibitors of Cathepsin G
  • * (Excluding Mailing and Handling)

Abstract

Background: Cathepsin G (CatG) is a cationic serine protease with a wide substrate specificity. CatG has been reported to play a role in several pathologies, including rheumatoid arthritis, ischemic reperfusion injury, acute respiratory distress syndrome, and cystic fibrosis, among others.

Objective: We aim to develop a new class of CatG inhibitors and evaluate their potency and selectivity against a series of serine proteases.

Methods: We exploited chemical synthesis as well as chromogenic substrate hydrolysis assays to construct and evaluate the new inhibitors.

Results: In this communication, we report on a new class of CatG inhibitors of 4H-3,1-benzoxazin- 4-one derivatives. We constructed a small library of seven substituted 4H-3,1-benzoxazin-4-one derivatives and identified their inhibition potential against CatG. Five molecules were identified as CatG inhibitors with values of 0.84-5.5 μM. Inhibitor 2 was the most potent, with an IC50 of 0.84 ± 0.11 μM and significant selectivity over representative serine proteases of thrombin, factor XIa, factor XIIa, and kallikrein.

Conclusion: Thus, we propose this inhibitor as a lead molecule to guide subsequent efforts to develop clinically relevant potent and selective CatG inhibitors for use as anti-inflammatory agents.

