Recent Advances in Electrical & Electronic Engineering

Author(s): Keerthi Sonam Soma*, Balamurugan Ramadoss and Karuppiah Natarajan

DOI: 10.2174/0123520965271915231204114710

Optimized Maximum Power Point Tracking using Giza Pyramid Construction Algorithm for Photovoltaic Systems
  • * (Excluding Mailing and Handling)

Abstract

Background: One of the key challenges in maximizing the performance of PV systems is the efficient tracking of the maximum power point (MPP) under varying operational conditions, including changes in solar irradiance and temperature. Accurate MPP tracking is essential for achieving optimal energy conversion efficiency and maximizing the electricity generation potential of the PV array, even during partial shading conditions. Traditional maximum power point tracking (MPPT) algorithms, such as the incremental conductance (INC) method, often struggle to efficiently handle partial shading conditions. As a result, there is a need for more sophisticated and robust optimization techniques that can effectively address this challenge. This study presents a novel and innovative Giza Pyramid Construction (GPC) algorithm to solve the partial shadinginduced MPP tracking problem.

Objective: This study aims to apply the Giza Pyramid Construction (GPC) algorithm for optimized maximum power point tracking in photovoltaic systems under partial shading conditions, aiming to enhance energy conversion efficiency and overall system performance.

Methods: The methodology involves implementing the Giza Pyramid Construction (GPC) algorithm as the core optimization technique for maximum power point tracking (MPPT) in photovoltaic (PV) systems. The GPC algorithms are utilized to iteratively adjust the duty cycle of the boost converter, enabling efficient power extraction from the PV array under varying shading conditions. The performance of the GPC algorithm is evaluated through simulations in MATLAB/SIMULINK and compared against conventional MPPT methods like INC and DGO techniques.

Results: The successful application of the Giza Pyramid Construction (GPC) algorithm for optimized maximum power point tracking in PV systems under partial shading led to significantly reduced optimization time, faster settling times, and minimized output ripples. With the proposed GPC MPPT, optimization time is reduced to 41ms, settling time is reduced to 93ms, and ripples are minimized to 0.092%.

Conclusion: the Giza Pyramid Construction (GPC) algorithm demonstrates its effectiveness as a robust and efficient maximum power point tracking method in photovoltaic systems, particularly under partial shading conditions. The improved optimization speed, reduced settling times, and minimized output ripples underscore the GPC algorithm's potential to enhance the overall efficiency and reliability of PV systems, paving the way for its practical implementation in real-world renewable energy applications.

