Current Protein & Peptide Science

Author(s): Zhuoyu Li and Ziming Han*

DOI: 10.2174/0113892037238265231006051215

Advancements of the CRISPR/Cas9 System in the Treatment of Liver Cancer

Page: [154 - 162] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

In recent years, the CRISPR/Cas9 system has become a rapidly advancing gene editing technology with significant advantages in various fields, particularly biomedicine. Liver cancer is a severe malignancy that threatens human health and is primarily treated with surgery, radiotherapy, and chemotherapy. However, surgery may not be suitable for advanced cases of liver cancer with distant metastases. Moreover, radiotherapy and chemotherapy have low specificity and numerous side effects that limit their effectiveness; therefore, more effective and safer treatments are required. With the advancement of the biomolecular mechanism of cancer, CRISPR/Cas9 gene editing technology has been widely used in the study of liver cancer to gain insights into gene functions, establish tumor models, screen tumor phenotype-related genes, and perform gene therapy. This review outlines the research progress of CRISPR/Cas9 gene editing technology in the treatment of liver cancer and provides a relevant theoretical basis for its research and application in the treatment of liver cancer.

Graphical Abstract

[1]
Niu, Y.Q.; Yang, B.; Wang, L.; Tian, C.W.; Zhang, T.J.; Liao, M.L.; Xu, X.; Chen, K.N. Advances in the mechanism of anti-hepatoma effect of Chinese medicine. J. Tradit. Chinese Med. Oncol., 2021, 3(6), 88-96.
[http://dx.doi.org/10.19811/j.cnki.ISSN2096-6628.2021.06.013]
[2]
Du, Y.W.; Zhang, N.N.; Lu, W. Research status and prospect of immunotherapy for liver cancer. Shiyong Zhongliu Zazhi, 2021, 36(5), 393-398.
[http://dx.doi.org/10.13267/j.cnki.syzlzz.2021.080]
[3]
Nan, Y.; Xu, X.; Gao, Y.; Wang, R.; Li, W.; Yang, M.; Liu, L.; Duan, Z.; Jia, J.; Wei, L.; Zhuang, H.; Ding, H.; Duan, Z.; Fan, J.; Fang, Q.; Gao, Y.; Hu, P.; Jia, J.; Li, W.; Liu, J.; Niu, J.; Nan, Y.; Shang, J.; Wang, R.; Wei, L.; Yu, Y.; Zhang, Y.; Zhao, S.; Zhou, J.; Zhao, W.; Xu, X.; Xie, C.; Xie, W.; Yang, M.; Zhuang, H. Consensus on the secondary prevention of primary liver cancer. Hepatol. Int., 2021, 15(6), 1289-1300.
[http://dx.doi.org/10.1007/s12072-021-10259-7] [PMID: 34846705]
[4]
Fu, Y.Z.; Chen, M.S. Progress in the treatment of primary liver cancer in 2019. J. Multidiscip. Cancer Manag., 2020, 6(2), 86-89.
[http://dx.doi.org/10.12151/JMCM.2020.02-11]
[5]
Mintz, K.J.; Leblanc, R.M. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188621.
[http://dx.doi.org/10.1016/j.bbcan.2021.188621] [PMID: 34454983]
[6]
Qin, W.Z.; Zeng, H.; Hui, Y. Research progress of markers for early diagnosis of liver cancer. China Med. Pharm., 2020, 10(24), 47-50.
[http://dx.doi.org/10.3969/j.issn.2095-0616.2020.24]
[7]
Zhou, C.; Liu, J.C.; Shi, Q.; Zheng, C.S.; Xiong, B. Current situation and research advances of molecular targeted drugs and immunosuppressive therapy for hepatocellular carcinoma. Chinese Electron. J. Interv. Radiol., 2019, 7(03), 243-250.
[http://dx.doi.org/10.3877/cma.j.issn.2095-57]
[8]
Hernandez-Alcoceba, R.; Sangro, B.; Prieto, J. Gene therapy of liver cancer. World J. Gastroenterol., 2006, 12(38), 6085-6097.
[http://dx.doi.org/10.3748/wjg.v12.i38.6085] [PMID: 17036377]
[9]
Xing, T. Recent progress in molecular and immune classification and combined immune target and therapy of hepatocellular carcinoma. Chinese J. Hepatobiliary Surg., 2021, 27(7), 549-552.
