Reconciling the Gap between Medications and their Potential Leads: The Role of Marine Metabolites in the Discovery of New Anticancer Drugs: A Comprehensive Review

Page: [3137 - 3153] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

One-third of people will be diagnosed with cancer at some point in their lives, making it the second leading cause of death globally each year after cardiovascular disease. The complex anticancer molecular mechanisms have been understood clearly with the advent of improved genomic, proteomic, and bioinformatics. Our understanding of the complex interplay between numerous genes and regulatory genetic components within cells explaining how this might lead to malignant phenotypes has greatly expanded. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. Many popular anticancer drugs, including irinotecan, vincristine, etoposide, and paclitaxel, have botanical origins. Actinomycin D and mitomycin C come from bacteria, while bleomycin and curacin come from marine creatures. However, there is a lack of research evaluating the potential of algae-based anticancer treatments, especially in terms of their molecular mechanisms. Despite increasing interest in the former, and the promise of the compounds to treat tumours that have been resistant to existing treatment, pharmaceutical development of these compounds has lagged. Thus, the current review focuses on the key algal sources that have been exploited as anticancer therapeutic leads, including their biological origins, phytochemistry, and the challenges involved in converting such leads into effective anticancer drugs.

[1]
Schiller JT, Lowy DR. An introduction to virus infections and human cancer. Viruses Hum Cancer Basic Sci Clin Prev 2021; pp. 1-11.
[http://dx.doi.org/10.1007/978-3-030-57362-1_1]
[2]
Kolak A, Kamińska M, Sygit K, et al. Primary and secondary prevention of breast cancer. Ann Agric Environ Med 2017; 24(4): 549-53.
[http://dx.doi.org/10.26444/aaem/75943] [PMID: 29284222]
[3]
Tiwary S, Hussain MS. Functional foods for prevention and treatment of cancer. Asian J Pharm Clin Res 2021; 14(3): 4-10.
[4]
Clegg LX, Feuer EJ, Midthune DN, Fay MP, Hankey BF. Impact of reporting delay and reporting error on cancer incidence rates and trends. J Natl Cancer Inst 2002; 94(20): 1537-45.
[http://dx.doi.org/10.1093/jnci/94.20.1537] [PMID: 12381706]
[5]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[6]
Tewari D, Rawat P, Singh PK. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 2019; 123: 522-35.
[http://dx.doi.org/10.1016/j.fct.2018.11.041] [PMID: 30471312]
[7]
Müller M, Heicappell R, Steiner U, Goessl C, Miller K. Side effects of chemotherapy for advanced urothelial carcinoma with etoposide and ifosfamide. Urol Int 1997; 59(4): 248-51.
[http://dx.doi.org/10.1159/000283073] [PMID: 9444744]
[8]
Chlebowski RT. Adriamycin (doxorubicin) cardiotoxicity: A review. West J Med 1979; 131(5): 364-8.
[PMID: 394479]
[9]
Eaton H, Timm KN. Mechanisms of trastuzumab induced cardiotoxicity - Is exercise a potential treatment? Cardiooncology 2023; 9(1): 22.
[http://dx.doi.org/10.1186/s40959-023-00172-3] [PMID: 36604733]
[10]
Ran HH, Zhang R, Lu XC, Yang B, Fan H, Zhu HL. Imatinibinduced decompensated heart failure in an elderly patient with chronic mye-loid leukemia: Case report and literature review. J Geriatr Cardiol 2012; 9(4): 411-4.
[PMID: 23341847]
[11]
Ma W, Liu M, Liang F, et al. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol 2020; 126(2): 166-80.
[http://dx.doi.org/10.1111/bcpt.13318] [PMID: 31483925]
[12]
Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 2021; 384(16): 1529-41.
[http://dx.doi.org/10.1056/NEJMoa2028485] [PMID: 33882206]
[13]
Miao ZH, Tang T, Zhang YX, Zhang JS, Ding J. Cytotoxicity, apoptosis induction and downregulation of MDR‐1 expression by the anti‐topoisomerase II agent, salvicine, in multidrug‐resistant tumor cells. Int J Cancer 2003; 106(1): 108-15.
[http://dx.doi.org/10.1002/ijc.11174] [PMID: 12794765]
[14]
Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102(4): 1458-65.