[1]
Kosikowska, P.; Lesner, A. Inhibitors of cathepsin G: A patent review (2005 to present). Expert Opin. Ther. Pat., 2013, 23(12), 1611-1624.
[http://dx.doi.org/10.1517/13543776.2013.835397] [PMID: 24079661]
[2]
Ermolieff, J.; Duranton, J.; Petitou, M.; Bieth, G.J. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: Potent effect of O-butyrylated heparin. Biochem. J., 1998, 330(3), 1369-1374.
[http://dx.doi.org/10.1042/bj3301369] [PMID: 9494108]
[3]
Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759.
[http://dx.doi.org/10.1124/pr.110.002733] [PMID: 21079042]
[4]
Pham, C.T.N. Neutrophil serine proteases: Specific regulators of inflammation. Nat. Rev. Immunol., 2006, 6(7), 541-550.
[http://dx.doi.org/10.1038/nri1841] [PMID: 16799473]
[5]
Sambrano, G.R.; Huang, W.; Faruqi, T.; Mahrus, S.; Craik, C.; Coughlin, S.R. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem., 2000, 275(10), 6819-6823.
[http://dx.doi.org/10.1074/jbc.275.10.6819] [PMID: 10702240]
[6]
Baumann, M.; Pham, C.T.N.; Benarafa, C. SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G. Blood, 2013, 121(19), 3900-3907, S1-S6.
[http://dx.doi.org/10.1182/blood-2012-09-455022] [PMID: 23532733]
[7]
Scott, F.L.; Hirst, C.E.; Sun, J.; Bird, C.H.; Bottomley, S.P.; Bird, P.I. The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Blood, 1999, 93(6), 2089-2097.
[http://dx.doi.org/10.1182/blood.V93.6.2089.406k10_2089_2097] [PMID: 10068683]
[8]
Fath, M.A.; Wu, X.; Hileman, R.E.; Linhardt, R.J.; Kashem, M.A.; Nelson, R.M.; Wright, C.D.; Abraham, W.M. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma. J. Biol. Chem., 1998, 273(22), 13563-13569.
[http://dx.doi.org/10.1074/jbc.273.22.13563] [PMID: 9593692]
[9]
Korkmaz, B.; Moreau, T.; Gauthier, F. Neutrophil elastase, proteinase 3 and cathepsin G: Physicochemical properties, activity and physiopathological functions. Biochimie, 2008, 90(2), 227-242.
[http://dx.doi.org/10.1016/j.biochi.2007.10.009] [PMID: 18021746]
[10]
Liu, X.; Tian, Y.; Meng, Z.; Chen, Y.; Ho, I.H.T.; Choy, K.W.; Lichtner, P.; Wong, S.H.; Yu, J.; Gin, T.; Wu, W.K.K.; Cheng, C.H.K.; Chan, M.T.V. Up-regulation of Cathepsin G in the development of chronic postsurgical pain: An experimental and clinical genetic study. Anesthesiology, 2015, 123(4), 838-850.
[http://dx.doi.org/10.1097/ALN.0000000000000828] [PMID: 26270939]
[11]
Amaral, A.; Fernandes, C.; Morazzo, S.; Rebordão, M.R.; Szóstek-Mioduchowska, A.; Lukasik, K.; Gawronska-Kozak, B.; Telo da Gama, L.; Skarzynski, D.J.; Ferreira-Dias, G. The inhibition of Cathepsin G on endometrial explants with endometrosis in the mare. Front. Vet. Sci., 2020, 7, 582211.
[http://dx.doi.org/10.3389/fvets.2020.582211] [PMID: 33195599]
[12]
Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr. Med. Chem., 2023, 30(4), 372-389.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[13]
Krantz, A.; Spencer, R.W.; Tam, T.F.; Liak, T.J.; Copp, L.J.; Thomas, E.M.; Rafferty, S.P. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem., 1990, 33(2), 464-479.
[http://dx.doi.org/10.1021/jm00164a002] [PMID: 2299617]
[14]
Shariat, M.; Samsudin, M.W.; Zakaria, Z. One-pot synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives under mild conditions using iminium cation from cyanuric chloride/dimethyl-formamide as a cyclizing agent. Chem. Cent. J., 2013, 7(1), 58.
[http://dx.doi.org/10.1186/1752-153X-7-58] [PMID: 23537478]
[15]
Annor-Gyamfi, J.K.; Bunce, R.A. 4H-Benzo[d][1,3]oxazin-4-ones and dihydro analogs from substituted anthranilic acids and orthoesters. Molecules, 2019, 24(19), 3555.
[http://dx.doi.org/10.3390/molecules24193555] [PMID: 31581424]
[16]
Afosah, D.K.; Fayyad, R.M.; Puliafico, V.R.; Merrell, S.; Langmia, E.K.; Diagne, S.R.; Al-Horani, R.A.; Desai, U.R. Homogeneous, synthetic, non-saccharide glycosaminoglycan mimetics as potent inhibitors of human cathepsin G. Biomolecules, 2023, 13(5), 760.
[http://dx.doi.org/10.3390/biom13050760] [PMID: 37238630]
[17]
Al-Horani, R.A.; Afosah, D.K.; Kar, S.; Aliter, K.F.; Mottamal, M. Sulphated penta-galloyl glucopyranoside (SPGG) is glycosaminoglycan mimetic allosteric inhibitor of cathepsin G. RPS Pharm. Pharmacol. Rep., 2023, 2(1), rqad001.
[http://dx.doi.org/10.1093/rpsppr/rqad001] [PMID: 36844783]
[18]
Chiles, R.; Afosah, D.K.; Al-Horani, R.A. Investigation of the anticoagulant activity of cyclic sulfated glycosaminoglycan mimetics. Carbohydr. Res., 2023, 529, 108831.
[http://dx.doi.org/10.1016/j.carres.2023.108831] [PMID: 37209666]
[19]
Al-Horani, R.A.; Afosah, D.K.; Mottamal, M. Triazol-1-yl Benzamides promote anticoagulant activity via inhibition of factor XIIa. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(2), 108-119.
[http://dx.doi.org/10.2174/1871525721666221031141323] [PMID: 36321236]
[20]
Kar, S.; Vu, K.; Mottamal, M.; Al-Horani, R.A. Ethacrynic acid is an inhibitor of human factor XIIIa. BMC Pharmacol. Toxicol., 2022, 23(1), 35.
[http://dx.doi.org/10.1186/s40360-022-00575-5] [PMID: 35642005]
[21]
Kar, S.; Mottamal, M.; Al-Horani, R.A. Discovery of benzyl tetraphosphonate derivative as inhibitor of human factor XIa. ChemistryOpen, 2020, 9(11), 1161-1172.
[http://dx.doi.org/10.1002/open.202000277] [PMID: 33204588]
[22]
Al-Horani, R.A.; Parsaeian, E.; Mohammad, M.; Mottamal, M. Sulfonated non‐saccharide molecules and human factor XIa: Enzyme inhibition and computational studies. Chem. Biol. Drug Des., 2022, 100(1), 64-79.
[http://dx.doi.org/10.1111/cbdd.14053] [PMID: 35377529]
[23]
Al-Horani, R.A.; Gailani, D.; Desai, U.R. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants. Thromb. Res., 2015, 136(2), 379-387.
[http://dx.doi.org/10.1016/j.thromres.2015.04.017] [PMID: 25935648]
[24]
Qiu, Q.; Liu, B.; Cui, J.; Li, Z.; Deng, X.; Qiang, H.; Li, J.; Liao, C.; Zhang, B.; Shi, W.; Pan, M.; Huang, W.; Qian, H. Design, synthesis, and pharmacological characterization of N -(4-(2 (6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1 H)yl)ethyl)phenyl)quina-zolin-4-amine derivatives: Novel inhibitors reversing P-glycoprotein-mediated multidrug resistance. J. Med. Chem., 2017, 60(8), 3289-3302.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01787] [PMID: 28355069]
[25]
Pieterse, L.; van der Walt, M.M. Terre’Blanche, G. C2-substituted quinazolinone derivatives exhibit A1 and/or A2A adenosine receptor affinities in the low micromolar range. Bioorg. Med. Chem. Lett., 2020, 30(16), 127274.
[http://dx.doi.org/10.1016/j.bmcl.2020.127274] [PMID: 32631506]
[26]
Mcule, Lead Optimization, 1-Click Docking Available from: https://mcule.com/apps/1-click-docking/ Accessed on December 25, 2023.