Current Strategy of Monoclonal Antibody: Development, Cloning, Formulation and Drug Delivery

Page: [264 - 285] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

The development of Monoclonal antibodies (mAbs) has also allowed researchers to understand the complexity of diseases better and find new treatments for difficult-to-treat conditions. Using mAbs, researchers can identify and target specific molecules in the body involved in the disease process. This has allowed for a more targeted treatment approach, which has resulted in improved outcomes for many patients. This hypothesis has been the basis for the development of mAbs that can target an array of illnesses. In the past two decades, therapeutic mAbs have been developed to treat cancer, autoimmune diseases, cardiovascular diseases, and metabolic diseases. For instance, using mAbs has improved outcomes in treating rheumatoid arthritis, multiple sclerosis, and Crohn's disease. However, delivering mAbs in biological systems remains a significant challenge in drug delivery. This is due to their large size, low stability in circulation, and difficulties in achieving their desired action in the target cells. Monoclonal antibodies (mAbs) are an essential tool in biological systems, as they can be used to deliver drugs to specific cell types or tissues. Cloning methods of monoclonal antibody production have been developed to produce mAbs with therapeutic potential. Hence, the present review focused on the development and drug delivery of Monoclonal antibodies (mAbs) in biological systems, which includes cloning methods, various drug delivery technologies, formulation production technology, and its applications in multiple diseases were focused for this review.

Graphical Abstract

[1]
John PM. Overview of therapeutic monoclonal antibodies Up-ToDate 2022
[2]
António L. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 2023; 37(1): 9-16.
[3]
Beck A, Nowak C, Meshulam D, et al. Risk-based control strategies of recombinant monoclonal antibody charge variants. Antibodies 2022; 11(4): 73.
[http://dx.doi.org/10.3390/antib11040073] [PMID: 36412839]
[4]
Liu JKH. The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann Med Surg 2014; 3(4): 113-6.
[http://dx.doi.org/10.1016/j.amsu.2014.09.001] [PMID: 25568796]
[5]
Yadav S, Liu J, Scherer TM, et al. Assessment and significance of protein-protein interactions during development of protein biopharmaceuticals. Biophys Rev 2013; 5(2): 121-36.
[http://dx.doi.org/10.1007/s12551-013-0109-z] [PMID: 28510158]
[6]
Zhu Z, Dimitrov AS, Chakraborti S, et al. Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses. Expert Rev Anti Infect Ther 2006; 4(1): 57-66.
[http://dx.doi.org/10.1586/14787210.4.1.57]
[7]
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal antibodies as neurological therapeutics. Pharmaceuticals 2021; 14(2): 92.
[http://dx.doi.org/10.3390/ph14020092] [PMID: 33530460]
[8]
Bates A, Power CA. David vs. goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies 2019; 8(2): 28.
[http://dx.doi.org/10.3390/antib8020028] [PMID: 31544834]
[9]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[10]
Wagner Q. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz J Pharm Sci 2018; 54: e01007.
[11]
Sanlav G, Bekcioglu O, Baspinar Y. A review on the development, production strategies, and utilization of monoclonal antibodies. J Basic Clin Health Sci 2020; 4: 197-204.
[12]
Ehlers AM, den Hartog Jager CF, Kardol-Hoefnagel T, Katsburg MMD, Knulst AC, Otten HG. Comparison of two strategies to generate antigen-specific human monoclonal antibodies: Which method to choose for which purpose? Front Immunol 2021; 12: 660037.
[http://dx.doi.org/10.3389/fimmu.2021.660037] [PMID: 34017336]
[13]
Zhang C. Hybridoma technology for the generation of monoclonal antibodies. Methods Mol Biol 2012; 901: 117-35.
[http://dx.doi.org/10.1007/978-1-61779-931-0_7] [PMID: 22723097]
[14]
Nagano K, Tsutsumi Y, Yasuo T. Phage display technology as a powerful platform for antibody drug discovery. Viruses 2021; 13(2): 178.
[http://dx.doi.org/10.3390/v13020178] [PMID: 33504115]
[15]
Tabll AA, Shahein YE, Omran MM, Elnakib MM, Ragheb AA, Amer KE. A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection. Hum Antibodies 2021; 29(3): 179-91.