[http://dx.doi.org/10.3760/cma.j.cn113884-20200619-00332]
[10]
Ma, Y.; Zhang, L.; Huang, X. Genome modification by CRISPR/Cas9. FEBS J., 2014, 281(23), 5186-5193.
[http://dx.doi.org/10.1111/febs.13110] [PMID: 25315507]
[11]
Gupta, D.; Bhattacharjee, O.; Mandal, D.; Sen, M.K.; Dey, D.; Dasgupta, A.; Kazi, T.A.; Gupta, R.; Sinharoy, S.; Acharya, K.; Chattopadhyay, D.; Ravichandiran, V.; Roy, S.; Ghosh, D. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci., 2019, 232, 116636.
[http://dx.doi.org/10.1016/j.lfs.2019.116636] [PMID: 31295471]
[12]
Zhang, J.W.; Lin, S.L.; Zheng, R.M. CRISPR/Cas9 technology specifically kills cancer cells - A new strategy for cancer therapy. Prog. Physiol. Sci., 2017, 48(5), 340-341.
[13]
Xie, Y.F.; Wang, Y.M. Principles and applications of genome-editing technologies in cancer research. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2017, 24(8), 815-827.
[http://dx.doi.org/10.3872/j.issn.1007-385x]
[14]
Ford, S.A.; Blanck, G. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies. Biochim. Biophys. Acta Rev. Cancer, 2015, 1855(1), 18-23.
[http://dx.doi.org/10.1016/j.bbcan.2014.11.001] [PMID: 25450826]
[15]
Zielińska, K.A.; Katanaev, V.L. Information theory: New look at oncogenic signaling pathways. Trends Cell Biol., 2019, 29(11), 862-875.
[http://dx.doi.org/10.1016/j.tcb.2019.08.005] [PMID: 31630880]
[16]
Potts, M.A.; McDonald, J.A.; Sutherland, K.D.; Herold, M.J. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Eur. J. Immunol., 2020, 50(12), 1871-1884.
[http://dx.doi.org/10.1002/eji.202048712] [PMID: 33202035]
[17]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[18]
Chen, Y.; Zhang, Z.; Henson, E.S.; Cuddihy, A.; Haigh, K.; Wang, R.; Haigh, J.J.; Gibson, S.B. Autophagy inhibition by TSSC4 (tumor suppressing subtransferable candidate 4) contributes to sustainable cancer cell growth. Autophagy, 2022, 18(6), 1274-1296.
[http://dx.doi.org/10.1080/15548627.2021.1973338] [PMID: 34530675]
[19]
Kushlinskiĭ, N.E.; Nemtsova, M.V. [Molecular biological characteristics of cancer]. Vestn. Ross. Akad. Med. Nauk, 2014, 69(1-2), 5-15.
[http://dx.doi.org/10.15690/vramn.v69i1-2.934] [PMID: 25055553]
[20]
Wang, T.; Wang, R.H. Research progress of epidermal growth factor receptor and the pathogenesis of hepatocellular carcinoma and targeted therapy. Chinese J. Surg. Oncol., 2017, 9(05), 327-330.
[http://dx.doi.org/10.3969/j.issn.1674-4136.2017.05.016]
[21]
Zhang, C.H.; Gui, Y.; Guo, F.L.; Ma, J.L.; Yu, J.H. Effect of EGFR gene knockdown on invasion and migration ofhepatocellular carcinoma MHCC-97H cell line. Acta Univ. Med. Anhui, 2017, 52(08), 1133-1137.
[http://dx.doi.org/10.19405/j.cnki.issn1000-1492.2017.08.008]
[22]
Jin, H.; Shi, Y.; Lv, Y.; Yuan, S.; Ramirez, C.F.A.; Lieftink, C.; Wang, L.; Wang, S.; Wang, C.; Dias, M.H.; Jochems, F.; Yang, Y.; Bosma, A.; Hijmans, E.M.; de Groot, M.H.P.; Vegna, S.; Cui, D.; Zhou, Y.; Ling, J.; Wang, H.; Guo, Y.; Zheng, X.; Isima, N.; Wu, H.; Sun, C.; Beijersbergen, R.L.; Akkari, L.; Zhou, W.; Zhai, B.; Qin, W.; Bernards, R. EGFR activation limits the response of liver cancer to lenvatinib. Nature, 2021, 595(7869), 730-734.