[1]
N. Abas, A. Kalair, and N. Khan, "Review of fossil fuels and future energy technologies", Futures, vol. 69, pp. 31-49, 2015.
[http://dx.doi.org/10.1016/j.futures.2015.03.003]
[2]
K. Natarajan, B.P. Kumar, and V.S. Kumar, "Fault detection of solar system using svm and thermal image processing", Int. J. Renew. Energy Res., vol. 10, no. 2, pp. 1-11, 2020.
[3]
K. Ranabhat, L. Patrikeev, A. Antal’evna-Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, "An introduction to solar cell technology", Projektovanja za Privredu, vol. 14, no. 4, pp. 481-491, 2016.
[http://dx.doi.org/10.5937/jaes14-10879]
[4]
M. Dhimish, and A.M. Tyrrell, "Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation", NPJ Mater. Degrad., vol. 6, no. 1, p. 11, 2022.
[http://dx.doi.org/10.1038/s41529-022-00221-9]
[5]
M. Jahangiri, "Analysis of standalone PV-based hybrid systems for power generation in Rural areaInternational conference on fundamental research in electrical engineering, Tehran, Iran, 2017.
[6]
L. Fara, and D. Craciunescu, "Output analysis of stand-alone PV systems: Modeling, simulation and control", Energy Procedia, vol. 112, pp. 595-605, 2017.
[http://dx.doi.org/10.1016/j.egypro.2017.03.1125]
[7]
A.F. Tazay, A.M.A. Ibrahim, O. Noureldeen, and I. Hamdan, "Modeling, control, and performance evaluation of grid-tied hybrid PV/wind power generation system: Case study of Gabel El-Zeit region, Egypt", IEEE Access, vol. 8, pp. 96528-96542, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2993919]
[8]
R. Lamba, and S.C. Kaushik, "Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system", Energy Convers. Manage., vol. 115, pp. 288-298, 2016.
[http://dx.doi.org/10.1016/j.enconman.2016.02.061]
[9]
C. Cheng, K. Dong, Z. Wang, S. Liu, J. Jurasz, and H. Zhang, "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective", Appl. Energy, vol. 336, p. 120839, 2023.
[http://dx.doi.org/10.1016/j.apenergy.2023.120839]
[10]
Y. Chaibi, A. Allouhi, M. Malvoni, M. Salhi, and R. Saadani, "Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models", Sol. Energy, vol. 188, pp. 1102-1110, 2019.
[http://dx.doi.org/10.1016/j.solener.2019.07.005]
[11]
A.M. Humada, S.Y. Darweesh, K.G. Mohammed, M. Kamil, S.F. Mohammed, N.K. Kasim, T.A. Tahseen, O.I. Awad, and S. Mekhilef, "Modeling of PV system and parameter extraction based on experimental data: Review and investigation", Sol. Energy, vol. 199, pp. 742-760, 2020.
[http://dx.doi.org/10.1016/j.solener.2020.02.068]
[12]
A. Sharma, "A comprehensive study of solar power in India and World", Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1767-1776, 2011.
[http://dx.doi.org/10.1016/j.rser.2010.12.017]
[13]
H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, "A cell-to-module-to-array detailed model for photovoltaic panels", Sol. Energy, vol. 86, no. 9, pp. 2695-2706, 2012.
[http://dx.doi.org/10.1016/j.solener.2012.06.004]
[14]
R. Errouissi, A. Al-Durra, and S.M. Muyeen, "A robust continuous-time MPC of a DC–DC boost converter interfaced with a grid-connected photovoltaic system", IEEE J. Photovolt., vol. 6, no. 6, pp. 1619-1629, 2016.
[http://dx.doi.org/10.1109/JPHOTOV.2016.2598271]
[15]
K.B. Praveen, "Performance enhancement of partial shaded photovoltaic system with the novel screw pattern array configuration scheme", IEEE Access, vol. 10, pp. 1731-1744, 2022.
[16]
A. Ba, C.O. Ehssein, M.E.M.O.M. Mahmoud, O. Hamdoun, and A. Elhassen, "Comparative study of different DC/DC power converter for optimal PV system using MPPT (P&O) method", Appl. Sol. Energy, vol. 54, no. 4, pp. 235-245, 2018.
[http://dx.doi.org/10.3103/S0003701X18040047]
[17]
