Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi

Page: [2285 - 2308] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Chagas disease (CD) is a parasitic disease endemic in several developing countries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to discover new targets for which new therapeutical agents could be developed. Cruzain cysteine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic effects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.

[1]
Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. CD: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166.
[http://dx.doi.org/10.3389/fpubh.2019.00166] [PMID: 31312626]
[2]
Santos, E.F.; Silva, Â.A.O.; Leony, L.M.; Freitas, N.E.M.; Daltro, R.T.; Regis-Silva, C.G.; Del-Rei, R.P.; Souza, W.V.; Ostermayer, A.L.; Costa, V.M.; Silva, R.A.; Ramos, A.N., Jr; Sousa, A.S.; Gomes, Y.M.; Santos, F.L.N. Acute Chagas disease in Brazil from 2001 to 2018: A nationwide spatiotemporal analysis. PLoS Negl. Trop. Dis., 2020, 14(8), e0008445.
[http://dx.doi.org/10.1371/journal.pntd.0008445] [PMID: 32745113]
[3]
Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. CD in the United States: A public health approach. Clin. Microbiol. Rev., 2019, 33(1), e00023-e19.
[http://dx.doi.org/10.1128/CMR.00023-19] [PMID: 31776135]
[4]
[5]
Coura, J.R. Chagas disease: What is known and what is needed A background article. Mem. Inst. Oswaldo Cruz, 2007, 102(Suppl. 1), 113-122.
[http://dx.doi.org/10.1590/S0074-02762007000900018] [PMID: 17992371]
[6]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[7]
Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027.
[http://dx.doi.org/10.1073/pnas.0711014105] [PMID: 18367671]
[8]
Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. J. Antimicrob. Chemother., 2020, 75(3), 690-696.
[http://dx.doi.org/10.1093/jac/dkz473] [PMID: 31754690]
[9]
Soeiro, M.N.C.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets, 2009, 13(1), 105-121.
[http://dx.doi.org/10.1517/14728220802623881] [PMID: 19063710]
[10]
Lo Presti, M.S.; Bazán, P.C.; Strauss, M.; Báez, A.L.; Rivarola, H.W.; Paglini-Oliva, P.A. Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop., 2015, 145, 79-87.
[http://dx.doi.org/10.1016/j.actatropica.2015.02.012] [PMID: 25733492]
[11]
Cazzulo, J.; Stoka, V.; Turk, V. The major cysteine proteinase of Trypanosoma cruzi: A valid target for chemotherapy of Chagas disease. Curr. Pharm. Des., 2001, 7(12), 1143-1156.
[http://dx.doi.org/10.2174/1381612013397528] [PMID: 11472258]
[12]
Schormann, N.; Velu, S.E.; Murugesan, S.; Senkovich, O.; Walker, K.; Chenna, B.C.; Shinkre, B.; Desai, A.; Chattopadhyay, D. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg. Med. Chem., 2010, 18(11), 4056-4066.
[http://dx.doi.org/10.1016/j.bmc.2010.04.020] [PMID: 20452776]
[13]
Glockzin, K.; Kostomiris, D.; Minnow, Y.V.T.; Suthagar, K.; Clinch, K.; Gai, S.; Buckler, J.N.; Schramm, V.L.; Tyler, P.C.; Meek, T.D.; Katzfuss, A. Kinetic characterization and inhibition of Trypanosoma cruzi hypoxanthine-guanine phosphoribosyltransferases. Biochemistry, 2022, 61(19), 2088-2105.
[http://dx.doi.org/10.1021/acs.biochem.2c00312] [PMID: 36193631]
[14]
Freitas, R.F.; Prokopczyk, I.M.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Trevisan, M.T.S.; Vilegas, W.; Silva, M.G.V.; Montanari, C.A. Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg. Med. Chem., 2009, 17(6), 2476-2482.
[http://dx.doi.org/10.1016/j.bmc.2009.01.079] [PMID: 19254846]
[15]
Sajid, M.; Robertson, S.A.; Brinen, L.S.; McKerrow, J.H. Cruzain. Adv. Exp. Med. Biol., 2011, 712, 100-115.
[http://dx.doi.org/10.1007/978-1-4419-8414-2_7] [PMID: 21660661]
[16]
Caffrey, C.; Scory, S.; Steverding, D. Cysteine proteinases of trypanosome parasites: Novel targets for chemotherapy. Curr. Drug Targets, 2000, 1(2), 155-162.
[http://dx.doi.org/10.2174/1389450003349290] [PMID: 11465068]
[17]
Franke de Cazzulo, B.M.; Martínez, J.; North, M.J.; Coombs, G.H.; Cazzulo, J.J. Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol. Lett., 1994, 124(1), 81-86.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb07265.x] [PMID: 8001773]
[18]
Jasinski, G.; Salas-Sarduy, E.; Vega, D.; Fabian, L.; Martini, M.F.; Moglioni, A.G. Thiosemicarbazone derivatives: Evaluation as cruzipain inhibitors and molecular modeling study of complexes with cruzain. Bioorg. Med. Chem., 2022, 61, 116708.
