Mini-Reviews in Organic Chemistry

Author(s): Qiang Zhu, Xing Zheng, Yan Tan, Zhongqin Luo, Xu Yao* and Hongfei Chen*

DOI: 10.2174/0118756298277226231128032502

DownloadDownload PDF Flyer Cite As
Biological Activities of Aurones: A Brief Summary

Page: [226 - 243] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Aurones are structural isomers of flavones and flavonols with the basic C6–C3–C6 skeleton arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one, which contain an exocyclic carbon-carbon double bond bridging the benzofuranone and phenyl rings. In aurone, a chalcone-like group is closed into a 5-membered ring instead of the 6-membered ring more typical of flavonoids, which forms the core for a family of derivatives that are known collectively as aurones. As a kind of flavonoids, aurones are widely distributed in many plants which provide yellow color to some popular ornamental flowers. For a long time aurones had not got enough attention, while in recent years, finally this chemical is coming into researchers' view. As the secondary metabolite in the family of flavonoids, aurones displayed various biological activities, including antioxidant, antiparasitic, antitumor, antiviral, antibacterial, anti-inflammatory, anti-SARS-CoV-2 and neuropharmacological activities. Therefore, aurones have attracted the attention of more and more chemists and pharmaceutical chemists, who realized that it is possible to get lead compounds with better activities via structural modifications of aurones. In some research works, aurone and its derivatives have exhibited good activity, e.g., Xie discovered the heterocyclic variant of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)- one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, and absence of appreciable toxicity, which proved that aurones are valuable compounds worthy of further study. Herein, the biological activities of aurone derivatives are reviewed, which covers the literature since 2000, in which the strategies to develop bioactive aurone derivatives and the structureactivity relationship are highlighted.

Keywords: Aurones, biological activities, cytotoxicity, structural modification, chemical synthesis, antitumor activity.

Graphical Abstract

[1]
Ono, E.; Fukuchi-Mizutani, M.; Nakamura, N.; Fukui, Y.; Yonekura-Sakakibara, K.; Yamaguchi, M.; Nakayama, T.; Tanaka, T.; Kusumi, T.; Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA, 2006, 103(29), 11075-11080.
[http://dx.doi.org/10.1073/pnas.0604246103] [PMID: 16832053]
[2]
Nakayama, T. Enzymology of aurone biosynthesis. J. Biosci. Bioeng., 2002, 94(6), 487-491.
[http://dx.doi.org/10.1016/S1389-1723(02)80184-0] [PMID: 16233339]
[3]
Boumendjel, A. Aurones: a subclass of flavones with promising biological potential. Curr. Med. Chem., 2003, 10(23), 2621-2630.
[http://dx.doi.org/10.2174/0929867033456468] [PMID: 14529476]
[4]
Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.M.; Perrier, E.; Boumendjel, A. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. J. Med. Chem., 2006, 49(1), 329-333.
[http://dx.doi.org/10.1021/jm050715i] [PMID: 16392817]
[5]
Ono, M.; Maya, Y.; Haratake, M.; Ito, K.; Mori, H.; Nakayama, M. Aurones serve as probes of β-amyloid plaques in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2007, 361(1), 116-121.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.162] [PMID: 17644062]
[6]
Ren, J.; Su, D.; Li, L.; Cai, H.; Zhang, M.; Zhai, J.; Li, M.; Wu, X.; Hu, K. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol. Appl. Pharmacol., 2020, 387, 114846.
[http://dx.doi.org/10.1016/j.taap.2019.114846] [PMID: 31790703]
[7]
Yang, Y.; Sheng, Y.; Wang, J.; Zhou, X.; Guan, Q.; Shen, H.; Li, W.; Ruan, S. Aureusidin derivative CNQX inhibits chronic colitis inflammation and mucosal barrier damage by targeting myeloid differentiation 2 protein. J. Cell. Mol. Med., 2021, 25(15), 7257-7269.