[http://dx.doi.org/10.3233/HAB-200441] [PMID: 33998533]
[16]
Mahmuda A, Bande F, Kadhim Al-Zihiry KJ, et al. Monoclonal antibodies: A review of therapeutic applications and future prospects. Trop J Pharm Res 2017; 16(3): 713.
[http://dx.doi.org/10.4314/tjpr.v16i3.29]
[17]
Rashidian J, Lloyd J, Single B. Single B cell cloning and production of rabbit monoclonal antibodies. Methods Mol Biol 2020; 2070: 423-41.
[http://dx.doi.org/10.1007/978-1-4939-9853-1_23] [PMID: 31625109]
[18]
Jane zveiter DM. Alternative methods to animal use for monoclonal antibody generation and production. In: Monoclonal Antibodiesintechopen 2020.
[http://dx.doi.org/10.5772/intechopen.95485]
[19]
Motamedi N. Monoclonal Antibodies Methods and Protocols. Springer 2014.
[http://dx.doi.org/10.1007/978-1-62703-992-5]
[20]
Weiner G. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15: 361-70.
[http://dx.doi.org/10.1038/nrc3930]
[21]
Kodoyianni VMH, Curet M, Kravitz R, Schram B. A novel process for developing fully human monoclonal antibodies. Pharm Technol 2012.
[22]
Zhao Y, Chen S, Swensen A, Qian W, Gouaux E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 2019; 364: 355-62.
[http://dx.doi.org/10.1126/science.aaw8250]
[23]
Wardemann H, Kofer J. Expression cloning of human B cell immunoglobulins. Methods Mol Biol 2013; 971: 93-111.
[http://dx.doi.org/10.1007/978-1-62703-269-8_5]
[24]
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020; 584: 120-4.
[25]
Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020; 584: 115-9.
[26]
Arbabi-Ghahroudi M, MacKenzie R, Tanha J. Selection of nonaggregating VH binders from synthetic VH phage-display libraries. Methods Mol Biol 2009; 525: 187-216. xiii
[http://dx.doi.org/10.1007/978-1-59745-554-1_10] [PMID: 19252860]
[27]
Chan C, Lim A, Macary P, Hanson B. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26: 649-57.
[http://dx.doi.org/10.1093/intimm/dxu082]
[28]
Hoogenboom H. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23: 1105-6.
[http://dx.doi.org/10.1038/nbt1126]
[29]
Chriswell M, Lefferts A, Clay M, Hsu A, Seifert J, Feser M, et al. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14: eabn5166.
[http://dx.doi.org/10.1126/scitranslmed.abn5166]
[30]
Lanz T, Brewer R, Ho P, Moon J, Jude K, Fernandez D, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022; 603(7900): 321-7.
[31]
Rigau M, Ostrouska S, Fulford TS, et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 2020; 367(6478): eaay5516.
[http://dx.doi.org/10.1126/science.aay5516] [PMID: 31919129]
[32]
Tao Y, Mis M, Blazer L, Ustav M, Steinhart Z, Chidiac R, et al. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. eLife 2019; 8: e46134.
[33]
Steger K, Brady J, Duskin M, Donato K. Literature Review: CHO versus HEK Cell Glycosylation. Available form: www.maxcyte.com/
[34]
Wrapp D, De Vlieger D, Corbett K, Torres G, Wang N, Van Breedam W, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181: 1004-15.
[35]
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4: 217.
[http://dx.doi.org/10.3389/fimmu.2013.00217]
[36]
Choi J, Kim M, Lee J, Seo Y, Ham Y, Lee J, et al. Antigen-binding affinity and thermostability of chimeric mouse-chicken IgY and mouse-human IgG antibodies with identical variable domains. Sci Rep 2019; 9: 19242.
[http://dx.doi.org/10.1038/s41598-019-55805-4]
[37]
Hettmann T, Gillies S, Kleinschmidt M, Piechotta A, Makioka K, Lemere C, et al. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer’s disease with reduced complement activation. Sci Rep 2020; 10: 3294.
[38]
Maun H, Jackman J, Choy D, Loyet K, Staton T, Jia G, et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell 2019; 179: 417-31.
[39]
Koenig P, Das H, Liu H, Kummerer B, Gohr F, Jenster L, et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021; 371(6530): eabe6230.
