Development of Simple HPLC-UV Method for the Simultaneous Determination of Repaglinide, Dexamethasone, and Remdesivir, and its Application to Synthetic Mixture and Human Plasma

Page: [662 - 672] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The onset of the COVID-19 pandemic caused numerous difficulties in the treatment of cardiovascular diseases and diabetes mellitus. A persistent risk of developing severe complications and increased mortality from the COVID-19 infection has been reported. In the clinical studies, patients receiving remdesivir and dexamethasone as COVID-19 combination therapy simultaneously with some type II diabetes therapeutic regimens had been reported to have a considerably better state and recover faster. Unfortunately, there is not enough information on the combination of meglitinides, remdesivir, and dexamethasone, and therefore, careful monitoring of the patients' everyday health condition is needed.

Objectives: The present study aimed to describe a high-performance liquid chromatographic method for the determination of repaglinide, dexamethasone, and remdesivir in laboratoryprepared mixtures and human plasma by UV detection.

Methods: Isocratic elution of the mobile phase (consisting of 0.1% trifluoroacetic acid in water and acetonitrile in the ratio 70:30 v/v) was set at a flow rate of 1.0 ml/min, and the developed analytical procedure has been found to be fast and simple. Chromatographic determination was performed on a Purospher® RP – 18 column at room temperature and a UV detector was set at 235 nm.

Results: The developed method was validated for linearity in the range 2-32 μg/ml. Calibration curves were linear over the selected range with correlation coefficients (R2) greater than 0.996. The coefficients of variation for intraday and interday assay were < 2% and the recovery percentages from plasma ranged from 93.83 to 106.49%.

Conclusion: The developed effective and specific method can be applied in routine quality control and clinical laboratory practice.