[http://dx.doi.org/10.1182/blood-2003-01-0039] [PMID: 12714494]
[15]
Sharifi-Rad J, Quispe C, Patra JK, et al. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev 2021; 18: 3687700.
[16]
Ali R, Mirza Z, Ashraf GMD, et al. New anticancer agents: Recent developments in tumor therapy. Anticancer Res 2012; 32(7): 2999-3005.
[PMID: 22753764]
[17]
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural products in preventing tumor drug resistance and related signaling pathways. Molecules 2022; 27(11): 3513.
[http://dx.doi.org/10.3390/molecules27113513] [PMID: 35684449]
[18]
Podar K, Tai YT, Hideshima T, Vallet S, Richardson PG, Anderson KC. Emerging therapies for multiple myeloma. Expert Opin Emerg Drugs 2009; 14(1): 99-127.
[http://dx.doi.org/10.1517/14728210802676278] [PMID: 19249983]
[19]
Ahmad R, Dhawan P, Singh AB. Cancer stem cell and gastrointestinal cancer: Current status, targeted therapy and future implications. Biochem Pharmacol Open Access 2016; 5(2): 1-12. https://pubmed.ncbi.nlm.nih.gov/31656694/
[20]
Yan X, Li M, Chen L, et al. α-Solanine inhibits growth and metastatic potential of human colorectal cancer cells. Oncol Rep 2020; 43(5): 1387-95.
[21]
McMahon CM, Ferng T, Canaani J, Eastburn DJ, et al. Clonal selection with ras pathway activation mediates secondary clinical resistance to selective flt3 inhibition in acute myeloid leukemia. Cancer Discov 2019; 9(8): 1050-63. https://pubmed.ncbi.nlm.nih.gov/31088841/
[http://dx.doi.org/10.1158/2159-8290.CD-18-1453]
[22]
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review. Molecules 2020; 26(1): 37.
[http://dx.doi.org/10.3390/molecules26010037] [PMID: 33374738]
[23]
Muniraj N, Siddharth S, Sharma D. Bioactive compounds: Multitargeting silver bullets for preventing and treating breast cancer. Cancers 2019; 11(10): 1563.
[http://dx.doi.org/10.3390/cancers11101563] [PMID: 31618928]
[24]
Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2(4): 293-9.
[http://dx.doi.org/10.1038/86297] [PMID: 11276199]
[25]
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017; 38(7): 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[26]
Moloney JN, Cotter TG. ROS signalling in the biology of cancer Seminars in cell & developmental biology. Elsevier 2018; pp. 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023]
[27]
Bajor M, Zych AO, Graczyk-Jarzynka A, et al. Targeting peroxiredoxin 1 impairs growth of breast cancer cells and potently sensitises these cells to prooxidant agents. Br J Cancer 2018; 119(7): 873-84.
[http://dx.doi.org/10.1038/s41416-018-0263-y] [PMID: 30287919]
[28]
Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, et al. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci World J 2014; 2014.
[http://dx.doi.org/10.1155/2014/768323]
[29]
Neagu M, Constantin C, Popescu ID, et al. Inflammation and metabolism in cancer cell-mitochondria key player. Front Oncol 2019; 9: 348.
[http://dx.doi.org/10.3389/fonc.2019.00348] [PMID: 31139559]
[30]
Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J 2018; 26(2): 177-90.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[31]
Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007; 18(9): 567-79.
[http://dx.doi.org/10.1016/j.jnutbio.2006.10.007] [PMID: 17360173]
[32]
Lomartire S, Gonçalves AMM. Marine macroalgae polyphenols as potential neuroprotective antioxidants in neurodegenerative diseases. Mar Drugs 2023; 21(5): 261.
[http://dx.doi.org/10.3390/md21050261]
[33]
Pruteanu LL, Bailey DS, Grădinaru AC, Jäntschi L. The biochemistry and effectiveness of antioxidants in food, fruits, and marine algae. Antioxidants 2023; 12(4): 860. https://pubmed.ncbi.nlm.nih.gov/37107235
[34]
Martínez Andrade K, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165.
[http://dx.doi.org/10.3390/md16050165] [PMID: 29762545]
[35]
Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res 2017; 128: 58-69.