[http://dx.doi.org/10.1016/j.bmc.2022.116708] [PMID: 35334448]
[19]
Barr, S.C.; Warner, K.L.; Kornreic, B.G.; Piscitelli, J.; Wolfe, A.; Benet, L.; McKerrow, J.H. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(12), 5160-5161.
[http://dx.doi.org/10.1128/AAC.49.12.5160-5161.2005] [PMID: 16304193]
[20]
Cianni, L.; Feldmann, C.W.; Gilberg, E.; Gütschow, M.; Juliano, L.; Leitão, A.; Bajorath, J.; Montanari, C.A. Can cysteine protease cross-class inhibitors achieve selectivity? J. Med. Chem., 2019, 62(23), 10497-10525.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00683] [PMID: 31361135]
[21]
Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178.
[http://dx.doi.org/10.1128/AAC.01855-13] [PMID: 24323474]
[22]
Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem., 2012, 4(12), 1527-1531.
[http://dx.doi.org/10.4155/fmc.12.94] [PMID: 22917241]
[23]
Cicardi, M.; Levy, R.J.; McNeil, D.L.; Li, H.H.; Sheffer, A.L.; Campion, M.; Horn, P.T.; Pullman, W.E. Ecallantide for the treatment of acute attacks in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 523-531.
[http://dx.doi.org/10.1056/NEJMoa0905079] [PMID: 20818887]
[24]
Cicardi, M.; Banerji, A.; Bracho, F.; Malbrán, A.; Rosenkranz, B.; Riedl, M.; Bork, K.; Lumry, W.; Aberer, W.; Bier, H.; Bas, M.; Greve, J.; Hoffmann, T.K.; Farkas, H.; Reshef, A.; Ritchie, B.; Yang, W.; Grabbe, J.; Kivity, S.; Kreuz, W.; Levy, R.J.; Luger, T.; Obtulowicz, K.; Schmid-Grendelmeier, P.; Bull, C.; Sitkauskiene, B.; Smith, W.B.; Toubi, E.; Werner, S.; Anné, S.; Björkander, J.; Bouillet, L.; Cillari, E.; Hurewitz, D.; Jacobson, K.W.; Katelaris, C.H.; Maurer, M.; Merk, H.; Bernstein, J.A.; Feighery, C.; Floccard, B.; Gleich, G.; Hébert, J.; Kaatz, M.; Keith, P.; Kirkpatrick, C.H.; Langton, D.; Martin, L.; Pichler, C.; Resnick, D.; Wombolt, D.; Romero, D.S.F.; Zanichelli, A.; Arcoleo, F.; Knolle, J.; Kravec, I.; Dong, L.; Zimmermann, J.; Rosen, K.; Fan, W.T. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 532-541.
[http://dx.doi.org/10.1056/NEJMoa0906393] [PMID: 20818888]
[25]
Saravolatz, L.D.; Stein, G.E.; Johnson, L.B. Telavancin: A novel lipoglycopeptide. Clin. Infect. Dis., 2009, 49(12), 1908-1914.
[http://dx.doi.org/10.1086/648438] [PMID: 19911938]
[26]
VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot., 2011, 64(8), 525-531.
[http://dx.doi.org/10.1038/ja.2011.35] [PMID: 21587264]
[27]
Jackson, S.H.; Martin, T.S.; Jones, J.D.; Seal, D.; Emanuel, F. Liraglutide (victoza): The first once-daily incretin mimetic injection for type-2 diabetes. P&T, 2010, 35(9), 498-529.
[PMID: 20975808]
[28]
Yi, J.H.; Kim, S.J.; Kim, W.S. Brentuximab vedotin: Clinical updates and practical guidance. Blood Res., 2017, 52(4), 243-253.
[http://dx.doi.org/10.5045/br.2017.52.4.243] [PMID: 29333400]
[29]
Chang, M.H.; Gordon, L.A.; Fung, H.B. Boceprevir: A protease inhibitor for the treatment of hepatitis C. Clin. Ther., 2012, 34(10), 2021-2038.
[http://dx.doi.org/10.1016/j.clinthera.2012.08.009] [PMID: 22975763]
[30]
Cunningham, M.; Foster, G.R. Efficacy and safety of telaprevir in patients with genotype 1 hepatitis C infection. Therap. Adv. Gastroenterol., 2012, 5(2), 139-151.
[http://dx.doi.org/10.1177/1756283X11426895] [PMID: 22423262]
[31]
Verhelst, S.H.L.; Witte, M.D.; Arastu-Kapur, S.; Fonovic, M.; Bogyo, M. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. ChemBioChem, 2006, 7(6), 943-950.
[http://dx.doi.org/10.1002/cbic.200600001] [PMID: 16607671]
[32]
Fennell, B.D.; Warren, J.M.; Chung, K.K.; Main, H.L.; Arend, A.B.; Tochowicz, A.; Götz, M.G. Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 468-478.