[http://dx.doi.org/10.1111/jcmm.16755] [PMID: 34184406]
[8]
Shrestha, S.; Natarajan, S.; Park, J.H.; Lee, D.Y.; Cho, J.G.; Kim, G.S.; Jeon, Y.J.; Yeon, S.W.; Yang, D.C.; Baek, N.I. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora. Bioorg. Med. Chem. Lett., 2013, 23(18), 5150-5154.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.020] [PMID: 23927974]
[9]
Güçlütürk, I.; Detsi, A.; Weiss, E.K.; Ioannou, E.; Roussis, V.; Kefalas, P. Evaluation of anti-oxidant activity and identification of major polyphenolics of the invasive weed Oxalis pes-caprae. Phytochem. Anal., 2012, 23(6), 642-646.
[http://dx.doi.org/10.1002/pca.2367] [PMID: 22552843]
[10]
(a) Zhang, Y.; Xu, H.; Hu, Z.; Yang, G.; Yu, X.; Chen, Q.; Zheng, L.; Yan, Z. Eleocharis dulcis corm: Phytochemicals, health benefits, processing and food products. J. Sci. Food Agric., 2022, 102(1), 19-40.
[http://dx.doi.org/10.1002/jsfa.11508] [PMID: 34453323];
(b) Luo, Y.H. Method of extracting Aureusidin from Eleocharis dulcis. CN104557824A, 2014.
[11]
Abdullah, Z.; Knolle, P.A. Liver macrophages in healthy and diseased liver. Pflugers Arch., 2017, 469(3-4), 553-560.
[http://dx.doi.org/10.1007/s00424-017-1954-6] [PMID: 28293730]
[12]
Church, R.J.; Watkins, P.B. The transformation in biomarker detection and management of drug‐induced liver injury. Liver Int., 2017, 37(11), 1582-1590.
[http://dx.doi.org/10.1111/liv.13441] [PMID: 28386997]
[13]
Yu, M.; Zhu, Y.; Cong, Q.; Wu, C. Metabonomics research progress on liver diseases. Can. J. Gastroenterol. Hepatol., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/8467192] [PMID: 28321390]
[14]
Arauz, J.; Ramos-Tovar, E.; Muriel, P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann. Hepatol., 2016, 15(2), 160-173.
[PMID: 26845593]
[15]
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[16]
Mello, T.; Zanieri, F.; Ceni, E.; Galli, A. Oxidative stress in the healthy and wounded hepatocyte: A cellular organelles perspective. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/8327410] [PMID: 26788252]
[17]
Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol., 2016, 10, 148-156.
[http://dx.doi.org/10.1016/j.redox.2016.10.001] [PMID: 27744120]
[18]
Huang, Y.; Li, W.; Su, Z.; Kong, A.N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J. Nutr. Biochem., 2015, 26(12), 1401-1413.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.001] [PMID: 26419687]
[19]
Zeng, T.; Zhang, C.L.; Xiao, M.; Yang, R.; Xie, K.Q. Critical roles of Kupffer cells in the pathogenesis of alcoholic liver disease: From basic science to clinical trials. Front. Immunol., 2016, 7, 538.
[http://dx.doi.org/10.3389/fimmu.2016.00538] [PMID: 27965666]
[20]
Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem., 2009, 17(23), 8073-8085.
[http://dx.doi.org/10.1016/j.bmc.2009.10.002] [PMID: 19853459]
[21]
Tronina, T.; Bartmańska, A.; Popłoński, J.; Huszcza, E. Transformation of xanthohumol by Aspergillus ochraceus. J. Basic Microbiol., 2014, 54(1), 66-71.
[http://dx.doi.org/10.1002/jobm.201200320] [PMID: 23463662]
[22]
Makhmoor, T.; Naheed, S.; Shujaat, S.; Jalil, S.; Hayat, S.; Choudhary, M.I.; Khan, K.M.; Alam, J.M.; Nazir, S. Hepatoprotection by chemical constituents of the marine brown alga Spatoglossum variabile : A relation to free radical scavenging potential. Pharm. Biol., 2013, 51(3), 383-390.
[http://dx.doi.org/10.3109/13880209.2012.732582] [PMID: 23406359]
[23]
Venkateswarlu, S.; Panchagnula, G.K.; Subbaraju, G.V. Synthesis and antioxidative activity of 3′,4′,6,7-tetrahydroxyaurone, a metabolite of Bidens frondosa. Biosci. Biotechnol. Biochem., 2004, 68(10), 2183-2185.