A. Amir, A. Amir, H.S. Che, A. Elkhateb, and N.A. Rahim, "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems", Renew. Energy, vol. 136, pp. 1147-1163, 2019.
[http://dx.doi.org/10.1016/j.renene.2018.09.089]
[18]
R.B. Bollipo, S. Mikkili, and P.K. Bonthagorla, "Hybrid, optimal, intelligent and classical PV MPPT techniques: A review", CSEE J. Power Energy Syst., vol. 7, no. 1, pp. 9-33, 2020.
[19]
K.Y. Yap, C.R. Sarimuthu, and J.M-Y. Lim, "Artificial intelligence based MPPT techniques for solar power system: A review", J. Mod. Power Syst. Clean Energy, vol. 8, no. 6, pp. 1043-1059, 2020.
[http://dx.doi.org/10.35833/MPCE.2020.000159]
[20]
M.L. Katche, "A comprehensive review of maximum power point tracking (mppt) techniques used in solar pv systems", Energies, vol. 16, no. 5, p. 2206, 2023.
[http://dx.doi.org/10.3390/en16052206]
[21]
P. Verma, "Meta-heuristic optimization techniques used for maximum power point tracking in solar pv system", Electronics, vol. 10, no. 19, p. 2419, 2021.
[http://dx.doi.org/10.3390/electronics10192419]
[22]
N. Priyadarshi, "Maximum power point tracking for brushless DC motor-driven photovoltaic pumping systems using a hybrid ANFIS-FLOWER pollination optimization algorithm", Energies, vol. 11, no. 5, p. 10672018, .
[http://dx.doi.org/10.3390/en11051067]
[23]
M.S. Nkambule, A.N. Hasan, and A. Ali, "MPPT under partial shading conditions based on perturb & observe and incremental conductance", 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), 28-30 November 2019, Bursa, Turkey, 2019.
[http://dx.doi.org/10.23919/ELECO47770.2019.8990426]
[24]
E. Lodhi, "Performance analysis of ‘Perturb and Observe’and ’Incremental Conductance’MPPT algorithms for PV systemIOP Conference Series: Materials Science and Engineering, vol. 220. 23–25 June 2017, Beijing, China., 2017.
[25]
V. Andrean, C.C. Pei, and K.L. Lian, A review and new problems discovery of four simple decentralized maximum power point tracking algorithms—Perturb and observe, incremental conductance, golden section search, and Newton’s quadratic interpolationEnergies, vol. 11, no. 11, p. 2966, 2018.
[http://dx.doi.org/10.3390/en11112966]
[26]
A. Youssef, M. El-Telbany, and A. Zekry, "The role of artificial intelligence in photo-voltaic systems design and control: A review", Renew. Sustain. Energy Rev., vol. 78, pp. 72-79, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.04.046]
[27]
M.J. Khan, "A novel artificial intelligence maximum power point tracking technique for integrated PV-WT-FC frameworks", Energies, vol. 15, no. 9, p. 3352, 2022.
[http://dx.doi.org/10.3390/en15093352]
[28]
S. Sumathi, and S. Krishnan, "Artificial intelligence for smart solar power irrigation–comprehensive review", Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, pp. 1894-1903, 2021.
[http://dx.doi.org/10.29294/IJASE.7.3.2021.1894-1903]
[29]
A-Q. Tian, "A novel pigeon-inspired optimization based MPPT technique for PV systems", Processes, vol. 8, no. 3, p. 356, 2020.
[http://dx.doi.org/10.3390/pr8030356]
[30]
B.A. Ramdan, F.Z. Ahmed, A. El-Shahat, and S.K. Dash, "A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems", IEEE Trans. Sustain. Energy, vol. 8, no. 2, pp. 468-476, 2016.
[31]
D. Verma, S. Nema, A.M. Shandilya, and S.K. Dash, "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems", Renew. Sustain. Energy Rev., vol. 54, pp. 1018-1034, 2016.
[http://dx.doi.org/10.1016/j.rser.2015.10.068]
[32]
S. Sarwar, "A novel hybrid MPPT technique to maximize power harvesting from pv system under partial and complex partial shading", Appl. Sci., vol. 12, no. 2, p. 587, 2022.
[http://dx.doi.org/10.3390/app12020587]
[33]
M.A. Hafeez, "A novel hybrid MPPT technique based on Harris hawk optimization (HHO) and perturb and observer (P&O) under partial and complex partial shading conditions", Energies, vol. 15, no. 15, p. 5550, 2022.