[http://dx.doi.org/10.3109/14756366.2011.651466] [PMID: 22380780]
[33]
Jones, B.D.; Tochowicz, A.; Tang, Y.; Cameron, M.D.; McCall, L.I.; Hirata, K.; Siqueira-Neto, J.L.; Reed, S.L.; McKerrow, J.H.; Roush, W.R. Synthesis and evaluation of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 against cruzain. ACS Med. Chem. Lett., 2016, 7(1), 77-82.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00336] [PMID: 26819670]
[34]
Latorre, A.; Schirmeister, T.; Kesselring, J.; Jung, S.; Johé, P.; Hellmich, U.A.; Heilos, A.; Engels, B.; Krauth-Siegel, R.L.; Dirdjaja, N.; Bou-Iserte, L.; Rodríguez, S.; González, F.V. Dipeptidyl nitroalkenes as potent reversible inhibitors of cysteine proteases rhodesain and cruzain. ACS Med. Chem. Lett., 2016, 7(12), 1073-1076.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00276] [PMID: 27994740]
[35]
Royo, S.; Schirmeister, T.; Kaiser, M.; Jung, S.; Rodríguez, S.; Bautista, J.M.; González, F.V. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg. Med. Chem., 2018, 26(16), 4624-4634.
[http://dx.doi.org/10.1016/j.bmc.2018.07.015] [PMID: 30037754]
[36]
Chenna, B.C.; Li, L.; Mellott, D.M.; Zhai, X.; Siqueira-Neto, J.L.; Calvet Alvarez, C.; Bernatchez, J.A.; Desormeaux, E.; Alvarez Hernandez, E.; Gomez, J.; McKerrow, J.H.; Cruz-Reyes, J.; Meek, T.D. Peptidomimetic vinyl heterocyclic inhibitors of cruzain effect antitrypanosomal activity. J. Med. Chem., 2020, 63(6), 3298-3316.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02078] [PMID: 32125159]
[37]
Barbosa Da Silva, E.; Sharma, V.; Hernandez-Alvarez, L.; Tang, A.H.; Stoye, A.; O’Donoghue, A.J.; Gerwick, W.H.; Payne, R.J.; McKerrow, J.H.; Podust, L.M. Intramolecular interactions enhance the potency of gallinamide A analogues against Trypanosoma cruzi. J. Med. Chem., 2022, 65(5), 4255-4269.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02063] [PMID: 35188371]
[38]
Dufour, E.; Storer, A.C.; Ménard, R. Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Biochemistry, 1995, 34(50), 16382-16388.
[http://dx.doi.org/10.1021/bi00050a019] [PMID: 8845364]
[39]
Brinen, L.S.; Hansell, E.; Cheng, J.; Roush, W.R.; McKerrow, J.H.; Fletterick, R.J. A target within the target: Probing cruzain’s P1′ site to define structural determinants for the Chagas’ disease protease. Structure, 2000, 8(8), 831-840.
[http://dx.doi.org/10.1016/S0969-2126(00)00173-8] [PMID: 10997902]
[40]
Löser, R.; Schilling, K.; Dimmig, E.; Gütschow, M. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem., 2005, 48(24), 7688-7707.
[http://dx.doi.org/10.1021/jm050686b] [PMID: 16302809]
[41]
Burtoloso, A.C.B.; de Albuquerque, S.; Furber, M.; Gomes, J.C.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; Montanari, C.A.; Quilles, J.C.; Ribeiro, J.F.R.; Rocha, J.R. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Negl. Trop. Dis., 2017, 11(2), e0005343.
[http://dx.doi.org/10.1371/journal.pntd.0005343] [PMID: 28222138]
[42]
Quilles, J.C., Jr; Shamim, A.; Tezuka, D.Y.; Batista, P.H.J.; Lopes, C.D.; de Albuquerque, S.; Montanari, C.A.; Leitão, A. Dipeptidyl nitrile derivatives suppress the Trypanosoma cruzi in vitro infection. Exp. Parasitol., 2020, 219, 108032.
[http://dx.doi.org/10.1016/j.exppara.2020.108032] [PMID: 33137308]
[43]
Brogi, S.; Ibba, R.; Rossi, S.; Butini, S.; Calderone, V.; Gemma, S.; Campiani, G. Covalent reversible inhibitors of cysteine proteases containing the nitrile warhead: Recent advancement in the field of viral and parasitic diseases. Molecules, 2022, 27(8), 2561.
[http://dx.doi.org/10.3390/molecules27082561] [PMID: 35458759]
[44]
Avelar, L.A.A.; Camilo, C.D.; de Albuquerque, S.; Fernandes, W.B.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; McKerrow, J.H.; Montanari, C.A.; Orozco, E.V.M.; Ribeiro, J.F.R.; Rocha, J.R.; Rosini, F.; Saidel, M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis., 2015, 9(7), e0003916.
[http://dx.doi.org/10.1371/journal.pntd.0003916] [PMID: 26173110]
[45]
Salas-Sarduy, E.; Landaburu, L.U.; Karpiak, J.; Madauss, K.P.; Cazzulo, J.J.; Agüero, F.; Alvarez, V.E. Novel scaffolds for inhibition of cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci. Rep., 2017, 7(1), 12073.