[http://dx.doi.org/10.1038/s41586-021-03741-7] [PMID: 34290403]
[23]
Zheng, T.; Yang, J.M. Mechanism of transforming growth factor β in patients with Hepatocell ular carcinoma. Chinese J. Hepatobiliary Surg., 2016, 22(6), 425-428.
[http://dx.doi.org/10.3760/cma.j.issn.1007-8118.2016.06.019]
[24]
Qu, M.J.; Zheng, Y.; Li, Y.M.; Song, Y.; Wang, L.; Zhou, J.H. Construction of forkhead J2 gene knockout plasmids by CRISPR/Cas9 and the effects on expression of transforming growth factor-β/Smads and proliferation in hepatocellular carcinoma. Acta Anat. Sin., 2021, 52(2), 231-236.
[http://dx.doi.org/10.16098/j.issn.0529-1356.2021.02.011]
[25]
Li, H.L.; Shao, C.H.; Zhou, R.Y.; Zhang, Y.J.; Li, C.; Luo, Y. Latest progress of the tumor suppressor gene andoncogene. Basic & Clin. Med., 2018, 38(7), 1029-1033.
[http://dx.doi.org/10.16352/j.issn.1001-6325.2018.07.026]
[26]
Joyce, C.; Rayi, A.; Kasi, A. Tumor-Suppressor Genes; StatPearls: Treasure Island, FL, 2023.
[27]
Liu, Z.; Liu, L.; Guo, C. G.; Yu, S.; Meng, L.; Zhou, X.; Han, X. Tumor suppressor gene mutations correlate with prognosis and immunotherapy benefit in hepatocellular carcinoma. Int. Immunopharmacol., 2021, 101(Pt B), e108340.
[http://dx.doi.org/10.1016/j.intimp.2021.108340]
[28]
Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188556.
[http://dx.doi.org/10.1016/j.bbcan.2021.188556] [PMID: 33932560]
[29]
Xue, W.; Zender, L.; Miething, C.; Dickins, R.A.; Hernando, E.; Krizhanovsky, V.; Cordon-Cardo, C.; Lowe, S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007, 445(7128), 656-660.
[http://dx.doi.org/10.1038/nature05529] [PMID: 17251933]
[30]
Zhao, J. The Role and Mechanism of ARID1A Inactivating Mutation in Hepatocarcinogenesis., 2015,
[31]
Liu, Y.; Qi, X.; Zeng, Z.; Wang, L.; Wang, J.; Zhang, T.; Xu, Q.; Shen, C.; Zhou, G.; Yang, S.; Chen, X.; Lu, F. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci. Rep., 2017, 7(1), 2796.
[http://dx.doi.org/10.1038/s41598-017-03070-8] [PMID: 28584302]
[32]
Liu, J.; Peng, Y.; Wei, W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol., 2022, 32(1), 30-44.
[http://dx.doi.org/10.1016/j.tcb.2021.07.001] [PMID: 34304958]
[33]
Caglar, H.O.; Biray Avci, C. Alterations of cell cycle genes in cancer: Unmasking the role of cancer stem cells. Mol. Biol. Rep., 2020, 47(4), 3065-3076.
[http://dx.doi.org/10.1007/s11033-020-05341-6] [PMID: 32112300]
[34]
Liu, H.; Li, D.; Zhou, L.; Kan, S.; He, G.; Zhou, K.; Wang, L.; Chen, M.; Shu, W. LMNA functions as an oncogene in hepatocellular carcinoma by regulating the proliferation and migration ability. J. Cell. Mol. Med., 2020, 24(20), 12008-12019.
[http://dx.doi.org/10.1111/jcmm.15829] [PMID: 32896989]
[35]
He, L.; Fan, X.; Li, Y.; Chen, M.; Cui, B.; Chen, G.; Dai, Y.; Zhou, D.; Hu, X.; Lin, H. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma. Cell Death Dis., 2019, 10(6), 444.
[http://dx.doi.org/10.1038/s41419-019-1681-3] [PMID: 31168049]
[36]
López-Grueso, M.J.; Lagal, D.J.; García-Jiménez, Á.F.; Tarradas, R.M.; Carmona-Hidalgo, B.; Peinado, J.; Requejo-Aguilar, R.; Bárcena, J.A.; Padilla, C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol., 2020, 37, 101737.