[http://dx.doi.org/10.3390/en15155550]
[34]
C. Pradhan, M.K. Senapati, S.G. Malla, P.K. Nayak, and T. Gjengedal, "Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT", IEEE Syst. J., vol. 15, no. 3, pp. 3585-3596, 2021.
[http://dx.doi.org/10.1109/JSYST.2020.3020275]
[35]
V. Jately, B. Azzopardi, J. Joshi, V.B. Venkateswaran, A. Sharma, and S. Arora, "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels", Renew. Sustain. Energy Rev., vol. 150, p. 111467, 2021.
[http://dx.doi.org/10.1016/j.rser.2021.111467]
[36]
M.I. Bahari, "Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2016.
[http://dx.doi.org/10.1109/SPEEDAM.2016.7525990]
[37]
A. Mohapatra, B. Nayak, and C. Saiprakash, "Adaptive perturb & observe MPPT for PV system with experimental validation", 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), 2019.
[http://dx.doi.org/10.1109/ICSETS.2019.8744819]
[38]
M. Kamran, M. Mudassar, M.R. Fazal, M.U. Asghar, M. Bilal, and R. Asghar, "Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system", J. King Saud Univ. Eng. Sci., vol. 32, no. 7, pp. 432-441, 2020.
[http://dx.doi.org/10.1016/j.jksues.2018.04.006]
[39]
N.E. Zakzouk, M.A. Elsaharty, A.K. Abdelsalam, A.A. Helal, and B.W. Williams, "Improved performance low‐cost incremental conductance PV MPPT technique", IET Renew. Power Gener., vol. 10, no. 4, pp. 561-574, 2016.
[http://dx.doi.org/10.1049/iet-rpg.2015.0203]
[40]
M.A. Elgendy, D.J. Atkinson, and B. Zahawi, "Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates", IET Renew. Power Gener., vol. 10, no. 2, pp. 133-139, 2016.
[http://dx.doi.org/10.1049/iet-rpg.2015.0132]
[41]
A. Ali, "Review of online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditions", Energies, vol. 13, no. 12, p. 3256, 2020.
[http://dx.doi.org/10.3390/en13123256]
[42]
M. Kermadi, Z. Salam, A.M. Eltamaly, J. Ahmed, S. Mekhilef, C. Larbes, and E.M. Berkouk, "Recent developments of MPPT techniques for PV systems under partial shading conditions: A critical review and performance evaluation", IET Renew. Power Gener., vol. 14, no. 17, pp. 3401-3417, 2020.
[http://dx.doi.org/10.1049/iet-rpg.2020.0454]
[43]
N. Kumar, "A state‐of‐the‐art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications", Int. Trans. Electr. Energy Syst., vol. 30, no. 9, p. e12420, 2020.
[http://dx.doi.org/10.1002/2050-7038.12420]
[44]
M. Nabipour, M. Razaz, S.G. Seifossadat, and S.S. Mortazavi, "A new MPPT scheme based on a novel fuzzy approach", Renew. Sustain. Energy Rev., vol. 74, pp. 1147-1169, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.02.054]
[45]
M.S. Bouakkaz, "ANN based MPPT algorithm design using real operating climatic condition", 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), 18-19 February 2020, Adrar, Algeria. , 2020.
[http://dx.doi.org/10.1109/ICMIT47780.2020.9046972]
[46]
A. Borni, T. Abdelkrim, N. Bouarroudj, A. Bouchakour, L. Zaghba, A. Lakhdari, and L. Zarour, "Optimized MPPT controllers using GA for grid connected photovoltaic systems, comparative study", Energy Procedia, vol. 119, pp. 278-296, 2017.
[http://dx.doi.org/10.1016/j.egypro.2017.07.084]
[47]
N. Priyadarshi, "An ant colony optimized MPPT for standalone hybrid PV-wind power system with single Cuk converter", Energies, vol. 12, no. 1, p. 167, 2019.
[http://dx.doi.org/10.3390/en12010167]
[48]
K. Bentata, A. Mohammedi, and T. Benslimane, "Development of rapid and reliable cuckoo search algorithm for global maximum power point tracking of solar PV systems in partial shading condition", Arch. Control Sci., vol. 31, no. 3, pp. 495-526, 2021.
[49]