[http://dx.doi.org/10.1038/s41598-017-12170-4] [PMID: 28935948]
[46]
Dos Santos, A.M.; Cianni, L.; De Vita, D.; Rosini, F.; Leitão, A.; Laughton, C.A.; Lameira, J.; Montanari, C.A. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Phys. Chem. Chem. Phys., 2018, 20(37), 24317-24328.
[http://dx.doi.org/10.1039/C8CP03320J] [PMID: 30211406]
[47]
Gomes, J.C.; Cianni, L.; Ribeiro, J.; dos Reis Rocho, F.; da Costa Martins Silva, S.; Batista, P.H.J.; Moraes, C.B.; Franco, C.H.; Freitas-Junior, L.H.G.; Kenny, P.W.; Leitão, A.; Burtoloso, A.C.B.; de Vita, D.; Montanari, C.A. Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg. Med. Chem., 2019, 27(22), 115083.
[http://dx.doi.org/10.1016/j.bmc.2019.115083] [PMID: 31561938]
[48]
Alves, L.; Santos, D.A.; Cendron, R.; Rocho, F.R.; Matos, T.K.B.; Leitão, A.; Montanari, C.A. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg. Med. Chem., 2021, 41, 116211.
[http://dx.doi.org/10.1016/j.bmc.2021.116211] [PMID: 33991733]
[49]
Cianni, L.; Lemke, C.; Gilberg, E.; Feldmann, C.; Rosini, F.; Rocho, F.R.; Ribeiro, J.F.R.; Tezuka, D.Y.; Lopes, C.D.; de Albuquerque, S.; Bajorath, J.; Laufer, S.; Leitão, A.; Gütschow, M.; Montanari, C.A. Mapping the S1 and S1′ subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents. PLoS Negl. Trop. Dis., 2020, 14(3), e0007755.
[http://dx.doi.org/10.1371/journal.pntd.0007755] [PMID: 32163418]
[50]
Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49(22), 6510-6521.
[http://dx.doi.org/10.1021/jm0606342] [PMID: 17064069]
[51]
He, Z.; Qiao, H.; Yang, F.; Zhou, W.; Gong, Y.; Zhang, X.; Wang, H.; Zhao, B.; Ma, L.; Liu, H.; Zhao, W. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur. J. Med. Chem., 2019, 184, 111764.
[http://dx.doi.org/10.1016/j.ejmech.2019.111764] [PMID: 31614257]
[52]
Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem., 2010, 53(24), 8765-8769.
[http://dx.doi.org/10.1021/jm1007616] [PMID: 21121632]
[53]
Khan, S.A.; Asiri, A.M.; Al-Amry, K.; Malik, M.A. Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone and its Cu(II), Ni(II), and Co(II) complexes. ScientificWorldJournal, 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/592375] [PMID: 24523641]
[54]
Bahl, D.; Athar, F.; Soares, M.B.P.; de Sá, M.S.; Moreira, D.R.M.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg. Med. Chem., 2010, 18(18), 6857-6864.
[http://dx.doi.org/10.1016/j.bmc.2010.07.039] [PMID: 20719524]
[55]
Jamal, S.E.; Iqbal, A.; Rahman, K.A.; Tahmeena, K. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. J. Drug Deliv. Ther., 2019, 9(3), 689-703.
[http://dx.doi.org/10.22270/jddt.v9i3.2888]
[56]
Matesanz, A.I.; Herrero, J.M.; Quiroga, A.G. Chemical and biological evaluation of thiosemicarbazone-bearing heterocyclic metal complexes. Curr. Top. Med. Chem., 2021, 21(1), 59-72.
[http://dx.doi.org/10.2174/18734294MTEwuODQry] [PMID: 33092510]
[57]
Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530.
[http://dx.doi.org/10.1016/S0960-894X(03)00756-X] [PMID: 14505663]
[58]
Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.M.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett., 2005, 15(1), 121-123.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.023] [PMID: 15582423]
[59]
Blau, L.; Menegon, R.F.; Trossini, G.H.G.; Molino, J.V.D.; Vital, D.G.; Cicarelli, R.M.B.; Passerini, G.D.; Bosquesi, P.L.; Chin, C.M. Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur. J. Med. Chem., 2013, 67, 142-151.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.022] [PMID: 23851115]
[60]
Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Júnior, P.A.S.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[61]
Cardoso, M.V.O.; Oliveira Filho, G.B.; Siqueira, L.R.P.; Espíndola, J.W.P.; Silva, E.B.; Mendes, A.P.O.; Pereira, V.R.A.; Castro, M.C.A.B.; Ferreira, R.S.; Villela, F.S.; Costa, F.M.R.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur. J. Med. Chem., 2019, 180, 191-203.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.018] [PMID: 31306906]
[62]
de Assis, R.R.D.; Oliveira, A.A.; Porto, L.S.; Rabelo, A.N.R.; Lages, B.E.; Santos, C.V.; Milagre, M.M.; Fragoso, P.S.; Teixeira, M.M.; Ferreira, S.R.; Machado, R.C.; Ferreira, A.M.L.; Speziali, L.N.; Beraldo, H.; Machado, S.F. 4-Chlorophenylthioacetone-derived thiosemicarbazones as potent antitrypanosomal drug candidates: Investigations on the mode of action. Bioorg. Chem., 2021, 113, 105018.