[http://dx.doi.org/10.1016/j.redox.2020.101737] [PMID: 33035814]
[37]
Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl)(Suppl.), S224-S243.
[http://dx.doi.org/10.1016/j.semcancer.2015.01.001] [PMID: 25600295]
[38]
Chen, B.; Jin, H.; Wu, K. Potential role of vascular targeted therapy to combat against tumor. Expert Opin. Drug Deliv., 2009, 6(7), 719-726.
[http://dx.doi.org/10.1517/17425240903018871] [PMID: 19538038]
[39]
Siveen, K.S.; Prabhu, K.; Krishnankutty, R.; Kuttikrishnan, S.; Tsakou, M.; Alali, F.Q.; Dermime, S.; Mohammad, R.M.; Uddin, S. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: Potential and challenges. Curr. Vasc. Pharmacol., 2017, 15(4), 339-351.
[http://dx.doi.org/10.2174/1570161115666170105124038] [PMID: 28056756]
[40]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[41]
Zhang, B.C.; Wu, P.Y.; Zou, J.J.; Jiang, J.L.; Zhao, R.R.; Luo, B.Y.; Liao, Y.Q.; Shao, J.W. Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect. Chem. Eng. J., 2020, 393, 124688.
[http://dx.doi.org/10.1016/j.cej.2020.124688]
[42]
Seo, S.H.; Cho, K.J.; Park, H.J.; Kim, H.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, S.U. Dickkopf-1 promotes angiogenesis by upregulating VEGF receptor 2-mediated mTOR/p70S6K signaling in hepatocellular carcinoma. Am. J. Cancer Res., 2021, 11(10), 4788-4806.
[http://dx.doi.org/10.21203/rs.3.rs-125332/v1] [PMID: 34765293]
[43]
Ji, L.; Lin, Z.; Wan, Z.; Xia, S.; Jiang, S.; Cen, D.; Cai, L.; Xu, J.; Cai, X. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis., 2020, 11(4), 250.
[http://dx.doi.org/10.1038/s41419-020-2413-4] [PMID: 32313144]
[44]
Lee, H.K.; Lim, H.M.; Park, S.H.; Nam, M.J. Knockout of hepatocyte growth factor by CRISPR/Cas9 system induces apoptosis in hepatocellular carcinoma cells. J. Pers. Med., 2021, 11(10), 983.
[http://dx.doi.org/10.3390/jpm11100983] [PMID: 34683124]
[45]
Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133.
[http://dx.doi.org/10.1016/j.canlet.2019.11.009] [PMID: 31730903]
[46]
Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.004] [PMID: 25818339]
[47]
Okusaka, T.; Ikeda, M. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO Open, 2018, 3(Suppl. 1), e000455.
[http://dx.doi.org/10.1136/esmoopen-2018-000455] [PMID: 30622744]
[48]
Zongyi, Y.; Xiaowu, L. Immunotherapy for hepatocellular carcinoma. Cancer Lett., 2020, 470, 8-17.
[http://dx.doi.org/10.1016/j.canlet.2019.12.002] [PMID: 31811905]
[49]
Huang, K.; Sun, B.; Luo, N.; Guo, H.; Hu, J.; Peng, J. Programmed death receptor 1 (PD1) knockout and human telomerase reverse transcriptase (hTERT) transduction can enhance persistence and antitumor efficacy of cytokine-induced killer cells against hepatocellular carcinoma. Med. Sci. Monit., 2018, 24, 4573-4582.
[http://dx.doi.org/10.12659/MSM.910903] [PMID: 29967316]
[50]
Zhang, Y.; Zheng, J. Functions of immune checkpoint molecules beyond immune evasion. Adv. Exp. Med. Biol., 2020, 1248, 201-226.
[http://dx.doi.org/10.1007/978-981-15-3266-5_9] [PMID: 32185712]
[51]
Jiang, S.; Wang, B.; Guo, X.; Zhang, Y.; Xie, L.; Luo, C.X.; Liu, Y.Y. Effect of PD-1 knockout and GPC3 modified chimeric antigen receptor T cells on liver cancer. Chinese Med. Biotechnol., 2021, 16(1), 10-17.