[http://dx.doi.org/10.1016/j.marenvres.2016.05.002] [PMID: 27160988]
[36]
Martínez KA, Lauritano C, Druka D, et al. Amphidinol 22, a new cytotoxic and antifungal amphidinol from the dinoflagellate Amphidinium carterae. Mar Drugs 2019; 17(7): 385.
[http://dx.doi.org/10.3390/md17070385] [PMID: 31252576]
[37]
Foo SC, Yusoff FM, Imam MU, et al. Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. Biotechnol Rep 2019; 21: e00296.
[http://dx.doi.org/10.1016/j.btre.2018.e00296] [PMID: 30581767]
[38]
Cha KH, Koo SY, Lee DU. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 2008; 56(22): 10521-6.
[http://dx.doi.org/10.1021/jf802111x] [PMID: 18942838]
[39]
Nappo M, Berkov S, Massucco C, et al. Apoptotic activity of the marine diatom Cocconeis scutellum and eicosapentaenoic acid in BT20 cells. Pharm Biol 2012; 50(4): 529-35.
[http://dx.doi.org/10.3109/13880209.2011.611811] [PMID: 22136301]
[40]
Reyna-Martinez R, Gomez-Flores R, López-Chuken U, et al. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México. PeerJ 2018; 6: e4358.
[http://dx.doi.org/10.7717/peerj.4358] [PMID: 29441241]
[41]
Thanh TTT, Quach TMT, Nguyen TN, Vu Luong D, Bui ML, Tran TTV. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int J Biol Macromol 2016; 93(Pt A): 695-702.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.040] [PMID: 27637450]
[42]
Alateyah N, Ahmad SMS, Gupta I, et al. Haematococcus pluvialis microalgae extract inhibits proliferation, invasion, and induces apopto-sis in breast cancer cells. Front Nutr 2022; 9: 882956.
[http://dx.doi.org/10.3389/fnut.2022.882956] [PMID: 35634400]
[43]
Lee MK, Ryu H, Lee JY, et al. Potential beneficial effects of Sargassum spp. in skin aging. Mar Drugs 2022; 20(8): 540.
[http://dx.doi.org/10.3390/md20080540] [PMID: 36005543]
[44]
Zandi K, Ahmadzadeh S, Tajbakhsh S, et al. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines. Eur Rev Med Pharmacol Sci 2010; 14(8): 669-73.
[PMID: 20707286]
[45]
Pacheco FC, Villa-Pulgarin JA, Mollinedo F, Martín MN, Fernández JJ, Daranas AH. New polyether triterpenoids from Laurencia viridis and their biological evaluation. Mar Drugs 2011; 9(11): 2220-35.
[http://dx.doi.org/10.3390/md9112220] [PMID: 22163183]
[46]
Yang EJ, Moon JY, Kim SS, et al. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages. Asian Pac J Trop Biomed 2014; 4(7): 529-37.
[http://dx.doi.org/10.12980/APJTB.4.2014C1099] [PMID: 25183272]
[47]
Peasura N, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Chao LK. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int J Biol Macromol 2016; 91: 269-77.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.062] [PMID: 27212215]
[48]
Tabarsa M, You S, Dabaghian EH, Surayot U. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Yao Wu Shi Pin Fen Xi 2018; 26(2): 599-608.
[PMID: 29567229]
[49]
Figueroa FA, Abdala-Díaz RT, Pérez C, et al. Sulfated polysaccharide extracted from the green algae Codium bernabei: Physicochemical characterization and antioxidant, anticoagulant and antitumor activity. Mar Drugs 2022; 20(7): 458.
[http://dx.doi.org/10.3390/md20070458] [PMID: 35877751]
[50]
Subramaiam H, Chu WL, Radhakrishnan AK, Chakravarthi S, Selvaduray KR, Kok YY. Evaluating anticancer and immunomodulatory effects of spirulina (Arthrospira platensis) and gammatocotrienol supplementation in a syngeneic mouse model of breast cancer. Nutrients 2021; 13(7): 2320.
[http://dx.doi.org/10.3390/nu13072320] [PMID: 34371830]
[51]
Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical practice: Evidence-based human applications. Evidence-based Complement Altern Med 2011; 2011.
[52]
Yang S, Wan H, Wang R, Hao D. Sulfated polysaccharides from Phaeodactylum tricornutum: Isolation, structural characteristics, and inhibiting HepG2 growth activity in vitro. PeerJ 2019; 7: e6409.