[http://dx.doi.org/10.1016/j.bioorg.2021.105018] [PMID: 34098396]
[63]
Moreira, M.D.R.; de Oliveira, A.D.T.; Teixeira de Moraes Gomes, P.A.; de Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.R.; Brelaz de Castro, M.C.A.; Pereira, V.R.A.; Leite, A.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75(75), 467-478.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.001] [PMID: 24561675]
[64]
Espíndola, J.W.P.; Cardoso, M.V.O.; Filho, G.B.O.; Oliveira e Silva, D.A.; Moreira, D.R.M.; Bastos, T.M.; Simone, C.A.; Soares, M.B.P.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.A.B.; Pereira, V.R.A.; Murta, S.M.F.; Sales, Junior, P.A.; Romanha, A.J.; Leite, A.C.L. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.048] [PMID: 26231082]
[65]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[66]
Nascimento, M.V.P.S.; Munhoz, A.C.M.; Theindl, L.C.; Mohr, E.T.B.; Saleh, N.; Parisotto, E.B.; Rossa, T.A.; Zamoner, A.; Creczynski-Pasa, T.B.; Filippin-Monteiro, F.B.; Sá, M.M.; Dalmarco, E.M. A novel tetrasubstituted imidazole as a prototype for the development of anti-inflammatory drugs. Inflammation, 2018, 41(4), 1334-1348.
[http://dx.doi.org/10.1007/s10753-018-0782-y] [PMID: 29656318]
[67]
Torres-Gómez, H.; Hernández-Núñez, E.; León-Rivera, I.; Guerrero-Alvarez, J.; Cedillo-Rivera, R.; Moo-Puc, R.; Argotte-Ramos, R.; Carmen Rodríguez-Gutiérrez, M.; Chan-Bacab, M.J.; Navarrete-Vázquez, G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18(11), 3147-3151.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.009] [PMID: 18486471]
[68]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Costi, R.; Di Santo, R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur. J. Med. Chem., 2018, 156, 53-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.063] [PMID: 30006174]
[69]
Vausselin, T.; Séron, K.; Lavie, M.; Mesalam, A.A.; Lemasson, M.; Belouzard, S.; Fénéant, L.; Danneels, A.; Rouillé, Y.; Cocquerel, L.; Foquet, L.; Rosenberg, A.R.; Wychowski, C.; Meuleman, P.; Melnyk, P.; Dubuisson, J. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J. Virol., 2016, 90(19), 8422-8434.
[http://dx.doi.org/10.1128/JVI.00404-16] [PMID: 27412600]
[70]
Picconi, P.; Hind, C.; Jamshidi, S.; Nahar, K.; Clifford, M.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem., 2017, 60(14), 6045-6059.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00108] [PMID: 28650661]
[71]
Valls, A.; Andreu, J.J.; Falomir, E.; Luis, S.V.; Atrián-Blasco, E.; Mitchell, S.G.; Altava, B. Imidazole and imidazolium antibacterial drugs derived from amino acids. Pharmaceuticals, 2020, 13(12), 482.
[http://dx.doi.org/10.3390/ph13120482] [PMID: 33371256]
[72]
De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596.
[http://dx.doi.org/10.1111/cbdd.13326] [PMID: 29729080]
[73]
Medeiros, A.R.; Ferreira, L.L.G.; de Souza, M.L.; de Oliveira Rezende, Junior, C.; Espinoza-Chávez, R.M.; Dias, L.C.; Andricopulo, A.D. Chemoinformatics studies on a series of imidazoles as cruzain inhibitors. Biomolecules, 2021, 11(4), 579.
[http://dx.doi.org/10.3390/biom11040579] [PMID: 33920961]
[74]
de Souza, M.L.; de Oliveira Rezende, Junior, C.; Ferreira, R.S.; Espinoza Chávez, R.M.; Ferreira, L.L.G.; Slafer, B.W.; Magalhães, L.G.; Krogh, R.; Oliva, G.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: A structure-based drug design approach. J. Chem. Inf. Model., 2020, 60(2), 1028-1041.
[http://dx.doi.org/10.1021/acs.jcim.9b00802] [PMID: 31765144]
[75]
Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392.
[http://dx.doi.org/10.1021/jm401709b] [PMID: 24533839]
[76]
Pauli, I.; Rezende, C.O., Jr; Slafer, B.W.; Dessoy, M.A.; de Souza, M.L.; Ferreira, L.L.G.; Adjanohun, A.L.M.; Ferreira, R.S.; Magalhães, L.G.; Krogh, R.; Michelan-Duarte, S.; Del Pintor, R.V.; da Silva, F.B.R.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Multiparameter optimization of trypanocidal cruzain inhibitors with in vivo activity and favorable pharmacokinetics. Front. Pharmacol., 2022, 12, 774069.
