Study of Antimicrobial Resistance (AMR) in Shigella spp. in India

Page: [182 - 196] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Antimicrobial agents are essential in reducing illness and mortality brought on by infectious diseases in both humans and animals. However, the therapeutic effect of antibiotics has diminished due to an increase in antimicrobial drug resistance (AMR).

This article provides a retrospective analysis of AMR in Shigella infections in India, showing a rise in resistance that has contributed to a global burden. Shigella spp. are widespread and the second-leading cause of diarrheal death in people of all ages. The frequency and mortality rates of Shigella infections are decreased by antibiotic treatment. However, the growth of broad-spectrum antibiotic resistance is making it more difficult to treat many illnesses. Reduced cell permeability, efflux pumps, and the presence of enzymes that break down antibiotics are the causes of resistance.

AMR is a multifaceted and cross-sectoral problem that affects humans, animals, food, and the environment.

As a result, there is a growing need for new therapeutic approaches, and ongoing surveillance of Shigella spp. infections which should definitely be improved for disease prevention and management.

This review emphasizes on the epidemiological data of India, and antimicrobial resistance in Shigella spp.

Graphical Abstract

[1]
Wise R, Hart T, Cars O, et al. Antimicrobial resistance. BMJ 1998; 317(7159): 609-10.
[http://dx.doi.org/10.1136/bmj.317.7159.609] [PMID: 9727981]
[2]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006; 119(6) (Suppl. 1): S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011] [PMID: 16735149]
[3]
Sefton AM. Mechanisms of antimicrobial resistance: Their clinical relevance in the new millennium. Drugs 2002; 62(4): 557-66.
[http://dx.doi.org/10.2165/00003495-200262040-00001] [PMID: 11893225]
[4]
How antibiotic resistance happens (2022) centers for disease control and prevention. Centers for disease control and prevention. Available from: https://www.cdc.gov/drugresistance/about/how-resistance-happens.html (Accessed: December 3, 2022).
[5]
Siddhardha B, Dyavaiah M, Syed A, Eds. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer Nature 2020.
[http://dx.doi.org/10.1007/978-981-15-1695-5]
[6]
Zhang W, Luo Y, Li J, et al. Wide dissemination of multidrug-resistant Shigella isolates in China. J Antimicrob Chemother 2011; 66(11): 2527-35.
[http://dx.doi.org/10.1093/jac/dkr341] [PMID: 21859815]
[7]
Taneja N, Mewara A. Shigellosis: Epidemiology in India. Indian J Med Res 2016; 143(5): 565-76.
[http://dx.doi.org/10.4103/0971-5916.187104] [PMID: 27487999]
[8]
Baker S,. The HC. Recent insights into Shigella: A major contributor to the global diarrhoeal disease burden. Curr Opin Infect Dis 2018; 31(5): 449-54.
[http://dx.doi.org/10.1097/QCO.0000000000000475] [PMID: 30048255]
[9]
Indian priority pathogen list, who country office for india, department of biotechnology, government of India. Available from : https://dbtindia.gov.in/sites/default/files/IPPL_final.pdf
[10]
Bhattacharya S, Khanal B, Bhattarai NR, Das ML. Prevalence of Shigella species and their antimicrobial resistance patterns in Eastern Nepal. J Health Popul Nutr 2005; 23(4): 339-42.
[PMID: 16599104]
[11]
Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 1963; 27(1): 87-115.
[http://dx.doi.org/10.1128/br.27.1.87-115.1963] [PMID: 13999115]
[12]
Brenner DJ, Krieg NR, Staley JT, et al. Bergey s manual of systematic bacteriology: the proteobacteria; part B: the gammaproteobacteria. In: Bergey’s manual of systematic bacteriology: the proteobacteria; part B: the gammaproteobacteria. 2005; pp. 1106-6.