Graphical Abstract

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. In: Diabetes Res. Clin; , 2019; 157, p. 107843.
[2]
Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. State of the art paper The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch. Med. Sci., 2013, 5(5), 936-943.
[http://dx.doi.org/10.5114/aoms.2013.34991] [PMID: 24273582]
[3]
Bailey, T. Options for combination therapy in type 2 diabetes: Comparison of the ADA/EASD position statement and AACE/ACE algorithm. Am. J. Med., 2013, 126(9)(Suppl. 1), S10-S20.
[http://dx.doi.org/10.1016/j.amjmed.2013.06.009] [PMID: 23953074]
[4]
Forde, R.; Arente, L.; Ausili, D.; De Backer, K.; Due-Christensen, M.; Epps, A.; Fitzpatrick, A.; Grixti, M.; Groen, S.; Halkoaho, A.; Huber, C.; Iversen, M.M.; Johansson, U.B.; Leippert, C.; Ozcan, S.; Parker, J.; Paiva, A.C.; Sanpetreanu, A.; Savet, M.A.; Rosana, S.C.; Szewczyk, A.; Valverde, M.; Vlachou, E.; Forbes, A.; Allen-Taylor, M.; Brown, F.; Celick, A.; Gane, S.; Hashem, R.; Habete-Asres, H.; Tian, Q.; Sturt, J.; Winkley, K.; Caron, R. Gaćina, S.; Moloney, Y.; Kobos, E.; Jansà, M.; Yoldi, C. The impact of the COVID‐19 pandemic on people with diabetes and diabetes services: A pan‐European survey of diabetes specialist nurses undertaken by the Foundation of European Nurses in Diabetes survey consortium. Diabet. Med., 2021, 38(5), e14498.
[http://dx.doi.org/10.1111/dme.14498] [PMID: 33314244]
[5]
Czupryniak, L.; Dicker, D.; Lehmann, R.; Prázný, M.; Schernthaner, G. The management of type 2 diabetes before, during and after Covid-19 infection: what is the evidence? Cardiovasc. Diabetol., 2021, 20(1), 198.
[http://dx.doi.org/10.1186/s12933-021-01389-1] [PMID: 34598700]
[6]
Liu, Z.; Bai, X.; Han, X.; Jiang, W.; Qiu, L.; Chen, S.; Yu, X. The association of diabetes and the prognosis of COVID-19 patients: A retrospective study. Diabetes Res. Clin. Pract., 2020, 169, 108386.
[http://dx.doi.org/10.1016/j.diabres.2020.108386] [PMID: 32853685]
[7]
Peric, S.; Stulnig, T.M. Diabetes and COVID-19. Wien. Klin. Wochenschr., 2020, 132(13-14), 356-361.
[http://dx.doi.org/10.1007/s00508-020-01672-3] [PMID: 32435867]
[8]
Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Agoramoorthy, G.; Lee, S.S. Diabetes and COVID-19: A major challenge in pandemic period? Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11409-11420.
[PMID: 33215463]
[9]
Abu-Farha, M.; Al-Mulla, F.; Thanaraj, T.A.; Kavalakatt, S.; Ali, H.; Abdul Ghani, M.; Abubaker, J. Impact of diabetes in patients diagnosed with COVID-19. Front. Immunol., 2020, 11, 576818.
[http://dx.doi.org/10.3389/fimmu.2020.576818] [PMID: 33335527]
[10]
Landstra, C.P.; de Koning, E.J.P. COVID-19 and diabetes: Understanding the interrelationship and risks for a severe course. Front. Endocrinol., 2021, 12, 649525.
[http://dx.doi.org/10.3389/fendo.2021.649525] [PMID: 34220706]
[11]
Wallia, A.; Prince, G.; Touma, E.; El Muayed, M.; Seley, J.J. Caring for hospitalized patients with diabetes mellitus, hyperglycemia, and COVID-19: Bridging the remaining knowledge gaps. Curr. Diab. Rep., 2020, 20(12), 77.
[http://dx.doi.org/10.1007/s11892-020-01366-0] [PMID: 33244614]
[12]
Kumar, A.; Arora, A.; Sharma, P.; Anikhindi, S.A.; Bansal, N.; Singla, V.; Khare, S.; Srivastava, A. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab. Syndr., 2020, 14(4), 535-545.
[http://dx.doi.org/10.1016/j.dsx.2020.04.044] [PMID: 32408118]
[13]
Varikasuvu, S.R.; Dutt, N.; Thangappazham, B.; Varshney, S. Diabetes and COVID-19: A pooled analysis related to disease severity and mortality. Prim. Care Diabetes, 2021, 15(1), 24-27.
[http://dx.doi.org/10.1016/j.pcd.2020.08.015] [PMID: 32891525]
[14]
Wu, Z.; Tang, Y.; Cheng, Q. Diabetes increases the mortality of patients with COVID-19: A meta-analysis. Acta Diabetol., 2021, 58(2), 139-144.
[http://dx.doi.org/10.1007/s00592-020-01546-0] [PMID: 32583078]
[15]
Khunti, K.; Knighton, P.; Zaccardi, F.; Bakhai, C.; Barron, E.; Holman, N.; Kar, P.; Meace, C.; Sattar, N.; Sharp, S.; Wareham, N.J.; Weaver, A.; Woch, E.; Young, B.; Valabhji, J. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: A nationwide observational study in England. Lancet Diabetes Endocrinol., 2021, 9(5), 293-303.
[http://dx.doi.org/10.1016/S2213-8587(21)00050-4] [PMID: 33798464]
[16]