[http://dx.doi.org/10.3389/fphar.2021.774069] [PMID: 35069198]
[77]
Yurttaş L.; Özkay, Y.; Kaplancıklı Z.A.; Tunalı Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 830-835.
[http://dx.doi.org/10.3109/14756366.2012.688043] [PMID: 22651798]
[78]
Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.032] [PMID: 28539243]
[79]
Özdemir, A.; Turan-zitouni, G. Asim kaplancikli, Z.; Demirci, F.; Iscan, G. Studies on hydrazone derivatives as antifungal agents. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 470-475.
[http://dx.doi.org/10.1080/14756360701709094] [PMID: 18665994]
[80]
Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(16), 3891-3896.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.043] [PMID: 28676272]
[81]
Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P. Pîrnău, A.; Crişan, O.; Bojiţă M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem., 2011, 46(2), 526-534.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.032] [PMID: 21163557]
[82]
Altıntop, M.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı Ö.; Demirci, F.; Kaplancıklı Z. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19(9), 14809-14820.
[http://dx.doi.org/10.3390/molecules190914809] [PMID: 25232704]
[83]
Cardoso, M.V.O.; Siqueira, L.R.P.; Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; da Cruz, L.F.; Magalhães Moreira, D.R.; Pereira, V.R.A.; de Castro, M.C.A.B.; Bernhardt, P.V.; Leite, A.C.L. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2014, 86, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.012] [PMID: 25147146]
[84]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[85]
de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Brayner dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.050] [PMID: 27295485]
[86]
de Oliveira Filho, G.B.; Cardoso, M.V.O.; Espíndola, J.W.P.; Oliveira e Silva, D.A.; Ferreira, R.S.; Coelho, P.L.; Anjos, P.S.; Santos, E.S.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 141, 346-361.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.047] [PMID: 29031078]
[87]
Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct., 2022, 1266, 133479.
[http://dx.doi.org/10.1016/j.molstruc.2022.133479]
[88]
Silva-Júnior, E.F.; Silva, E.P.S.; França, P.H.B.; Silva, J.P.N.; Barreto, E.O.; Silva, E.B.; Ferreira, R.S.; Gatto, C.C.; Moreira, D.R.M.; Siqueira-Neto, J.L.; Mendonça-Júnior, F.J.B.; Lima, M.C.A.; Bortoluzzi, J.H.; Scotti, M.T.; Scotti, L.; Meneghetti, M.R.; Aquino, T.M.; Araújo-Júnior, J.X. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(18), 4228-4240.
[http://dx.doi.org/10.1016/j.bmc.2016.07.013] [PMID: 27475533]
[89]
de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.P.; Ferreira, L.F.G.R.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.P.; Lima, Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486.
[http://dx.doi.org/10.1016/j.bmc.2015.10.048] [PMID: 26549870]
[90]
Moreira, D.R.M.; Lima, Leite A.C.; Cardoso, M.V.O.; Srivastava, R.M.; Hernandes, M.Z.; Rabello, M.M.; da Cruz, L.F.; Ferreira, R.S.; de Simone, C.A.; Meira, C.S.; Guimarães, E.T.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Pereira Soares, M.B. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem, 2014, 9(1), 177-188.
[http://dx.doi.org/10.1002/cmdc.201300354] [PMID: 24203393]
[91]
Constantinescu, T.; Lungu, C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci., 2021, 22(21), 11306.
[http://dx.doi.org/10.3390/ijms222111306] [PMID: 34768736]
[92]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[93]
Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target., 2021, 29(4), 403-419.
[http://dx.doi.org/10.1080/1061186X.2020.1853759] [PMID: 33232192]
[94]
Okolo, E.N.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; Ezugwu, J.A.; Ujam, O.T. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Rep., 2021, 11(1), 21781.
[http://dx.doi.org/10.1038/s41598-021-01292-5] [PMID: 34741131]
[95]
Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.026] [PMID: 28582669]
[96]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[97]
Pitchumani Violet Mary, C.; Shankar, R.; Vijayakumar, S. Mechanistic insights into the inhibition mechanism of cysteine cathepsins by chalcone-based inhibitors-a QM cluster model approach. Struct. Chem., 2019, 30(5), 1779-1793.
[http://dx.doi.org/10.1007/s11224-018-1273-3]
[98]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[99]
Borchhardt, D.M.; Mascarello, A.; Chiaradia, L.D.; Nunes, R.J.; Oliva, G.; Yunes, R.A.; Andricopulo, A.D. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc., 2010, 21(1), 142-150.
[http://dx.doi.org/10.1590/S0103-50532010000100021]
[100]
Vital, D.; Arribas, M.; Trossini, G. Molecular Modeling and docking application to evaluate cruzian inhibitory activity by chalcones and hydrazides. Lett. Drug Des. Discov., 2014, 11(3), 249-255.