[http://dx.doi.org/10.3969/j.issn.1673-713X.2021.01.004]
[52]
Li, Y.M.; Liu, Z.Y.; Wang, J.C.; Yu, J.M.; Li, Z.C.; Yang, H.J.; Tang, J.; Chen, Z.N. Receptor-interacting protein kinase 3 deficiency recruits myeloid-derived suppressor cells to hepatocellular carcinoma through the chemokine (C-X-C Motif) ligand 1–chemokine (C-X-C Motif) receptor 2 axis. Hepatology, 2019, 70(5), 1564-1581.
[http://dx.doi.org/10.1002/hep.30676] [PMID: 31021443]
[53]
Akasu, M.; Shimada, S.; Kabashima, A.; Akiyama, Y.; Shimokawa, M.; Akahoshi, K.; Kudo, A.; Yamaoka, S.; Tanabe, M.; Tanaka, S. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci. Rep., 2021, 11(1), 16732.
[http://dx.doi.org/10.1038/s41598-021-96167-0] [PMID: 34429454]
[54]
Bose, S.; Le, A. Glucose metabolism in cancer. Adv. Exp. Med. Biol., 2018, 1063, 3-12.
[http://dx.doi.org/10.1007/978-3-319-77736-8_1] [PMID: 29946772]
[55]
Kim, S.Y. Targeting cancer energy metabolism: A potential systemic cure for cancer. Arch. Pharm. Res., 2019, 42(2), 140-149.
[http://dx.doi.org/10.1007/s12272-019-01115-2] [PMID: 30656605]
[56]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[57]
Elf, S.E.; Chen, J. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120(6), 774-780.
[http://dx.doi.org/10.1002/cncr.28501] [PMID: 24374503]
[58]
Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res., 2019, 150, 104511.
[http://dx.doi.org/10.1016/j.phrs.2019.104511] [PMID: 31678210]
[59]
Xiang, J.; Chen, C.; Liu, R.; Gou, D.; Chang, L.; Deng, H.; Gao, Q.; Zhang, W.; Tuo, L.; Pan, X.; Liang, L.; Xia, J.; Huang, L.; Yao, K.; Wang, B.; Hu, Z.; Huang, A.; Wang, K.; Tang, N. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J. Clin. Invest., 2021, 131(8), e144703.
[http://dx.doi.org/10.1172/JCI144703] [PMID: 33690219]
[60]
Liu, R.; Gou, D.; Xiang, J.; Pan, X.; Gao, Q.; Zhou, P.; Liu, Y.; Hu, J.; Wang, K.; Tang, N. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene, 2021, 40(50), 6707-6719.
[http://dx.doi.org/10.1038/s41388-021-02058-z] [PMID: 34650217]
[61]
Gu, Y.; Ji, F.; Liu, N.; Zhao, Y.; Wei, X.; Hu, S.; Jia, W.; Wang, X.W.; Budhu, A.; Ji, J.; Zhao, B.; Roessler, S.; Zheng, X.; Ji, J. Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 268.
[http://dx.doi.org/10.1186/s13046-020-01785-7] [PMID: 33256802]
[62]
Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med., 2021, 218(1), e20201606.
[http://dx.doi.org/10.1084/jem.20201606] [PMID: 33601415]
[63]
Li, M.; Hu, J.; Jin, R.; Cheng, H.; Chen, H.; Li, L.; Guo, K. Effects of LRP1B regulated by HSF1 on lipid metabolism in hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2020, 7, 361-376.
[http://dx.doi.org/10.2147/JHC.S279123] [PMID: 33324588]
[64]
He, J.; Zhang, W.; Li, A.; Chen, F.; Luo, R. Knockout of NCOA5 impairs proliferation and migration of hepatocellular carcinoma cells by suppressing epithelial-to-mesenchymal transition. Biochem. Biophys. Res. Commun., 2018, 500(2), 177-183.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.017] [PMID: 29626478]
[65]
Iwagami, Y.; Huang, C.K.; Olsen, M.J.; Thomas, J.M.; Jang, G.; Kim, M.; Lin, Q.; Carlson, R.I.; Wagner, C.E.; Dong, X.; Wands, J.R. Aspartate β‐hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology, 2016, 63(4), 1213-1226.