[40]
Dodev T, Karagiannis P, Gilbert A, Josephs D, Bowen H, James L, et al. A tool kit for rapid cloning and expression of recombinant antibodies. Sci Rep 2014; 4: 5885.
[http://dx.doi.org/10.1038/srep05885]
[41]
Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 2014; 588: 278-87.
[http://dx.doi.org/10.1016/j.febslet.2013.11.025]
[42]
Schüchner S, Behm C, Mudrak I, Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Sci Signal 2020; 13(616): eaax9730.
[http://dx.doi.org/10.1126/scisignal.aax9730] [PMID: 31992583]
[43]
Ollier R, Wassmann P, Monney T, Ries Fecourt C, Gn S. Single-step Protein A and Protein G avidity purification methods to support bispecific antibody discovery and development. MAbs 2019; 11(8): 1464-78.
[44]
Inoue K, Ishizawa M, Kubota T. Monoclonal anti-dsDNA antibody 2C10 escorts DNA to intracellular DNA sensors in normal mononuclear cells and stimulates secretion of multiple cytokines implicated in lupus pathogenesis. Clin Exp Immunol 2020; 199(2): 150-62.
[46]
Baaske P, Wienken C, Reineck P, Duhr S, Braun D. Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 2010; 49: 2238-41.
[http://dx.doi.org/10.1002/anie.200903998]
[47]
Scott M, Jowett A, Orecchia M, Ertl P, Ouro Gnao L, Ticehurst J, et al. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs 2020; 12: 1755069.
[48]
Chahar DS, Ravindran S, Pisal SS. Monoclonal antibody purification and its progression to commercial scale. Biologicals 2020; 63: 1-13.
[http://dx.doi.org/10.1016/j.biologicals.2019.09.007] [PMID: 31558429]
[49]
Yang J, Rader C. Cloning, expression, and purification of monoclonal antibodies in scFv-Fc format. Methods Mol Biol 2012; 901: 209-32.
[http://dx.doi.org/10.1007/978-1-61779-931-0_14] [PMID: 22723104]
[50]
Zhang F, Wang L, Niu X, et al. Phenotypic characterization of chinese rhesus macaque plasmablasts for cloning antigen-specific monoclonal antibodies. Front Immunol 2019; 10: 2426.
[http://dx.doi.org/10.3389/fimmu.2019.02426] [PMID: 31681312]
[51]
Carbonetti S, Oliver BG, Vigdorovich V, et al. A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning. J Immunol Methods 2017; 448: 66-73.
[http://dx.doi.org/10.1016/j.jim.2017.05.010] [PMID: 28554543]
[52]
Lei L, Tran K, Wang Y, et al. Antigen-specific single B cell sorting and monoclonal antibody cloning in guinea pigs. Front Microbiol 2019; 10: 672.
[http://dx.doi.org/10.3389/fmicb.2019.00672] [PMID: 31065249]
[53]
Spidel JL, Vaessen B, Chan YY, Grasso L, Kline JB. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells. J Immunol Methods 2016; 439: 50-8.
[http://dx.doi.org/10.1016/j.jim.2016.09.007] [PMID: 27677581]
[54]
James LK. The cloning and expression of human monoclonal antibodies: Implications for allergen immunotherapy. Curr Allergy Asthma Rep 2016; 16(2): 15.
[http://dx.doi.org/10.1007/s11882-015-0588-z]
[55]
Pitiot A, Heuzé-Vourc’h N, Sécher T. Alternative routes of administration for therapeutic antibodies-state of the art. Antibodies 2022; 11(3): 56.
[http://dx.doi.org/10.3390/antib11030056] [PMID: 36134952]
[56]
Lucas Silva C. Production processes for monoclonal antibodies.Fermentation Processes. InTech 2017.
[http://dx.doi.org/10.5772/64263]
[57]
Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: Formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm 2017; 43(4): 519-30.
[http://dx.doi.org/10.1080/03639045.2017.1278768] [PMID: 28049357]
[58]
Samra HS, He F. Advancements in high throughput biophysical technologies: Applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 2012; 9(4): 696-707.
[http://dx.doi.org/10.1021/mp200404c]
[59]
Yokoyama WM, Christensen M, Santos GD, et al. Production of monoclonal antibodies. Curr Protoc Immunol 2013; 102(1): 5.1--29.