[http://dx.doi.org/10.2174/15701808113106660082]
[101]
Magalhães, E.P.; Gomes, N.D.B.; Freitas, T.A.; Silva, B.P.; Ribeiro, L.R.; Ameida-Neto, F.W.Q.; Marinho, M.M.; Lima-Neto, P.; Marinho, E.S.; Santos, H.S.; Teixeira, A.M.R.; Sampaio, T.L.; Menezes, R.R.P.P.B.; Martins, A.M.C. Chloride substitution on 2-hydroxy-3,4,6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chem. Biol. Interact., 2022, 361, 109920.
[http://dx.doi.org/10.1016/j.cbi.2022.109920] [PMID: 35461787]
[102]
de Brito, D.H.A.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S.; Barreto, A.C.H.; de Lima-Neto, P.; Saraiva, G.D.; Canuto, K.M.; dos Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S.; Canuto, K.M.; Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzo[b]thiophen-2-yl)prop 2-en-1-one in Trypanosoma cruzi. J. Mol. Struct., 2022, 1253, 132197.
[http://dx.doi.org/10.1016/j.molstruc.2021.132197]
[103]
Vargas, E.; Echeverri, F.; Upegui, Y.; Robledo, S.; Quiñones, W. Hydrazone derivatives enhance antileishmanial activity of thiochroman-4-ones. Molecules, 2017, 23(1), 70.
[http://dx.doi.org/10.3390/molecules23010070] [PMID: 29286346]
[104]
Zebbiche, Z.; Tekin, S.; Küçükbay, H.; Yüksel, F.; Boumoud, B. Synthesis and anticancer properties of novel hydrazone derivatives incorporating pyridine and isatin moieties. Arch. Pharm., 2021, 354(5), 2000377.
[http://dx.doi.org/10.1002/ardp.202000377] [PMID: 33368627]
[105]
Baier, A.; Kokel, A.; Horton, W. Gizińska, E.; Pandey, G.; Szyszka, R.; Török, B.; Török, M. Organofluorine hydrazone derivatives as multifunctional anti-Alzheimer’s agents with CK2 inhibitory and antioxidant features. ChemMedChem, 2021, 16(12), 1927-1932.
[http://dx.doi.org/10.1002/cmdc.202100047] [PMID: 33713036]
[106]
Cywin, C.L.; Firestone, R.A.; McNeil, D.W.; Grygon, C.A.; Crane, K.M.; White, D.M.; Kinkade, P.R.; Hopkins, J.L.; Davidson, W.; Labadia, M.E.; Wildeson, J.; Morelock, M.M.; Peterson, J.D.; Raymond, E.L.; Brown, M.L.; Spero, D.M. The design of potent hydrazones and disulfides as cathepsin S inhibitors. Bioorg. Med. Chem., 2003, 11(5), 733-740.
[http://dx.doi.org/10.1016/S0968-0896(02)00468-6] [PMID: 12538003]
[107]
Elizondo-Jimenez, S.; Moreno-Herrera, A.; Reyes-Olivares, R.; Dorantes-Gonzalez, E.; Nogueda-Torres, B.; Oliveira, E.; Romeiro, N.; Lima, L.; Palos, I.; Rivera, G. Synthesis, biological evaluation and molecular docking of new benzenesulfonylhydrazone as potential anti-Trypanosoma cruzi agents. Med. Chem., 2017, 13(2), 149-158.
[http://dx.doi.org/10.2174/1573406412666160701022230] [PMID: 27396731]
[108]
Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem., 2014, 82, 418-425.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.077] [PMID: 24929292]
[109]
Herrera-Mayorga, V.; Lara-Ramírez, E.; Chacón-Vargas, K.; Aguirre-Alvarado, C.; Rodríguez-Páez, L.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Nogueda-Torres, B.; Reyes-Espinosa, F.; Bocanegra-García, V.; Rivera, G. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi cruzain inhibitors. Int. J. Mol. Sci., 2019, 20(7), 1742.
[http://dx.doi.org/10.3390/ijms20071742] [PMID: 30970549]
[110]
Delgado-Maldonado, T.; Nogueda-Torres, B.; Espinoza-Hicks, J.C.; Vázquez-Jiménez, L.K.; Paz-González, A.D.; Juárez-Saldívar, A.; Rivera, G. Synthesis and biological evaluation in vitro and in silico of N-propionyl-N′-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol. Divers., 2022, 26(1), 39-50.
[http://dx.doi.org/10.1007/s11030-020-10156-5] [PMID: 33216257]
[111]
Suthar, S.K.; Chundawat, N.S.; Singh, G.P.; Padrón, J.M.; Jhala, Y.K. Quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Eur. J. Med. Chem. Rep., 2022, 5, 100040.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100040]
[112]
Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Biological evaluation of substituted quinolines. Bioorg. Med. Chem. Lett., 2004, 14(14), 3635-3638.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.026] [PMID: 15203133]
[113]
Salas, C.O.; Faúndez, M.; Morello, A.; Maya, J.D.; Tapia, R.A. Natural and synthetic naphthoquinones active against Trypanosoma cruzi: An initial step towards new drugs for Chagas disease. Curr. Med. Chem., 2011, 18(1), 144-161.