Coronavirus disease 2019 (COVID-19) treatment guidelines 2019.www.covid19treatmentguidelines.nih.gov
[17]
Lin, H.X.J.; Cho, S.; Meyyur Aravamudan, V.; Sanda, H.Y.; Palraj, R.; Molton, J.S.; Venkatachalam, I. Remdesivir in coronavirus disease 2019 (COVID-19) treatment: A review of evidence. Infection, 2021, 49(3), 401-410.
[http://dx.doi.org/10.1007/s15010-020-01557-7] [PMID: 33389708]
[18]
Morris, A.M.; Jüni, P.; Odutayo, A.; Bobos, P.; Andany, N.; Betts, M.; Healey, A.; Langford, B.; Maltsev, A.; Miller, K.J.; Morgenstern, J.; Munshi, L.; Razak, F.; Stall, N.M.; Pai, M. Remdesivir for hospitalized patients with COVID-19. Science Breifs, 2021, 2(27), 1-12.
[19]
Wong, C.K.H.; Lau, K.T.K.; Au, I.C.H.; Xiong, X.; Lau, E.H.Y.; Cowling, B.J. Clinical improvement, outcomes, antiviral activity, and cost associated with early treatment with remdesivir for patients with Covid-19. Clin. Infect. Dis., 2022, 74(8), 1450-1458.
[http://dx.doi.org/10.1093/cid/ciab631] [PMID: 34265054]
[20]
Qureshi, Q.H.; Ashraf, T.; Rehman, K.; Khosa, M.K.; Akash, M.S.H. Therapeutic interventions of remdesivir in diabetic and nondiabetic COVID‐19 patients: A prospective observational study conducted on Pakistani population. J. Med. Virol., 2021, 93(12), 6732-6736.
[http://dx.doi.org/10.1002/jmv.27256] [PMID: 34351640]
[21]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S.C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA -. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[22]
Fatima, S.A.; Asif, M.; Khan, K.A.; Siddique, N.; Khan, A.Z. Comparison of efficacy of dexamethasone and methylprednisolone in moderate to severe covid 19 disease. Ann. Med. Surg., 2020, 60, 413-416.
[http://dx.doi.org/10.1016/j.amsu.2020.11.027] [PMID: 33200031]
[23]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[24]
Wadhwa, G.; Krishna, K.V.; Dubey, S.K.; Taliyan, R. Development and validation of RP-HPLC method for quantification of repaglinide in mPEG-PCL polymeric nanoparticles: QbD-driven optimization, force degradation study, and assessment of in vitro release mathematic modeling. Microchem. J., 2021, 168, 106491.
[http://dx.doi.org/10.1016/j.microc.2021.106491]
[25]
Kamal, A.H.; Hammad, M.A.; Kannouma, R.E.; Mansour, F.R. Response surface optimization of a vortex-assisted dispersive liquid–liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV. BMC Chem., 2022, 16(1), 33.
[http://dx.doi.org/10.1186/s13065-022-00826-w] [PMID: 35568922]
[26]
Duarah, S.; Sharma, M.; Wen, J. Rapid and simultaneous determination of dexamethasone and dexamethasone sodium phosphate using HPLC-UV: Application in microneedle-assisted skin permeation and deposition studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1170, 122609.
[http://dx.doi.org/10.1016/j.jchromb.2021.122609] [PMID: 33713946]
[27]
Jitta, S.R. Salwa; Kumar, L.; Gangurde, P.K.; Verma, R. Development and validation of high-performance Liquid chromatography method for the quantification of remdesivir in intravenous dosage form. Assay Drug Dev. Technol., 2021, 19(8), 475-483.
[http://dx.doi.org/10.1089/adt.2021.074] [PMID: 34665025]
[28]
Abdul Samad, H.; Nadir Ali, S.; Qayoom, A.; Haroon, U.; Saad, M.; Mumtaz Alavi, G. Development, validation and forced degradation studies of green liquid chromatographic method for determination of remdesivir in bulk drug and pharmaceutical formulation. Pak. J. Pharm. Sci., 2023, 36(1), 159-170.
[PMID: 36967508]
[29]
Ibrahim, A.E.; Deeb, S.E.; Abdelhalim, E.M.; Al-Harrasi, A.; Sayed, R.A. Green stability indicating organic solvent-free HPLC determination of remdesivir in substances and pharmaceutical dosage forms. Separations, 2021, 8(12), 243.
[http://dx.doi.org/10.3390/separations8120243]
[30]
Navamanisubramanian, R.; Panchagiri, S.; Nerella, R.; Duraipandian, C.; Seetharaman, S. Stability indicating RP-HPLC method for estimation of repaglinide in rabbit plasma. Int. J. Appl. Pharm, 2019, 11(3), 206-210.
[http://dx.doi.org/10.22159/ijap.2019v11i3.33675]
[31]
Kishore, D.; Prasad, K.R.S.; Darapureddy, C.; Phani, R.S.C. Development and validation of a new HPLC bioanalytical internal standard method for the analysis of remdesivir in human plasma. Rasayan J. Chem., 2022, 14(4), 2639-2644.
[http://dx.doi.org/10.31788/RJC.2021.1446373]
[32]