[http://dx.doi.org/10.1002/0471142735.im0205s102] [PMID: 24510488]
[60]
Yokoyama WM. Production of monoclonal antibody supernatant and ascites fluid. Curr Protoc Mol Biol 2008; 83(1)
[http://dx.doi.org/10.1002/0471142727.mb1110s83]
[61]
Dewar V, Voet P, Denamur F, Smal J. Industrial implementation of in vitro production of monoclonal antibodies. ILAR J 2005; 46(3): 307-13.
[http://dx.doi.org/10.1093/ilar.46.3.307] [PMID: 15953838]
[62]
Xu N, Ou J, Si Y, et al. Proteomics insight into the production of monoclonal antibody. Biochem Eng J 2019; 145: 177-85.
[http://dx.doi.org/10.1016/j.bej.2019.02.022]
[63]
Patel A, Flingai S, Elliott STC, et al. In Vivo DNA-monoclonal antibody (DMAb) gene delivery protects against lethal bacterial and viral challenges in mice. Mol Ther 2016; 24: S105.
[http://dx.doi.org/10.1016/S1525-0016(16)33073-8]
[64]
Domján J, Vass P, Hirsch E, et al. Monoclonal antibody formulation manufactured by high-speed electrospinning. Int J Pharm 2020; 591: 120042.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120042] [PMID: 33157211]
[65]
Guideline on development, production, characterisation and specification for monoclonal antibodies and related products 2008. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-development-production-characterisation-specification-monoclonal-antibodies-related_en.pdf
[66]
Awwad S, Angkawinitwong U. Overview of antibody drug delivery. Pharmaceutics 2018; 10(3): 83.
[http://dx.doi.org/10.3390/pharmaceutics10030083] [PMID: 29973504]
[67]
Arslan FB, Ozturk K, Calis S. Antibody-mediated drug delivery. Int J Pharm 2021; 596(1): 120268.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120268] [PMID: 33486037]
[68]
Pettinato MC. Introduction to antibody-drug conjugates. Antibodies 2021; 10(4): 42.
[http://dx.doi.org/10.3390/antib10040042] [PMID: 34842621]
[69]
Aktaş Y, Yemisci M, Andrieux K, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 2005; 16(6): 1503-11.
[http://dx.doi.org/10.1021/bc050217o] [PMID: 16287248]
[70]
Sousaa Flávia Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opin Drug Deliv 2016; 14(10): 1163-76.
[http://dx.doi.org/10.1080/17425247.2017.127334] [PMID: 28005451]
[71]
Elamir A, Ajith S, Sawaftah NA, et al. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 2021; 11(1): 7545.
[http://dx.doi.org/10.1038/s41598-021-86860-5] [PMID: 33824356]
[72]
Lu L, Ding Y, Zhang Y, et al. Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. Int J Nanomedicine 2018; 13: 1927-44.
[http://dx.doi.org/10.2147/IJN.S153107] [PMID: 29636610]
[73]
Elbayoumi TA, Pabba S, Roby A, Torchilin VP. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumortargeted delivery of therapeutic and diagnostic agents. J Liposome Res 2007; 17(1): 1-14.
[http://dx.doi.org/10.1080/08982100601186474] [PMID: 17454399]
[74]
Tsai C-P, Chen C-Y, Hung Y, Chang F-H, Mou C-Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 2009; 19(32): 5737-43.
[http://dx.doi.org/10.1039/b905158a]
[75]
Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces 2017; 159: 454-67.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.085] [PMID: 28837895]
[76]
Ye QN, Wang Y, Shen S, Xu CF, Wang J. Biomaterials-based delivery of therapeutic antibodies for cancer therapy. Adv Healthc Mater 2021; 10(11): 2002139.
[http://dx.doi.org/10.1002/adhm.202002139] [PMID: 33870637]
[77]
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020; 181(1): 151-67.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[78]
Marjan A. Functionalized silica surfaces as carriers for monoclonal antibodies in targeted drug delivery systems: Accelerated molecular dynamics study. Chem Phys Lett 2020; 739(January): 136988.
[79]
Patil J. Functional applications of monoclonal antibodies in cancer therapy via drug targeting approach. J Pharmacovigil 2016; 4(5): 5.
[http://dx.doi.org/10.4172/2329-6887.1000e163]
[80]
Wathonia Nasrul Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 28(1): 2959-70.