[http://dx.doi.org/10.1271/bbb.68.2183] [PMID: 15502366]
[24]
Xiao, C.J.; Zhang, Y.; Qiu, L.; Dong, X.; Jiang, B. Schistosomicidal and antioxidant flavonoids from Astragalus englerianus. Planta Med., 2014, 80(18), 1727-1731.
[http://dx.doi.org/10.1055/s-0034-1383219] [PMID: 25371983]
[25]
Pan, G.; Li, X.; Zhao, L.; Wu, M.; Su, C.; Li, X.; Zhang, Y.; Yu, P.; Teng, Y.; Lu, K. Synthesis and anti-oxidant activity evaluation of (±)-Anastatins A, B and their analogs. Eur. J. Med. Chem., 2017, 138, 577-589.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.054] [PMID: 28704760]
[26]
Nakabo, D.; Okano, Y.; Kandori, N.; Satahira, T.; Kataoka, N.; Akamatsu, J.; Okada, Y. Convenient synthesis and physiological activities of flavonoids in Coreopsis lanceolata L. petals and their related compounds. Molecules, 2018, 23(7), 1671.
[http://dx.doi.org/10.3390/molecules23071671] [PMID: 29987259]
[27]
Martinelli, A.; Moreira, R.; Cravo, P. Malaria combination therapies: Advantages and shortcomings. Mini Rev. Med. Chem., 2008, 8(3), 201-212.
[http://dx.doi.org/10.2174/138955708783744092] [PMID: 18336340]
[28]
Arav-Boger, R.; Shapiro, T.A. Molecular mechanisms of resistance in antimalarial chemotherapy: The unmet challenge. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 565-585.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095946] [PMID: 15822189]
[29]
Fidock, D.A.; Eastman, R.T.; Ward, S.A.; Meshnick, S.R. Recent highlights in antimalarial drug resistance and chemotherapy research. Trends Parasitol., 2008, 24(12), 537-544.
[http://dx.doi.org/10.1016/j.pt.2008.09.005] [PMID: 18938106]
[30]
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem., 2009, 17(9), 3229-3256.
[http://dx.doi.org/10.1016/j.bmc.2009.02.050] [PMID: 19299148]
[31]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res., 2003, 90(0)(Suppl. 2), S55-S62.
[http://dx.doi.org/10.1007/s00436-002-0768-3] [PMID: 12937967]
[32]
Kayser, O.; Kiderlen, A.; Brun, R. In vitro activity of aurones against Plasmodium falciparum strains K1 and NF54. Planta Med., 2001, 67(8), 718-721.
[http://dx.doi.org/10.1055/s-2001-18356] [PMID: 11731912]
[33]
Souard, F.; Okombi, S.; Beney, C.; Chevalley, S.; Valentin, A.; Boumendjel, A. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs. Bioorg. Med. Chem., 2010, 18(15), 5724-5731.
[http://dx.doi.org/10.1016/j.bmc.2010.06.008] [PMID: 20630767]
[34]
Carrasco, M.P.; Newton, A.S.; Gonçalves, L.; Góis, A.; Machado, M.; Gut, J.; Nogueira, F.; Hänscheid, T.; Guedes, R.C.; dos Santos, D.J.V.A.; Rosenthal, P.J.; Moreira, R. Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial activity. Eur. J. Med. Chem., 2014, 80, 523-534.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.076] [PMID: 24813880]
[35]
Ramazani, A.; Hamidnezhad, R.; Foroumadi, A.; Mirzaei, S.A.; Maddahi, S.; Hassanzadeh, S.M. In vitro antiplasmodial activity and cytotoxic effect of (Z)-2-Benzylidene-4, 6-Dimethoxybenzofuran-3(2H)-One derivatives. Iran. J. Parasitol., 2016, 11(3), 371-376.