[http://dx.doi.org/10.7717/peerj.6409] [PMID: 30809437]
[53]
Andrianasolo EH, Haramaty L, Vardi A, White E, Lutz R, Falkowski P. Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylum tricornutum. J Nat Prod 2008; 71(7): 1197-201.
[http://dx.doi.org/10.1021/np800124k] [PMID: 18570469]
[54]
Vegliante R, Di Leo L, Ciccarone F, Ciriolo MR. Hints on ATGL implications in cancer: Beyond bioenergetic clues. Cell Death Dis 2018; 9(3): 316.
[http://dx.doi.org/10.1038/s41419-018-0345-z] [PMID: 29472527]
[55]
Lee N, Kim D. Cancer metabolism: Fueling more than just growth. Mol Cells 2016; 39(12): 847-54.
[http://dx.doi.org/10.14348/molcells.2016.0310] [PMID: 28030896]
[56]
Martins BT, Correia da Silva M, Pinto M, Cidade H, Kijjoa A. Marine natural flavonoids: Chemistry and biological activities. Nat Prod Res 2019; 33(22): 3260-72.
[http://dx.doi.org/10.1080/14786419.2018.1470514] [PMID: 29726719]
[57]
Mehdinezhad N, Ghannadi A, Yegdaneh A. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Res Pharm Sci 2016; 11(3): 243-9.
[PMID: 27499794]
[58]
Morales-Amador A, de Vera C, Márquez-Fernández O, et al. Pinnatifidenyne-derived ethynyl oxirane acetogenins from Laurencia virid-is. Mar Drugs 2017; 16(1): 5.
[http://dx.doi.org/10.3390/md16010005] [PMID: 29286293]
[59]
Liang Y, Li XM, Cui CM, Li CS, Sun H, Wang BG. Sesquiterpene and acetogenin derivatives from the marine red alga Laurencia okamu-rai. Mar Drugs 2012; 10(12): 2817-25.
[http://dx.doi.org/10.3390/md10122817] [PMID: 23242203]
[60]
Oslan SNH, Tan JS, Oslan SN, et al. Haematococcus pluvialis as a potential source of astaxanthin with diverse applications in industrial sectors: Current research and future directions. Molecules 2021; 26(21): 6470.
[http://dx.doi.org/10.3390/molecules26216470] [PMID: 34770879]
[61]
Prabhu PN, Ashokkumar P, Sudhandiran G. Antioxidative and antiproliferative effects of astaxanthin during the initiation stages of 1,2‐dimethyl hydrazine‐induced experimental colon carcinogenesis. Fundam Clin Pharmacol 2009; 23(2): 225-34.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00669.x] [PMID: 19645817]
[62]
Kumar S, Hosokawa M, Miyashita K. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 2013; 11(12): 5130-47.
[http://dx.doi.org/10.3390/md11125130] [PMID: 24351910]
[63]
Haas S, Bauer JL, Adakli A, et al. Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.). J Appl Phycol 2016; 28(2): 1011-21.
[http://dx.doi.org/10.1007/s10811-015-0622-5]
[64]
Ferdous UT, Balia Yusof ZN. Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules 2021; 26(22): 6844.
[http://dx.doi.org/10.3390/molecules26226844] [PMID: 34833937]
[65]
Gross H, Goeger DE, Hills P, et al. Lophocladines, bioactive alkaloids from the red alga Lophocladia sp. J Nat Prod 2006; 69(4): 640-4.
[http://dx.doi.org/10.1021/np050519e] [PMID: 16643042]
[66]
Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2018; 35(1): 8-53.
[http://dx.doi.org/10.1039/C7NP00052A] [PMID: 29335692]
[67]
Lins KOAL, Bezerra DP, Alves APNN, et al. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feld-mannii (Diaz-Pifferer). J Appl Toxicol 2009; 29(1): 20-6.
[http://dx.doi.org/10.1002/jat.1374] [PMID: 18651721]
[68]
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: A treasure from the ocean. DARU J Pharm Sci 2019; 27(1): 491.
[http://dx.doi.org/10.1007/s40199-019-00273-4]
[69]
Choi YK, Ye BR. kim EA, et al. Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed Pharmacother 2018; 103: 1170-7.