[81]
Christopher T. Therapeutic potential of inorganic nanoparticles for the delivery of monoclonal antibodies. J Nanomater 2015; 2015: 11.
[http://dx.doi.org/10.1155/2015/309602]
[82]
Snehal AG. The novel drug delivery system. IJCRT 2021; 9(9)
[83]
Tashima T. Delivery of orally administered digestible antibodies using nanoparticles. Int J Mol Sci 2021; 22(7): 3349.
[http://dx.doi.org/10.3390/ijms22073349] [PMID: 33805888]
[84]
Zhang Y, Davis DA, AboulFotouh k. et al Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172: 183-210.
[http://dx.doi.org/10.1016/j.addr.2021.02.011] [PMID: 33705873]
[85]
Hamamichi S, Fukuhara T, Umeda IO, Fujii H, Hattori N. Novel method for screening functional antibody with comprehensive analysis of its immunoliposome. Sci Rep 2021; 11(1): 4625.
[http://dx.doi.org/10.1038/s41598-021-84043-w] [PMID: 33633189]
[86]
Rawat S, Hussain MS. An overview of monoclonal antibodies and their therapeutic applications. Nat Volatiles Essent Oils 2021; 8(6): 4121-30.
[87]
Zhao J, Nussinov R, Wu WJ, Ma B. In silico methods in antibody design. antibodies 2018; 7(3): 22.
[http://dx.doi.org/10.3390/antib7030022] [PMID: 31544874]
[88]
Ward JF, Nakamura H, Petricoin EF III, et al. Clinical proteomics: Giving medicine the big picture. Nat Rev Genet 2002; 3(9): 671-82.
[89]
Lania Maria M. In silico techniques for prospecting and characterizing monoclonal antibodies. In: Monoclonal Antibodiesintechopen. 2020.
[http://dx.doi.org/10.5772/intechopen.94366]
[90]
Solforosi L, Mancini N, Canducci F, et al. A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments. New Microbiol 2012; 35(3): 289-94.
[PMID: 22842598]
[91]
Motley MP, Banerjee K, Fries BC. Monoclonal antibody-based therapies for bacterial infections. Curr Opin Infect Dis 2019; 32(3): 210-6.
[http://dx.doi.org/10.1097/QCO.0000000000000539] [PMID: 30950853]
[92]
Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25(3): 1395-407.
[http://dx.doi.org/10.1007/s11030-021-10192-9] [PMID: 33554306]
[93]
Sefid F, Payandeh Z, Azamirad G, Abdolhamidi R, Rasooli I. In silico engineering towards enhancement of Bap-VHH monoclonal antibody binding affinity. Int J Pept Res Ther 2019; 25(1): 273-87.
[http://dx.doi.org/10.1007/s10989-017-9670-9]
[94]
Ma J, Mo Y, Tang M, et al. Bispecific antibodies: From research to clinical application. Front Immunol 2021; 12: 626616.
[http://dx.doi.org/10.3389/fimmu.2021.626616] [PMID: 34025638]
[95]
Mitra S, Tomar PC. Hybridoma technology; advancements, clinical significance, and future aspects. J Genet Eng Biotechnol 2021; 19(1): 159.
[http://dx.doi.org/10.1186/s43141-021-00264-6] [PMID: 34661773]
[96]
Inoue K, Ishizawa M, Kubota T. Monoclonal anti-dsDNA antibody 2C10 escorts DNA to intracellular DNA sensors in normal mononuclear cells and stimulates secretion of multiple cytokines implicated in lupus pathogenesis. Clin Exp Immunol 2019; 199(2): 150-62.
[98]
Pouya Safarzadeh K. Monoclonal Antibodies (mAbs) approved for cancer treatment in the 2020s. Trends in Med Sci 2021; 1(2): e116686.
[99]
Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies 2020; 9(3): 34.
[http://dx.doi.org/10.3390/antib9030034] [PMID: 32698317]
[100]
Yuan M, Wan Y, Liu C, et al. Identification and characterization of a monoclonal antibody blocking the SARS-CoV-2 spike protein-ACE2 interaction. Cell Mol Immunol 2021; 18(6): 1562-4.
[http://dx.doi.org/10.1038/s41423-021-00684-x] [PMID: 33958745]