C. Hemalatha, M. Valan Rajkumar, and G. Vidhya Krishnan, "Simulation and analysis of MPPT control with modified firefly algorithm for photovoltaic system", Int. J. Innov. Stud. Sci. Eng. Technol, vol. 4863, pp. 2-6, 2016.
[50]
H. Li, D. Yang, W. Su, J. Lu, and X. Yu, "An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading", IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 265-275, 2019.
[http://dx.doi.org/10.1109/TIE.2018.2829668]
[51]
F.D. Murdianto, A.R. Nansur, and S.L.H. Alfis, "Modeling and simulation of MPPT coupled inductor sepie converter using Flower Pollination Algorithm (FPA) Method in DC mierogrid system", 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), 2017.
[http://dx.doi.org/10.1109/ELECSYM.2017.8240364]
[52]
A. Subramaniana, and J. Raman, "Modified seagull optimization algorithm based MPPT for augmented performance of photovoltaic solar energy systems", Automatika, vol. 63, no. 1, pp. 1-15, 2022.
[http://dx.doi.org/10.1080/00051144.2021.1997253]
[53]
Z. Zhao, M. Zhang, Z. Zhang, Y. Wang, R. Cheng, J. Guo, P. Yang, C.S. Lai, P. Li, and L.L. Lai, "Hierarchical pigeon-inspired optimization-based MPPT method for photovoltaic systems under complex partial shading conditions", IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 10129-10143, 2022.
[http://dx.doi.org/10.1109/TIE.2021.3137595]
[54]
F.D. Murdianto, Modeling and simulation of mppt sepic-buck converter series using flower pollination algorithm (fpa)-pi controller in dc microgrid isolated system2018 International Electrical Engineering Congress (iEECON), 07-09 March 2018, Krabi, Thailand, 2018.
[http://dx.doi.org/10.1109/IEECON.2018.8712290]
[55]
S. Sadaf, M.S. Bhaskar, M. Meraj, A. Iqbal, and N. Al-Emadi, "A novel modified switched inductor boost converter with reduced switch voltage stress", IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1275-1289, 2021.
[http://dx.doi.org/10.1109/TIE.2020.2970648]
[56]
G. Li, "A novel quadratic boost converter with low inductor currents", CPSS TPEA, vol. 5, no. 1, pp. 1-10, 2020.
[http://dx.doi.org/10.24295/CPSSTPEA.2020.00001]
[57]
A. Pradhan, and B. Panda, "A simplified design and modeling of boost converter for photovoltaic sytem”", Int. J. Electr. Comput. Eng., vol. 8, no. 1, p. 141, 2018.
[http://dx.doi.org/10.11591/ijece.v8i1.pp141-149]
[58]
S. Harifi, J. Mohammadzadeh, M. Khalilian, and S. Ebrahimnejad, "Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization", Evol. Intell., vol. 14, no. 4, pp. 1743-1761, 2021.
[http://dx.doi.org/10.1007/s12065-020-00451-3]
[59]
S. Harifi, "A binary ancient-inspired Giza Pyramids Construction metaheuristic algorithm for solving 0-1 knapsack problem", Soft Comput., vol. 26, no. 22, pp. 12761-12778, 2022.
[http://dx.doi.org/10.1007/s00500-022-07285-4]
[60]
S. Ebrahimnejad, and S. Harifi, "An optimized evacuation model with compatibility constraints in the context of disability: an ancient-inspired Giza Pyramids Construction metaheuristic approach", Appl. Intell., vol. 52, no. 13, pp. 15040-15073, 2022.
[http://dx.doi.org/10.1007/s10489-021-03079-7]
[61]
C. Krafft, The Evolution of Labor Supply in Egypt from 1988-2018: A Gendered Analysis., Cairo: Economic Research Forum (ERF),, 2019.
[62]
P. Singh, N. Shukla, and P. Gaur, "Modified variable step incremental-conductance MPPT technique for photovoltaic system", Int. J. Inf. Technol., vol. 13, no. 6, pp. 2483-2490, 2021.
[http://dx.doi.org/10.1007/s41870-020-00450-8]
[63]
M. Patil, "Optimal power point detection in dynamic partial shading of PV systems using darts game optimizer algorithm", 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), 10-12 February 2023, Aligarh, India , 2023.
[http://dx.doi.org/10.1109/PIECON56912.2023.10085785]