[PMID: 28127343]
[36]
Morimoto, M.; Cantrell, C.L.; Khan, S.; Tekwani, B.L.; Duke, S.O. Antimalarial and antileishmanial activities of phytophenolics and their synthetic analogues. Chem. Biodivers., 2017, 14(12), e1700324.
[http://dx.doi.org/10.1002/cbdv.201700324] [PMID: 28990331]
[37]
Kayser, O.; Waters, W.; Woods, K.; Upton, S.; Keithly, J.; Kiderlen, A. Evaluation of in vitro activity of aurones and related compounds against Cryptosporidium parvum. Planta Med., 2001, 67(8), 722-725.
[http://dx.doi.org/10.1055/s-2001-18357] [PMID: 11731913]
[38]
Roussaki, M.; Costa Lima, S.; Kypreou, A.M.; Kefalas, P.; Cordeiro da Silva, A.; Detsi, A. Aurones: A promising heterocyclic scaffold for the development of potent antileishmanial agents. Int. J. Med. Chem., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/196921] [PMID: 25374683]
[39]
Pereira, V.R.D.; da Silveira, L.S.; Mengarda, A.C.; Alves Júnior, I.J.; da Silva, O.O.Z.; Miguel, F.B.; Silva, M.P.; Almeida, A.C.; Torres, D.S.; Pinto, P.F.; Coimbra, E.S.; de Moraes, J.; Couri, M.R.C.; da Silva Filho, A.A. Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop., 2021, 213, 105741.
[http://dx.doi.org/10.1016/j.actatropica.2020.105741] [PMID: 33159900]
[40]
Walsh, D.M.; Selkoe, D.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 2004, 44(1), 181-193.
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[41]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[42]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[43]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[44]
Tang, H.; Zhao, H.T.; Zhong, S.M.; Wang, Z.Y.; Chen, Z.F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.090] [PMID: 22341944]
[45]
Lee, Y.H.; Shin, M.C.; Yun, Y.D.; Shin, S.Y.; Kim, J.M.; Seo, J.M.; Kim, N.J.; Ryu, J.H.; Lee, Y.S. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2015, 23(1), 231-240.
[http://dx.doi.org/10.1016/j.bmc.2014.11.004] [PMID: 25468034]
[46]
Liew, K.F.; Chan, K.L.; Lee, C.Y. Blood–brain barrier permeable anticholinesterase aurones: Synthesis, structure–activity relationship, and drug-like properties. Eur. J. Med. Chem., 2015, 94, 195-210.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.055] [PMID: 25768702]
[47]
Li, Y.; Qiang, X.; Luo, L.; Li, Y.; Xiao, G.; Tan, Z.; Deng, Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(10), 2342-2351.
[http://dx.doi.org/10.1016/j.bmc.2016.04.012] [PMID: 27079124]
[48]
Mughal, E.U.; Sadiq, A.; Murtaza, S.; Rafique, H.; Zafar, M.N.; Riaz, T.; Khan, B.A.; Hameed, A.; Khan, K.M. Synthesis, structure–activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 100-106.
[http://dx.doi.org/10.1016/j.bmc.2016.10.016] [PMID: 27780618]
[49]
(a) Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Liu, Q.; Ai, J.; Tan, Z.; Deng, Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 126, 762-775.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.009] [PMID: 27951485];
(b) Deng, Y. Methods and uses for the preparation of aurone mannich base analogs. China, CN106632181B, 2016.
[50]
Mehrabi, F.; Pourshojaei, Y.; Moradi, A.; Sharifzadeh, M.; Khosravani, L.; Sabourian, R.; Rahmani-Nezhad, S.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Asadipour, A.; Rahimi, H.R.; Moghimi, S.; Foroumadi, A. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem., 2017, 9(7), 659-671.
[http://dx.doi.org/10.4155/fmc-2016-0237] [PMID: 28485614]
[51]
Liew, K.F.; Lee, E.H.C.; Chan, K.L.; Lee, C.Y. Multi-targeting aurones with monoamine oxidase and amyloid-beta inhibitory activities: Structure-activity relationship and translating multi-potency to neuroprotection. Biomed. Pharmacother., 2019, 110, 118-128.