[13]
Yang J, Nie H, Chen L, et al. Revisiting the molecular evolutionary history of Shigella spp. J Mol Evol 2007; 64(1): 71-9.
[http://dx.doi.org/10.1007/s00239-006-0052-8] [PMID: 17160643]
[14]
Zinsser H. Rats, lice and history. Boston, USA 1935.
[15]
Lampel KA, Formal SB, Maurelli AT. A brief history of Shigella. Ecosal Plus 2018; 8(1): ecosalplus.ESP-0006-2017..
[http://dx.doi.org/10.1128/ecosalplus.ESP-0006-2017] [PMID: 29318984]
[16]
Lindberg AA, Kärnell A, Weintraub A. The lipopolysaccharide of Shigella bacteria as a virulence factor. Clin Infect Dis 1991; 13(4): S279-84.
[http://dx.doi.org/10.1093/clinids/13.Supplement_4.S279] [PMID: 1710816]
[17]
Strockbine NA, Maurelli AT. Bergey’s Manual of Systematic Bacteriology. NY: Springer 2005.
[18]
Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of Shigella vaccines: Two steps forward and one step back on a long, hard road. Nat Rev Microbiol 2007; 5(7): 540-53.
[http://dx.doi.org/10.1038/nrmicro1662] [PMID: 17558427]
[19]
Phalipon A, Costachel C, Grandjean C, et al. Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: Implications for the development of a chemically defined glycoconjugate vaccine. J Immunol 2006; 176(3): 1686-94.
[http://dx.doi.org/10.4049/jimmunol.176.3.1686] [PMID: 16424198]
[20]
Strockbine NA, Maurelli AT. Shigella Bergey's Manual of Systematics of Archaea and Bacteria 2015; 1-26.
[21]
Levinson W. Review of medical microbiology and immunology. McGraw Hill Professional 2006.
[22]
Todar K. Shigella and shigellosis. Todar’s online textbook of bacteriology 2009.
[23]
Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[24]
Khalil IA, Troeger C, Blacker BF, et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The global burden of disease study 1990–2016. Lancet Infect Dis 2018; 18(11): 1229-40.
[http://dx.doi.org/10.1016/S1473-3099(18)30475-4] [PMID: 30266330]
[25]
DuPont HL, Levine MM, Hornick RB, Formal SB. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 1989; 159(6): 1126-8.
[http://dx.doi.org/10.1093/infdis/159.6.1126] [PMID: 2656880]
[26]
Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62(2): 379-433.
[http://dx.doi.org/10.1128/MMBR.62.2.379-433.1998] [PMID: 9618447]
[27]
Ménard R, Sansonetti PJ, Parsot C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 1993; 175(18): 5899-906.
[http://dx.doi.org/10.1128/jb.175.18.5899-5906.1993] [PMID: 8376337]
[28]
McQuade RET, Shaheen F, Kabir F, et al. Epidemiology of Shigella infections and diarrhea in the first two years of life using culture-independent diagnostics in 8 low-resource settings. PLoS Negl Trop Dis 2020; 14(8): e0008536.
[http://dx.doi.org/10.1371/journal.pntd.0008536] [PMID: 32804926]
[29]
Shigellosis - chapter 4 - 2020 yellow book (no date) centers for disease control and prevention. Centers for disease control and prevention. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/shigellosis (Accessed: December 3, 2022).
[30]
Taneja N, Mewara A, Kumar A, Verma G, Sharma M. Cephalosporin-resistant Shigella flexneri over 9 years (2001-09) in India. J Antimicrob Chemother 2012; 67(6): 1347-53.
[http://dx.doi.org/10.1093/jac/dks061] [PMID: 22410619]
[31]
Nair G, Ramamurthy T, Bhattacharya M, et al. Emerging trends in the etiology of enteric pathogens as evidenced from an active surveillance of hospitalized diarrhoeal patients in Kolkata, India. Gut Pathog 2010; 2(1): 4.