[http://dx.doi.org/10.1002/hep.28411] [PMID: 26683595]
[66]
Ding, K.; Li, X.; Ren, X.; Ding, N.; Tao, L.; Dong, X.; Chen, Z. GBP5 promotes liver injury and inflammation by inducing hepatocyte apoptosis. FASEB J., 2022, 36(1), e22119.
[http://dx.doi.org/10.1096/fj.202101448R] [PMID: 34958688]
[67]
Zhou, Y. C.; Zhao, H. Effect of ARID2 knockout on proliferation gene expression of hepatocarcinoma cells Hep38. Med. J. Chinese People′s Army, 2019, 44(6), 451-458.
[http://dx.doi.org/10.11855/j.issn.0577-7402.2019.06.01]
[68]
Xu, T.; Gu, P.; Chen, B.Z.; Ye, X.; Liang, C.J.; Zhang, Y.H.; Gu, W.W. Use of CRISPR/Cas9 system for establishment and characterization of HMGA2 knockout hepatoma carcinoma cell line. Chinese J. Comp. Med., 2020, 30(12), 23-29.
[http://dx.doi.org/10.3969/j.issn.1671-7856.2020.12.004]
[69]
Qu, M.J.; Li, Y.M.; Xie, J.; Qin, M.M.; Wang, J.; Zhou, J.H. Construction of Rho GDIα-sgRNAs plasmids by clustered regularly interspaced short palindromic repeats/associated protein 9 and the effect on migration of Hepa 1-6 cell line in mouse. Acta Anat. Sin., 2021, 52(1), 55-59.
[http://dx.doi.org/10.16098/j.issn.0529-1356.2021.01.008]
[70]
Liu, Y.H.; Cai, J.B.; Zhang, D.Z.; Man, Y.H. Effect of T-lymphoma invasion and metastasis inducible factor 1 on migration and adhesion of hepatoma cells and its molecular mechanism. Chin. J. Exp. Surg., 2020, 37(6), 1122-1125.
[http://dx.doi.org/10.3760/cma.j.cn421213-20200102-01006]
[71]
Chen, F.; Zhao, J.L.; Xia, H.B. Bin. Rev-erbβ knock-out affectsthe proliferation,migration and invasion ability of hepatocellular carcinoma HepG2 cell line in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban, 2019, 50(4), 520-526.
[http://dx.doi.org/10.13464/j.scuxbyxb.2019.04.012] [PMID: 31642229]
[72]
You, L.F.; Wei, L.; Wu, J.X. PARP1 regulates growth and migration of hepatocellular carcinoma cell. J. Fudan Univ., 2019, 58(1), 52-57.
[http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2019.01.007]
[73]
Bolatkan, A.; Asada, K.; Kaneko, S.; Suvarna, K.; Ikawa, N.; Machino, H.; Komatsu, M.; Shiina, S.; Hamamoto, R. Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules. Int. J. Oncol., 2021, 60(1), 4.
[http://dx.doi.org/10.3892/ijo.2021.5294] [PMID: 34913069]
[74]
Wang, H.N.; Li, K.; Yan, R.; Chen, W.; Sun, T.H.; Wang, X.; Zhu, K.; Dang, C.X. Inhibition of KIAA0101 gene by Crispr-cas9 induces apoptosis of hepatoma cells. J. Shanxi Med. Univ., 2019, 50(6), 709-714.
[http://dx.doi.org/10.13753/j.issn.1007-6611.2019.06.003]
[75]
Yu, S.; Yang, L.F.; Lan, K.; Xie, W.Z.; Cen, H.Y.; Jiang, B.J.; Duan, S.L. Effects of TET2 gene knockout on proliferation and apoptosis of HepG2 cells by CRISPR/Cas9 system. Jiyinzuxue Yu Yingyong Shengwuxue, 2018, 37(6), 2633-2639.
[http://dx.doi.org/10.13417/j.gab.037.002633]
[76]
Li, B.; Liu, F.Z.; Liu, M.L.; Li, J.Q.; Yang, Y.; Song, Z.Y.; Zhang, H.X.; Mou, J. Construction of NPAS2 knockout HepG2 cell line and its effect on the apoptosis of hepatocarcinoma cells. Prog. Mod. Biomed., 2017, 17(29), 5618-5622.
[http://dx.doi.org/10.13241/j.cnki.pmb.2017.29.004]