[http://dx.doi.org/10.1016/j.biopha.2018.11.054] [PMID: 30466001]
[52]
Lawrence, N.J.; Rennison, D.; McGown, A.T.; Hadfield, J.A. The total synthesis of an aurone isolated from Uvaria hamiltonii : Aurones and flavones as anticancer agents. Bioorg. Med. Chem. Lett., 2003, 13(21), 3759-3763.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.003] [PMID: 14552774]
[53]
(a) Huang, W.; Liu, M.Z.; Li, Y.; Tan, Y.; Yang, G.F. Design, syntheses, and antitumor activity of novel chromone and aurone derivatives. Bioorg. Med. Chem., 2007, 15(15), 5191-5197.
[http://dx.doi.org/10.1016/j.bmc.2007.05.022] [PMID: 17524655];
(b) Zhou, G.C. 5-Hydroxy-2'-nitro aurone or 5-hydroxy-4'-nitro aurone derivatives and their applications. CN105037305A, 2015.
[54]
Uesawa, Y.; Sakagami, H.; Ikezoe, N.; Takao, K.; Kagaya, H.; Sugita, Y. Quantitative structure-cytotoxicity relationship of aurones. Anticancer Res., 2017, 37(11), 6169-6176.
[PMID: 29061798]
[55]
Xie, Y.; Kril, L.M.; Yu, T.; Zhang, W.; Frasinyuk, M.S.; Bondarenko, S.P.; Kondratyuk, K.M.; Hausman, E.; Martin, Z.M.; Wyrebek, P.P.; Liu, X.; Deaciuc, A.; Dwoskin, L.P.; Chen, J.; Zhu, H.; Zhan, C.G.; Sviripa, V.M.; Blackburn, J.; Watt, D.S.; Liu, C. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Sci. Rep., 2019, 9(1), 6439.
[http://dx.doi.org/10.1038/s41598-019-42917-0] [PMID: 31015569]
[56]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[57]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[58]
Borst, P. Cancer drug pan-resistance: Pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol., 2012, 2(5), 120066.
[http://dx.doi.org/10.1098/rsob.120066] [PMID: 22724067]
[59]
Tóth, S.; Szepesi, Á.; Tran-Nguyen, V.K.; Sarkadi, B.; Német, K.; Falson, P.; Di Pietro, A.; Szakács, G.; Boumendjel, A. Synthesis and anticancer cytotoxicity of azaaurones overcoming multidrug resistance. Molecules, 2020, 25(3), 764.
[http://dx.doi.org/10.3390/molecules25030764] [PMID: 32050702]
[60]
Lone, M.S.; Nabi, S.A.; Wani, F.R.; Garg, M.; Amin, S.; Samim, M.; Shafi, S.; Khan, F.; Javed, K. Design, synthesis and evaluation of 5-chloro-6-methylaurone derivatives as potential anti-cancer agents. J. Biomol. Struct. Dyn., 2023, 1-22.
[http://dx.doi.org/10.1080/07391102.2023.2183716] [PMID: 36856061]
[61]
Nabi, S.A.; Ramzan, F.; Lone, M.S.; Nainwal, L.M.; Hamid, A.; Batool, F.; Husain, M.; Samim, M.; Shafi, S.; Sharma, K.; Bano, S.; Javed, K. Halogen substituted aurones as potential apoptotic agents: Synthesis, anticancer evaluation, molecular docking, ADMET and DFT study. J. Biomol. Struct. Dyn., 2023, 1-18.
[http://dx.doi.org/10.1080/07391102.2023.2240897] [PMID: 37517055]
[62]
Hatzakis, A.; Wait, S.; Bruix, J.; Buti, M.; Carballo, M.; Cavaleri, M.; Colombo, M.; Delarocque-Astagneau, E.; Dusheiko, G.; Esmat, G.; Esteban, R.; Goldberg, D.; Gore, C.; Lok, A.S.F.; Manns, M.; Marcellin, P.; Papatheodoridis, G.; Peterle, A.; Prati, D.; Piorkowsky, N.; Rizzetto, M.; Roudot-Thoraval, F.; Soriano, V.; Thomas, H.C.; Thursz, M.; Valla, D.; van Damme, P.; Veldhuijzen, I.K.; Wedemeyer, H.; Wiessing, L.; Zanetti, A.R.; Janssen, H.L.A. The state of hepatitis B and C in Europe: Report from the hepatitis B and C summit conference. J. Viral Hepat., 2011, 18(s1)(Suppl. 1), 1-16.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01499.x] [PMID: 21824223]
[63]
Gravitz, L. Introduction: A smouldering public-health crisis. Nature, 2011, 474(7350), S2-S4.