[http://dx.doi.org/10.2174/092986711793979779] [PMID: 21110810]
[114]
Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M.D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem., 2015, 96, 296-307.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.028] [PMID: 25899334]
[115]
Andrade, M.M.S.; Martins, L.C.; Marques, G.V.L.; Silva, C.A.; Faria, G.; Caldas, S.; dos Santos, J.S.C.; Leclercq, S.Y.; Maltarollo, V.G.; Ferreira, R.S.; Oliveira, R.B. Synthesis of quinoline derivatives as potential cysteine protease inhibitors. Future Med. Chem., 2020, 12(7), fmc-2019-0201.
[http://dx.doi.org/10.4155/fmc-2019-0201] [PMID: 32116030]
[116]
Barbosa da Silva, E.; Rocha, D.A.; Fortes, I.S.; Yang, W.; Monti, L.; Siqueira-Neto, J.L.; Caffrey, C.R.; McKerrow, J.; Andrade, S.F.; Ferreira, R.S. Structure-based optimization of quinazolines as cruzain and Tbr CATL inhibitors. J. Med. Chem., 2021, 64(17), 13054-13071.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01151] [PMID: 34461718]
[117]
Braga, S.F.P.; Martins, L.C.; da Silva, E.B.; Sales Júnior, P.A.; Murta, S.M.F.; Romanha, A.J.; Soh, W.T.; Brandstetter, H.; Ferreira, R.S.; de Oliveira, R.B. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg. Med. Chem., 2017, 25(6), 1889-1900.
[http://dx.doi.org/10.1016/j.bmc.2017.02.009] [PMID: 28215783]
[118]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[119]
Assis, D.M.; Gontijo, V.S.; de Oliveira Pereira, I.; Santos, J.A.N.; Camps, I.; Nagem, T.J.; Ellena, J.; Izidoro, M.A.; dos Santos Tersariol, I.L.; de Barros, N.M.T.; Doriguetto, A.C.; dos Santos, M.H.; Juliano, M.A. Inhibition of cysteine proteases by a natural biflavone: Behavioral evaluation of fukugetin as papain and cruzain inhibitor. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 661-670.
[http://dx.doi.org/10.3109/14756366.2012.668539] [PMID: 22468751]
[120]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: Discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408.
[http://dx.doi.org/10.1021/ci400284v] [PMID: 23906322]
[121]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: Virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[122]
Pereira, G.A.N.; da Silva, E.B.; Braga, S.F.P.; Leite, P.G.; Martins, L.C.; Vieira, R.P.; Soh, W.T.; Villela, F.S.; Costa, F.M.R.; Ray, D.; de Andrade, S.F.; Brandstetter, H.; Oliveira, R.B.; Caffrey, C.R.; Machado, F.S.; Ferreira, R.S. Discovery and characterization of trypanocidal cysteine protease inhibitors from the ‘malaria box’. Eur. J. Med. Chem., 2019, 179, 765-778.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.062] [PMID: 31284086]
[123]
Ferreira, R.A.A.; Pauli, I.; Sampaio, T.S.; de Souza, M.L.; Ferreira, L.L.G.; Magalhães, L.G.; Rezende, C.O., Jr; Ferreira, R.S.; Krogh, R.; Dias, L.C.; Andricopulo, A.D. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-Trypanosoma cruzi activity. Front Chem., 2019, 7, 798.
[http://dx.doi.org/10.3389/fchem.2019.00798] [PMID: 31824926]
[124]
Couto, M.; Sánchez, C.; Dávila, B.; Machín, V.; Varela, J.; Álvarez, G.; Cabrera, M.; Celano, L.; Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M.; Gómez-Puyou, A.; Pérez-Montfort, R.; Cerecetto, H.; González, M. 3-H-[1,2]Dithiole as a new anti-Trypanosoma cruzi chemotype: Biological and mechanism of action studies. Molecules, 2015, 20(8), 14595-14610.
[http://dx.doi.org/10.3390/molecules200814595] [PMID: 26274947]
[125]
Neitz, R.J.; Bryant, C.; Chen, S.; Gut, J.; Hugo Caselli, E.; Ponce, S.; Chowdhury, S.; Xu, H.; Arkin, M.R.; Ellman, J.A.; Renslo, A.R. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas’ disease. Bioorg. Med. Chem. Lett., 2015, 25(21), 4834-4837.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.066] [PMID: 26144347]
[126]
Wiggers, H.J.; Rocha, J.R.; Fernandes, W.B.; Sesti-Costa, R.; Carneiro, Z.A.; Cheleski, J.; da Silva, A.B.F.; Juliano, L.; Cezari, M.H.S.; Silva, J.S.; McKerrow, J.H.; Montanari, C.A. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis., 2013, 7(8), e2370.
[http://dx.doi.org/10.1371/journal.pntd.0002370] [PMID: 23991231]
[127]
Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, activity, and molecular modeling studies of 1,2,3‐triazole derivatives from natural phenylpropanoids as new trypanocidal agents. Chem. Biol. Drug Des., 2020, 95(1), 124-129.
[http://dx.doi.org/10.1111/cbdd.13628] [PMID: 31569301]
[128]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]