Mukthinuthalapati, M.A.; Bukkapatnam, V.; Kallepalli, P. Simultaneous determination of anti-diabetic drugs in their combined dosage forms using HPLC: An experimental design approach. J. Chromatogr. Sci., 2019, 57(4), 339-348.
[http://dx.doi.org/10.1093/chromsci/bmz003] [PMID: 30753337]
[33]
Patan, A.; Basha, S.R.; Ketha, R.K.; Cheriyan, B.V.; Muthukumar, V.A. Development and validation of new RP-HPLC method for the simultaneous estimation of metformin hydrochloride and repaglinide in pure and pharmaceutical formulations. Res J Pharm Technol, 2021, 14(3), 1323-1328.
[http://dx.doi.org/10.5958/0974-360X.2021.00235.3]
[34]
Mahrouse, M.A.; Lamie, N.T. Experimental design methodology for optimization and robustness determination in ion pair RP-HPLC method development: Application for the simultaneous determination of metformin hydrochloride, alogliptin benzoate and repaglinide in tablets. Microchem. J., 2019, 147, 691-706.
[http://dx.doi.org/10.1016/j.microc.2019.03.038]
[35]
Bahgat, E.A.; Hafez, H.M.; El-Sayed, H.M.; Kabil, N.A.S. Development of a solvent-free micellar HPLC method for determination of five antidiabetic drugs using response surface methodology. Microchem. J., 2022, 179, 107446.
[http://dx.doi.org/10.1016/j.microc.2022.107446]
[36]
Brugnera, M.; Vicario-de-la-Torre, M.; Andrés-Guerrero, V.; Bravo-Osuna, I.; Molina-Martínez, I.T.; Herrero-Vanrell, R. Validation of a rapid and easy-to-apply method to simultaneously quantify co-loaded dexamethasone and melatonin PLGA microspheres by HPLC-UV: Encapsulation efficiency and in vitro release. Pharmaceutics, 2022, 14(2), 288.
[http://dx.doi.org/10.3390/pharmaceutics14020288] [PMID: 35214021]
[37]
Saad, M.N.; Essam, H.M.; Elzanfaly, E.S.; Amer, S.M. A Two-step optimization approach: Validated RP-HPLC method for determination of gatifloxacin and dexamethasone in ophthalmic formulation. J. Chromatogr. Sci., 2020, 58(6), 504-510.
[http://dx.doi.org/10.1093/chromsci/bmaa013] [PMID: 32280954]
[38]
Prakash, K.; Sireesha, K.R. HPLC-UV method for simultaneous determination of sparfloxacin and dexamethasone sodium phosphate in eye drops. Pak. J. Pharm. Sci., 2019, 32(3), 1057-1061.
[PMID: 31278720]
[39]
Shahzad, A.; Arshad, S.; Zubair, F.; Shahzad, S.; Batool, F.; Fu, Q. Development and validation of facile RP-HPLC method for simultaneous determination of timolol maleate, moxifloxacin hydrochloride, diclofenac sodium and dexamethasone in plasma, aqueous humor and pharmaceutical products. J. Chromatogr. Sci., 2022, 61(7), 678-687.
[PMID: 35870199]
[40]
Han, D.G.; Kwak, J.; Seo, S.W.; Kim, J.M.; Yoo, J.W.; Jung, Y.; Lee, Y.H.; Kim, M.S.; Jung, Y.S.; Yun, H.; Yoon, I.S. Pharmacokinetic evaluation of metabolic drug interactions between repaglinide and celecoxib by a bioanalytical HPLC method for their simultaneous determination with fluorescence detection. Pharmaceutics, 2019, 11(8), 382.
[http://dx.doi.org/10.3390/pharmaceutics11080382] [PMID: 31382371]
[41]
Zayed, A.L.; Hamadneh, G.N.; Hroot, J.A.; Mayyas, A.; Jaber, S.A.; Qinna, N.A. HPLC methods for studying pharmacokinetics of tivozanib and in vitro metabolic interaction with dexamethasone in rat. J. Pharm. Biomed. Anal., 2023, 232, 115423.
[http://dx.doi.org/10.1016/j.jpba.2023.115423] [PMID: 37146497]
[42]
Abdelwahab, N.S.; Ali, N.W.; Zaki, M.M.; Sharkawi, S.M.Z.; Abdelkawy, M.M. Simultaneous determination of thalidomide and dexamethasone in rat plasma by validated HPLC and HPTLC with pharmacokinetic study. J. Chromatogr. Sci., 2019, 57(2), 130-138.
[http://dx.doi.org/10.1093/chromsci/bmy094] [PMID: 30272138]
[43]
Emam, A.A.; Abdelaleem, E.A.; Abdelmomen, E.H.; Abdelmoety, R.H.; Abdelfatah, R.M. Rapid and ecofriendly UPLC quantification of remdesivir, favipiravir and dexamethasone for accurate therapeutic drug monitoring in covid-19 patient’s plasma. Microchem. J., 2022, 179, 107580.
[http://dx.doi.org/10.1016/j.microc.2022.107580] [PMID: 35582001]
[44]
Smerikarova, M.; Bozhanov, S.; Maslarska, V. Validation of rapid and simple HPLC-UV method for diflunisal determination in bulk drug and human plasma. Indian J. Pharm. Educ. Res, 2023, 57(1), 278-285.
[http://dx.doi.org/10.5530/001954641926]
[45]
International Council For Harmonisation Of Technical Requirements For Pharmaceuticals For Human Use Bioanalytical method validation and study sample analysis M10., 2023.https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b_en.pdf