[http://dx.doi.org/10.1038/474S2a] [PMID: 21666731]
[64]
Haudecoeur, R.; Peuchmaur, M.; Ahmed-Belkacem, A.; Pawlotsky, J.M.; Boumendjel, A. Structure-activity relationships in the development of allosteric hepatitis C virus RNA-dependent RNA polymerase inhibitors: Ten years of research. Med. Res. Rev., 2013, 33(5), 934-984.
[http://dx.doi.org/10.1002/med.21271] [PMID: 22893620]
[65]
Mayhoub, A.S. Hepatitis C RNA-dependent RNA polymerase inhibitors: A review of structure–activity and resistance relationships; different scaffolds and mutations. Bioorg. Med. Chem., 2012, 20(10), 3150-3161.
[http://dx.doi.org/10.1016/j.bmc.2012.03.049] [PMID: 22516671]
[66]
Barreca, M.L.; Iraci, N.; Manfroni, G.; Cecchetti, V. Allosteric inhibition of the hepatitis C virus NS5B polymerase: In silico strategies for drug discovery and development. Future Med. Chem., 2011, 3(8), 1027-1055.
[http://dx.doi.org/10.4155/fmc.11.53] [PMID: 21707403]
[67]
Beaulieu, P.L. Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection. Expert Opin. Ther. Pat., 2009, 19(2), 145-164.
[http://dx.doi.org/10.1517/13543770802672598] [PMID: 19441916]
[68]
Beaulieu, P.L.; Bös, M.; Cordingley, M.G.; Chabot, C.; Fazal, G.; Garneau, M.; Gillard, J.R.; Jolicoeur, E.; LaPlante, S.; McKercher, G.; Poirier, M.; Poupart, M.A.; Tsantrizos, Y.S.; Duan, J.; Kukolj, G. Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV). J. Med. Chem., 2012, 55(17), 7650-7666.
[http://dx.doi.org/10.1021/jm3006788] [PMID: 22849725]
[69]
Wang, M.; Ng, K.K.S.; Cherney, M.M.; Chan, L.; Yannopoulos, C.G.; Bedard, J.; Morin, N.; Nguyen-Ba, N.; Alaoui-Ismaili, M.H.; Bethell, R.C.; James, M.N.G. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J. Biol. Chem., 2003, 278(11), 9489-9495.
[http://dx.doi.org/10.1074/jbc.M209397200] [PMID: 12509436]
[70]
Pauwels, F.; Mostmans, W.; Quirynen, L.M.M.; van der Helm, L.; Boutton, C.W.; Rueff, A.S.; Cleiren, E.; Raboisson, P.; Surleraux, D.; Nyanguile, O.; Simmen, K.A. Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors. J. Virol., 2007, 81(13), 6909-6919.
[http://dx.doi.org/10.1128/JVI.01543-06] [PMID: 17459932]
[71]
Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[72]
Haudecoeur, R.; Ahmed-Belkacem, A.; Yi, W.; Fortuné, A.; Brillet, R.; Belle, C.; Nicolle, E.; Pallier, C.; Pawlotsky, J.M.; Boumendjel, A. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem., 2011, 54(15), 5395-5402.
[http://dx.doi.org/10.1021/jm200242p] [PMID: 21699179]
[73]
Meguellati, A.; Ahmed-Belkacem, A.; Yi, W.; Haudecoeur, R.; Crouillère, M.; Brillet, R.; Pawlotsky, J.M.; Boumendjel, A.; Peuchmaur, M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2014, 80, 579-592.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.005] [PMID: 24835816]
[74]
Meguellati, A.; Ahmed-Belkacem, A.; Nurisso, A.; Yi, W.; Brillet, R.; Berqouch, N.; Chavoutier, L.; Fortuné, A.; Pawlotsky, J.M.; Boumendjel, A.; Peuchmaur, M. New pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2016, 115, 217-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.005] [PMID: 27017550]
[75]
Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem., 2020, 28(1), 115191.