[http://dx.doi.org/10.1016/j.biopha.2018.04.121] [PMID: 29864895]
[70]
Kennedy S, DiCesare JC, Sheaff RJ. Topoisomerase I/II inhibition by a novel naphthoquinone containing a modified anthracycline ring system. Biochem Biophys Res Commun 2011; 408(1): 94-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.126] [PMID: 21458415]
[71]
Qi X, Liu G, Qiu L, Lin X, Liu M. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems. Biomed Pharmacother 2015; 75: 58-66.
[http://dx.doi.org/10.1016/j.biopha.2015.08.033] [PMID: 26463632]
[72]
Yang L, Wang P, Wang H, et al. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 2013; 11(6): 1961-76.
[http://dx.doi.org/10.3390/md11061961] [PMID: 23752353]
[73]
Samarakoon KW, Ko JY, Lee JH, Kwon ON, Kim SW, Jeon YJ. Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum. J Funct Foods 2014; 6: 231-40.
[http://dx.doi.org/10.1016/j.jff.2013.10.011]
[74]
Chen H, Zhang L, Long X, et al. Sargassum fusiforme polysaccharides inhibit VEGF-A-related angiogenesis and proliferation of lung cancer in vitro and in vivo. Biomed Pharmacother 2017; 85: 22-7.
[http://dx.doi.org/10.1016/j.biopha.2016.11.131] [PMID: 27930983]
[75]
Choi Y, Kim J, Lee K, et al. Tuberatolide B suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling. Mar Drugs 2017; 15(3): 55.
[http://dx.doi.org/10.3390/md15030055] [PMID: 28245605]
[76]
Van Den Hende S, Vervaeren H, Desmet S, Boon N. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. N Biotechnol 2011; 29(1): 23-31.
[http://dx.doi.org/10.1016/j.nbt.2011.04.009] [PMID: 21565287]
[77]
Ndikubwimana T, Zeng X, Murwanashyaka T, et al. Harvesting of freshwater microalgae with microbial bioflocculant: A pilot-scale study. Biotechnol Biofuels 2016; 9(1): 47.
[http://dx.doi.org/10.1186/s13068-016-0458-5] [PMID: 26925164]
[78]
Xiao B, Guo J, Liu D, Zhang S. Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase activation in human oral cancer KB cells. Oral Oncol 2007; 43(9): 905-10.
[http://dx.doi.org/10.1016/j.oraloncology.2006.11.002] [PMID: 17257888]
[79]
Lee YG, Lee KW, Kim JY, Kim KH, Lee HJ. Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactors 2004; 21(1-4): 63-7.
[http://dx.doi.org/10.1002/biof.552210112] [PMID: 15630171]
[80]
Sheu M-J, Huang G-J, Wu C-H, et al. Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells. In Vivo 2008; 22(3): 369-78.
[81]
Moopantakath J, Imchen M, Kumavath R, Martínez-Espinosa RM. Ubiquitousness of Haloferax and carotenoid producing genes in ara-bian sea coastal biosystems of India. Mar Drugs 2021; 19(8): 442.
[http://dx.doi.org/10.3390/md19080442] [PMID: 34436281]
[82]
Peano C, Talà A, Corti G, et al. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact 2012; 11(1): 32.
[http://dx.doi.org/10.1186/1475-2859-11-32] [PMID: 22401291]
[83]
Kohli GS, John U, Van Dolah FM, Murray SA. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME J 2016; 10(8): 1877-90.
[http://dx.doi.org/10.1038/ismej.2015.263] [PMID: 26784357]
[84]
Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ. Oncol Rep 2017; 37(2): 684-94.
[http://dx.doi.org/10.3892/or.2017.5346] [PMID: 28075473]
[85]
Judé S, Martel E, Vincent F, et al. Dietary long-chain n-3 fatty acids modify blood and cardiac phospholipids and reduce protein kinase-C-δ and protein kinase-C-ε translocation. Br J Nutr 2007; 98(6): 1143-51.
[http://dx.doi.org/10.1017/S0007114507798914] [PMID: 17663802]
[86]
Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FAE, Giaccone G. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol Pharmacol 2005; 68(2): 502-10.