[http://dx.doi.org/10.1186/1757-4749-2-4] [PMID: 20525383]
[32]
Bhattacharya D, Bhattacharya H, Thamizhmani R, et al. Shigellosis in Bay of Bengal Islands, India: clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011. Eur J Clin Microbiol Infect Dis 2014; 33(2): 157-70.
[http://dx.doi.org/10.1007/s10096-013-1937-2] [PMID: 23990135]
[33]
Nandy S, Mitra U, Rajendran K, Dutta P, Dutta S. Subtype prevalence, plasmid profiles and growing fluoroquinolone resistance in Shigella from Kolkata, India (2001-2007): a hospital-based study. Trop Med Int Health 2010; 15(12): 1499-507.
[http://dx.doi.org/10.1111/j.1365-3156.2010.02656.x] [PMID: 20955371]
[34]
Ross S, Controni G, Khan W. Resistance of shigellae to ampicillin and other antibiotics: Its clinical and epidemiological implications. JAMA 1972; 221(1): 45-7.
[http://dx.doi.org/10.1001/jama.1972.03200140031008] [PMID: 4113693]
[35]
Bhattacharya SK, Datta P, Datta D, et al. Relative efficacy of trimethoprim-sulfamethoxazole and nalidixic acid for acute invasive diarrhea. Antimicrob Agents Chemother 1987; 31(5): 837.
[http://dx.doi.org/10.1128/AAC.31.5.837] [PMID: 3496849]
[36]
Datta P, Sen D. Outbreak of dysentery due to nalidixic acid resistant S. dysenteriae 1 at Agartala, Tripura: A hospital based study. Indian J Public Health 1990; 34(1): 11-4.
[PMID: 2101382]
[37]
Chunder N, Bhattacharya SK, Biswas D, Niyogi SK, Kumar R. Isolation of a fluoroquinolone resistant Shigella dysenteriae 1 strain from Calcutta. Indian J Med Res 1997; 106: 494-6.
[PMID: 9439093]
[38]
World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. Available from : https://ieeexplore.ieee.org/document/6567202
[39]
Khan WA, Seas C, Dhar U, Salam MA, Bennish ML. Treatment of shigellosis: V. Comparison of azithromycin and ciprofloxacin. A double-blind, randomized, controlled trial. Ann Intern Med 1997; 126(9): 697-703.
[http://dx.doi.org/10.7326/0003-4819-126-9-199705010-00004] [PMID: 9139555]
[40]
Jain PA, Kulkarni RD, Dutta S, et al. Prevalence and antimicrobial profile of Shigella isolates in a tertiary care hospital of North Karnataka: A 12-year study. Indian J Med Microbiol 2020; 38(1): 101-8.
[http://dx.doi.org/10.4103/ijmm.IJMM_20_107] [PMID: 32719216]
[41]
Gharpure R, Marsh ZA, Tack DM, et al. Disparities in incidence and severity of shigella infections among children—foodborne diseases active surveillance network (FoodNet), 2009-2018. J Pediatric Infect Dis Soc 2021; 10(7): 782-8.
[http://dx.doi.org/10.1093/jpids/piab045] [PMID: 34145878]
[42]
The prevalence of Shigella in food and elsewhere (2022) shigella food poisoning. Available from: https://about-Shigella.com/Shigella-prevalence (Accessed: December 3, 2022).
[43]
Martelli F, AbuOun M, Cawthraw S, et al. Detection of the transferable tigecycline resistance gene tet (X4) in Escherichia coli from pigs in the United Kingdom. J Antimicrob Chemother 2022; 77(3): 846-8.