[http://dx.doi.org/10.1016/j.bmc.2019.115191] [PMID: 31744778]
[76]
Caleffi, G.S.; Rosa, A.S.; de Souza, L.G.; Avelar, J.L.S.; Nascimento, S.M.R.; de Almeida, V.M.; Tucci, A.R.; Ferreira, V.N.; da Silva, A.J.M.; Santos-Filho, O.A.; Miranda, M.D.; Costa, P.R.R. Aurones: A promising scaffold to inhibit SARS-CoV-2 replication. J. Nat. Prod., 2023, 86(6), 1536-1549.
[http://dx.doi.org/10.1021/acs.jnatprod.3c00249] [PMID: 37257024]
[77]
Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3223-3227.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.045] [PMID: 20430485]
[78]
Sutton, C.L.; Taylor, Z.E.; Farone, M.B.; Handy, S.T. Antifungal activity of substituted aurones. Bioorg. Med. Chem. Lett., 2017, 27(4), 901-903.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.012] [PMID: 28094180]
[79]
Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem., 2019, 165, 133-141.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.022] [PMID: 30665143]
[80]
Campaniço, A.; Carrasco, M.P.; Njoroge, M.; Seldon, R.; Chibale, K.; Perdigão, J.; Portugal, I.; Warner, D.F.; Moreira, R.; Lopes, F. Azaaurones as potent antimycobacterial agents active against MDR‐ and XDR‐TB. ChemMedChem, 2019, 14(16), 1537-1546.
[http://dx.doi.org/10.1002/cmdc.201900289] [PMID: 31294529]
[81]
(a) Alqahtani, F.M.; Arivett, B.A.; Taylor, Z.E.; Handy, S.T.; Farone, A.L.; Farone, M.B. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One, 2019, 14(12), e0226068.
[http://dx.doi.org/10.1371/journal.pone.0226068] [PMID: 31825988];
(b) Hou, X.L. A heterocyclic aurone-containing derivative and antimicrobial use. CN114349743A, 2022.
[82]
Wu, H.; Zhao, H.; Lu, T.; Xie, B.; Niu, C.; Aisa, H.A. Synthesis and activity of aurone and indanone derivatives. Med. Chem., 2023, 19(7), 686-703.
[http://dx.doi.org/10.2174/1573406419666230203105246] [PMID: 36740791]
[83]
Oberyszyn, T.M. Inflammation and wound healing. Front. Biosci., 2007, 12(8-12), 2993-2999.
[http://dx.doi.org/10.2741/2289] [PMID: 17485276]
[84]
Shin, S.Y.; Shin, M.C.; Shin, J.S.; Lee, K.T.; Lee, Y.S. Synthesis of aurones and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2011, 21(15), 4520-4523.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.117] [PMID: 21723122]
[85]
Kim, K.H.; Moon, E.; Choi, S.U.; Pang, C.; Kim, S.Y.; Lee, K.R. Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley. J. Ethnopharmacol., 2015, 162, 231-237.
[http://dx.doi.org/10.1016/j.jep.2014.12.071] [PMID: 25582488]
[86]
Wang, Z.; Bae, E.J.; Han, Y.T. Synthesis and anti-inflammatory activities of novel dihydropyranoaurone derivatives. Arch. Pharm. Res., 2017, 40(6), 695-703.
[http://dx.doi.org/10.1007/s12272-017-0910-5] [PMID: 28397193]
[87]
Liu, W.J.; Li, Z.L.; Cheng, N.B.; Hu, Y.M.; Meng, Z.Q.; Su, Z.Z.; Yang, B.; Huang, W.Z.; Wang, Z.Z.; Xiao, W. A new aurone with anti-inflammatory activity from Cleistocalyx operculatus flower buds. Zhongguo Zhongyao Zazhi, 2018, 43(7), 1467-1470.
[PMID: 29728038]