[http://dx.doi.org/10.1124/mol.105.011361] [PMID: 15908515]
[87]
Gao J, Hamann MT. Chemistry and biology of kahalalides. Chem Rev 2011; 111(5): 3208-35.
[http://dx.doi.org/10.1021/cr100187n] [PMID: 21480581]
[88]
Wang X, Zhang Z. The antitumor activity of a red alga polysaccharide complexes carrying 5-fluorouracil. Int J Biol Macromol 2014; 69: 542-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.017] [PMID: 24954270]
[89]
Abd El-Hack ME, Abdelnour S, Alagawany M, et al. Microalgae in modern cancer therapy: Current knowledge. Biomed Pharmacother 2019; 111: 42-50.
[http://dx.doi.org/10.1016/j.biopha.2018.12.069] [PMID: 30576933]
[90]
Khan MI, Shin JH, Kim JD. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018; 17(1): 36.
[http://dx.doi.org/10.1186/s12934-018-0879-x] [PMID: 29506528]
[91]
Alves C, Silva J, Pinteus S, et al. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front Pharmacol 2018; 9(1): 777-85.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[92]
Fukuda Y, Sugahara T, Ueno M, et al. The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anticancer Drugs 2006; 17(8): 943-7.
[http://dx.doi.org/10.1097/01.cad.0000224458.13651.b4] [PMID: 16940804]
[93]
Choi H, Hwang H, Chin J, et al. Tuberatolides, potent FXR antagonists from the Korean marine tunicate Botryllus tuberatus. J Nat Prod 2011; 74(1): 90-4.
[http://dx.doi.org/10.1021/np100489u] [PMID: 21142112]
[94]
Kim EA, Kim SY, Kim J, et al. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264.7 cells and zebrafish model. J Funct Foods 2019; 52: 109-15.
[http://dx.doi.org/10.1016/j.jff.2018.10.030]
[95]
Hwang HJ, Kim IH, Nam TJ. Polysaccharides from Capsosiphon fulvescens stimulate the growth of gastrointestinal cells. Adv Food Nutr Res 2011; 64: 179-90.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00013-2] [PMID: 22054946]
[96]
Go H, Hwang HJ, Nam TJ. Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 cells by activating the MAPK signaling pathway. Mar Biotechnol (NY) 2011; 13(3): 433-40.
[http://dx.doi.org/10.1007/s10126-010-9314-y] [PMID: 20694826]
[97]
Nathan J, Kannan RR. Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer re-search. Heliyon 2020; 6(12): e05662.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05662] [PMID: 33319107]
[98]
Micheel CM, Nass SJ, Omenn GS. Omics-based clinical discovery: Science, technology, and applications InEvolution of Translational Omics: Lessons Learned and the Path Forward 2012 National Academies Press (US).
[99]
Hay ME. Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 2009; 1(1): 193-212.
[http://dx.doi.org/10.1146/annurev.marine.010908.163708] [PMID: 21141035]
[100]
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: Understanding seaweed–bacteria interactions. FEMS Microbiol Rev 2013; 37(3): 462-76.
[http://dx.doi.org/10.1111/1574-6976.12011] [PMID: 23157386]
[101]
Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME. Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci 2011; 108(43): 17726-31.
[http://dx.doi.org/10.1073/pnas.1108628108] [PMID: 22006333]
[102]
Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F. Surface associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling 2011; 27(4): 423-33.
[http://dx.doi.org/10.1080/08927014.2011.580841] [PMID: 21547758]
[103]
Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W. Growth and thallus morphogenesis of Ulva mutabilis (chlorophyta) de-pends on a combination of two bacterial species excreting regulatory factors. J Phycol 2012; 48(6): 1433-47.
[http://dx.doi.org/10.1111/j.1529-8817.2012.01231.x] [PMID: 27009994]
[104]
Malve H. Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 2016; 8(2): 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[105]
Adema AD, Floor K, Smid K, et al. Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the nucleoside analogs cytarabine and troxacitabine, but not gemcitabine. Springerplus 2014; 3(1): 732.
[http://dx.doi.org/10.1186/2193-1801-3-732] [PMID: 25674464]
[106]
Wu L, Ye K, Jiang S, Zhou G. Marine power on cancer: Drugs, lead compounds, and mechanisms. Mar Drugs 2021; 19(9): 488.
[http://dx.doi.org/10.3390/md19090488] [PMID: 34564150]