[http://dx.doi.org/10.1093/jac/dkab439] [PMID: 34897485]
[44]
English surveillance programme for antimicrobial utilisation and resistance (ESPAUR) report 2021 to 2022. 2022. Available from : https://assets.publishing.service.gov.uk/media/6555026e544aea000dfb2e19/ESPAUR-report-2022-to-2023.pdf
[45]
United Arab Emirates Surveillance of Antimicrobial Resistance Annual Report. 2022. Available from : https://mohap.gov.ae/assets/f5a5705/National%20AMR%20Surveillance%20Report%202022%20MOHAP_638205230312192483.pdf.aspx
[46]
World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report 2021. 2021. Available from : https://www.who.int/publications/i/item/9789240027336
[48]
Standard Operating Procedures Bacteriology. 2019. Available from : https://www.icmrfoodnet.in/static/assets/files/ICMR_StandardOperatingProcedures.pdf
[49]
Annual report antimicrobial resistance surveillance network, ICMR 2014; 2014.
[50]
Annual report antimicrobial resistance surveillance network. In: ICMR Diarrheal pathogens. 2018; p. 55.
[51]
Annual report antimicrobial resistance surveillance network. In: ICMR Diarrheal pathogens. 2020; p. 127.
[52]
Annual report antimicrobial resistance surveillance network. In: ICMR 170 Diarrheal pathogens. 2021.
[53]
Annual report antimicrobial resistance surveillance network. In: ICMR 74 Diarrheal pathogens. 2019.
[54]
Ranjbar R, Farahani A. Shigella: antibiotic-resistance mechanisms and new horizons for treatment. Infect Drug Resist 2019; 12: 3137-67.
[http://dx.doi.org/10.2147/IDR.S219755] [PMID: 31632102]
[55]
Kar AK, Ghosh AS, Chauhan K, et al. Involvement of a 43-kilodalton outer membrane protein in betalactam resistance of Shigella dysenteriae. Antimicrob Agents Chemother 1997; 41(10): 2302-4.
[http://dx.doi.org/10.1128/AAC.41.10.2302] [PMID: 9333070]
[56]
Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta Proteins Proteomics 2009; 1794(5): 808-16.
[http://dx.doi.org/10.1016/j.bbapap.2008.11.005]
[57]
Charrel RN, Pagès JM, De Micco P, Mallea M. Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob Agents Chemother 1996; 40(12): 2854-8.
[http://dx.doi.org/10.1128/AAC.40.12.2854] [PMID: 9124854]
[58]
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009; 2(1): 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[59]
Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta Gene Struct Expr 1998; 1400(1-3): 29-43.
[http://dx.doi.org/10.1016/S0167-4781(98)00126-2] [PMID: 9748489]
[60]
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An overview. Cold Spring Harb Perspect Med 2016; 6(6): a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[61]
Kotra LP, Haddad J, Mobashery S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 2000; 44(12): 3249-56.
[http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000] [PMID: 11083623]
[62]
Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51(1): 9-11.
[http://dx.doi.org/10.1093/jac/dkg050] [PMID: 12493781]
[63]
Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol 2000; 60(4): 457-70.
[http://dx.doi.org/10.1016/S0006-2952(00)00291-4] [PMID: 10874120]
[64]
Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56(1): 20-51.
[http://dx.doi.org/10.1093/jac/dki171] [PMID: 15914491]
[65]
Ranjbar R, Ghazi FM, Farshad S, et al. The occurrence of extended-spectrum β-lactamase producing Shigella spp. in Tehran, Iran. Iran J Microbiol 2013; 5(2): 108-12.
[PMID: 23825726]
[66]
Ahamed J, Kundu M. Molecular Characterization of the SHV-11 β-Lactamase of Shigella dysenteriae. Antimicrob Agents Chemother 1999; 43(8): 2081-3.
[http://dx.doi.org/10.1128/AAC.43.8.2081] [PMID: 10428943]
[67]
Rao S. Extended spectrum beta lactamases-a comprehensive review. India: JJM Medical College 2015.
[68]
Jacoby GA. AmpC β-Lactamases. Clin Microbiol Rev 2009; 22(1): 161-82.
[http://dx.doi.org/10.1128/CMR.00036-08] [PMID: 19136439]
[69]
Huang IF, Chiu CH, Wang MH, Wu CY, Hsieh KS, Chiou CC. Outbreak of dysentery associated with ceftriaxone-resistant Shigella sonnei: First report of plasmid-mediated CMY-2-type AmpC β-lactamase resistance in S. sonnei. J Clin Microbiol 2005; 43(6): 2608-12.
[http://dx.doi.org/10.1128/JCM.43.6.2608-2612.2005] [PMID: 15956372]
[70]
Antunes N, Fisher J. Acquired class D β-lactamases. Antibiotics 2014; 3(3): 398-434.
[http://dx.doi.org/10.3390/antibiotics3030398] [PMID: 27025753]
[71]
Azmi IJ, Khajanchi BK, Akter F, et al. Fluoroquinolone resistance mechanisms of Shigella flexneri isolated in Bangladesh. PLoS One 2014; 9(7): e102533.
[http://dx.doi.org/10.1371/journal.pone.0102533] [PMID: 25028972]
[72]
Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 1997; 61(3): 377-92.
[PMID: 9293187]
[73]
Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000; 44(9): 2233-41.
[http://dx.doi.org/10.1128/AAC.44.9.2233-2241.2000] [PMID: 10952561]
[74]
Mannion AJ, Martin HR, Shen Z, et al. Plasmidmediated quinolone resistance in Shigellaflexneri isolated from macaques. Front Microbiol 2018; 9: 311.
[http://dx.doi.org/10.3389/fmicb.2018.00311] [PMID: 29556221]
[75]
Liu P, Chen S, Wu Z, Qi M, Li X, Liu C. Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist 2020; 22: 238-43.
[http://dx.doi.org/10.1016/j.jgar.2019.12.019] [PMID: 32061879]
[76]
Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: Mechanisms, frequency and clinical consequences. Int J Antimicrob Agents 2019; 53(1): 22-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.09.013] [PMID: 30268576]
[77]
Mechanism of aminoglycoside resistance, Uphs.upenn.edu. Available from: https://www.uphs.upenn.edu/bugdrug/antibiotic_manual/aminoglycosideresistance.htm (Accessed: December 20, 2022).
[78]
Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 1996; 19(1): 1-24.
[http://dx.doi.org/10.1111/j.1574-6976.1996.tb00251.x] [PMID: 8916553]
[79]
Falkow S. Infectious multiple drug resistance. Pion Ltd. 1975.
[80]
Pongs O. Chloramphenicol. In: Mechanism of action of antibacterial agents. Berlin, Heidelberg: Springer 1979; pp. 26-42.
[http://dx.doi.org/10.1007/978-3-642-46403-4_3]
[81]
Antagonists TN. LiverTox: Clinical and research information on drug-induced liver injury. Bethesda, MD, USA: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[82]
Andrade FF, Silva D, Rodrigues A, Pina-Vaz C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms 2020; 8(11): 1716.
[http://dx.doi.org/10.3390/microorganisms8111716] [PMID: 33147701]
[83]
Li B, Yin F, Zhao X, et al. Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics. Front Microbiol 2020; 10: 3015.
[http://dx.doi.org/10.3389/fmicb.2019.03015] [PMID: 31998280]
[84]
Bialvaei AZ, Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin 2015; 31(4): 707-21.
[http://dx.doi.org/10.1185/03007995.2015.1018989] [PMID: 25697677]
[85]
López-Rojas R, Domínguez-Herrera J, McConnell MJ, et al. Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii. J Infect Dis 2011; 203(4): 545-8.
[http://dx.doi.org/10.1093/infdis/jiq086] [PMID: 21216865]
[86]
Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J Antimicrob Chemother 2007; 60(6): 1206-15.
[http://dx.doi.org/10.1093/jac/dkm357] [PMID: 17878146]
[87]
Sköld O. Resistance to trimethoprim and sulfonamides. Vet Res 2001; 32(3-4): 261-73.
[http://dx.doi.org/10.1051/vetres:2001123] [PMID: 11432417]
[88]
Eliopoulos GM, Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 2001; 32(11): 1608-14.
[http://dx.doi.org/10.1086/320532] [PMID: 11340533]
[89]
Chang CY, Lu PL, Lin CC, Lee TM, Tsai MY, Chang LL. Integron types, gene cassettes, antimicrobial resistance genes and plasmids of Shigella sonnei isolates from outbreaks and sporadic cases in Taiwan. J Med Microbiol 2011; 60(2): 197-204.
[http://dx.doi.org/10.1099/jmm.0.022517-0] [PMID: 20947666]
[90]
Antunes P, Machado J, Peixe L. Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3′ conserved sequence region among Salmonella isolates. Antimicrob Agents Chemother 2007; 51(4): 1545-8.
[http://dx.doi.org/10.1128/AAC.01275-06] [PMID: 17283193]
[91]
McIver CJ, White PA, Jones LA, et al. Epidemic strains of Shigella sonnei biotype g carrying integrons. J Clin Microbiol 2002; 40(4): 1538-40.
[http://dx.doi.org/10.1128/JCM.40.4.1538-1540.2002] [PMID: 11923391]
[92]
Iversen J, Sandvang D, Srijan A, Cam PD, Dalsgaard A. Characterization of antimicrobial resistance, plasmids, and gene cassettes in Shigella spp. from patients in Vietnam Microbial drug resistance 2003; 9(1): 17-24.
[93]
Pan JC, Ye R, Meng DM, Zhang W, Wang HQ, Liu KZ. Molecular characteristics of class 1 and class 2 integrons and their relationships to antibiotic resistance in clinical isolates of Shigella sonnei and Shigella flexneri. J Antimicrob Chemother 2006; 58(2): 288-96.
[http://dx.doi.org/10.1093/jac/dkl228] [PMID: 16766536]
[94]
Gaudreau C, Barkati S, Leduc JM, Pilon PA, Favreau J, Bekal S. Shigella spp. with reduced azithromycin susceptibility, Quebec, Canada, 2012-2013. Emerg Infect Dis 2014; 20(5): 854-6.
[http://dx.doi.org/10.3201/eid2005.130966] [PMID: 24750584]
[95]
Liao YS, Liu YY, Lo YC, Chiou CS. Azithromycin nonsusceptible Shigella flexneri 3a in men who have sex with men, Taiwan, 2015–2016. Emerg Infect Dis 2016; 23(2): 345-6.
[http://dx.doi.org/10.3201/eid2302.161260] [PMID: 28098533]
[96]
Boumghar-Bourtchai L, Mariani-Kurkdjian P, Bingen E, et al. Macrolide-Resistant Shigella sonnei. Emerg Infect Dis 2008; 14(8): 1297-9.
[http://dx.doi.org/10.3201/eid1408.080147] [PMID: 18680661]
[97]
Zhang C, Zhang R, Yu Q, Chu X, Sun J, Liu Q. Decreased susceptibility to azithromycin among clinical Shigella isolates from China. Microbial drug resistance 2017; 23(5): 596-601.
[http://dx.doi.org/10.1089/mdr.2016.0134]
[98]
Baker KS, Dallman TJ, Ashton PM, et al. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: A cross-sectional study. Lancet Infect Dis 2015; 15(8): 913-21.
[http://dx.doi.org/10.1016/S1473-3099(15)00002-X] [PMID: 25936611]
[99]
Kang J, Liu L, Liu M, Wu X, Li J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 2018; 94: 147-54.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.011]
[100]
Dorman MJ, Dorman CJ. Regulatory hierarchies controlling virulence gene expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9: 2686.
[http://dx.doi.org/10.3389/fmicb.2018.02686] [PMID: 30473684]