Proteome-wide Profiling Reveals Molecular Mechanism Underlying the Therapeutic Effect of Mongolian Medicine Sulongga-4 on Pyloric Ligation-induced Gastroduodenal Ulcer in Rats

Article ID: e250923221344 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Gastroduodenal ulcer is one of the common global gastrointestinal diseases. Sulongga-4 is a traditional Mongolian medicine used for the treatment of gastroduodenal ulcer. However, the molecular mechanism underlying the therapeutic effect of Sulongga-4 on gastroduodenal ulcer in the proteome has not been clarified.

Objective: The purpose of this study was to explore the molecular mechanism behind the therapeutic efficacy of traditional Mongolian medicine Sulongga-4 on pyloric ligation-induced gastroduodenal ulcer in rats.

Methods: Gastroduodenal ulcer was induced by pyloric ligation in rats. The pathological changes of gastric and duodenal tissues were observed first, and then the serum levels of AST and ALT were measured. The significantly different proteins were verified by western blot and qRT-PCR.

Results: The proteomics results showed that the Mongolian medicine Sulongga-4 might act on pyloric ligation-induced gastroduodenal ulcer through differentially expressing several proteins, including RPL35, RPL37, and LOC102548628 in gastric tissue, as well as Serpin b1a, Serpin b6a, and Vtn in duodenal tissue by regulating ribosome, alcoholism and amoebiasis, and complement and coagulation cascade pathways. In addition, the changes in serum AST and ALT levels in rats showed gastroduodenal ulcer to be associated with liver injury.

Conclusion: Sulongga-4 has shown a robust therapeutic effect against gastric duodenal ulcer. This therapeutic effect may be mainly associated with pathways of ribosome, alcoholism in gastric tissue, and amoebiasis, as well as complement and coagulation cascades in duodenal tissue.

Graphical Abstract

[1]
Al-Gabri, N.; Elnagar, G.M.; Saghir, S.A.M.; El-Shaibany, A.; Alnomasy, S.F.; Althafar, Z.M.; Elkomy, N.M.I.M.; Elaasser, M.M.; Abdoh, M.S.; Yosri, M. Preliminary study of gastroprotective effect of aloe perryi and date palm extracts on pyloric ligation-induced gastric ulcer in experimental rats. BioMed Res. Int., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/9246785]
[2]
Abbasi-Kangevari, M.; Ahmadi, N.; Fattahi, N. Quality of care of peptic ulcer disease worldwide: A systematic analysis for the global burden of disease study 1990-2019. PLoS One, 2019, 2022(Aug), 1.
[http://dx.doi.org/10.1371/journal.pone.0271284] [PMID: 35913985]
[3]
Ren, J.; Jin, X.; Li, J.; Li, R.; Gao, Y.; Zhang, J.; Wang, X.; Wang, G. The global burden of peptic ulcer disease in 204 countries and territories from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Int. J. Epidemiol., 2022, 51(5), 1666-1676.
[http://dx.doi.org/10.1093/ije/dyac033] [PMID: 35234893]
[4]
Alsinnari, Y.M.; Alqarni, M.S.; Attar, M.; Bukhari, Z.M.; Almutairi, M.; Baabbad, F.M.; Hasosah, M. Risk factors for recurrence of peptic ulcer disease: A retrospective study in tertiary care referral center. Cureus, 2022, 14(2), e22001.
[http://dx.doi.org/10.7759/cureus.22001] [PMID: 35282517]
[5]
Alves Júnior, E.B.; de Oliveira Formiga, R.; de Lima Serafim, C.A.; Cristina Araruna, M.E.; de Souza Pessoa, M.L.; Vasconcelos, R.C.; de Carvalho, T.G.; de Jesus, T.G.; Araújo, A.A.; de Araujo, Junior, R.F.; Vieira, G.C.; Sobral, M.V.; Batista, L.M. Estragole prevents gastric ulcers via cytoprotective, antioxidant and immunoregulatory mechanisms in animal models. Biomed. Pharmacother., 2020, 130, 110578.
[http://dx.doi.org/10.1016/j.biopha.2020.110578] [PMID: 32750650]
[6]
Kim, Y.S.; Nam, Y.; Song, J.; Kim, H. Gastroprotective and healing effects of polygonum cuspidatum root on experimentally induced gastric ulcers in rats. Nutrients, 2020, 12(8), 2241.
[http://dx.doi.org/10.3390/nu12082241] [PMID: 32727104]
[7]
Vandi, V.L.; Amang, A.P.; Mezui, C.; Siwe, G.T.; Ndji, G.L.O.; Mbida, H.; Baponwa, O.; Tan, P.V. Antihistaminergic and anticholinergic properties of the root bark aqueous extract of diospyros mespiliformis (ebenaceae) on hypersecretion of gastric acid induced in wistar rats. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/5190499] [PMID: 35140799]
[8]
Yeshespalbyor, Four Nectar Treatises; Inner Mongolia Science and Technology publisher.: Chifeng, 2015, pp. 146-150.
[9]
Hasqiqige, B.S. Experience in treating gastric and duodenal ulcer with Mongolian medicine. Chinese J. Ethnomed. Ethnopharm., 2004, (05), 277-278.
[10]
Tian, X.Y.; Bai, C.L. A brief introduction of Professor Zhao Baisui’s clinical thought on the treatment of Baoru disease. J. Inner Mongolia Minzu Uni., 2020, 31(1), 49-54.
[11]
Narenqiqige, Therapeutic experience of hododenbaoru disease. Trad. Mongolian Med. China, 2020, (4), 35-37.
[12]
Hasibagen, Clinical basis of medical medicine Inner Mongolia science and technology publishing house: Chifeng, 2010; pp. 345-347.
[13]
Editorial Board of Medical Volume. Encyclopedia of Mongolian Studies; Inner Mongolia People's Publishing House: Hohhot, 2002, p. 271.
[14]
Rajakrishnan, R.; Alfarhan, A.H.; Al-Ansari, A.M.; Lekshmi, R.; Sreelakshmi, R.; Benil, P.B.; Kim, Y.O.; Tack, J.C.; Na, S.W.; Kim, H.J. Therapeutic efficacy of the root tubers of Aconitum heterophyllum and its substitute Cyperus rotundus in the amelioration of pylorus ligation induced ulcerogenic and oxidative damage in rats. Saudi J. Biol. Sci., 2020, 27(4), 1124-1129.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.025] [PMID: 32256174]
[15]
Lingling, Anggelima Study on the etiology of pyloric ligation liver injury based on the “essence and dregs decomposition” theory and the material basis of foesythia-4 hepatoprotective effect. Asia-Pacific Trad. Med., 2022, 18(05), 32-35.
[16]
Klimczak, U.; Woźniak, M.; Tomczyk, M.; Granica, S. Chemical composition of edible aerial parts of meadow bistort (Persicaria bistorta (L.) Samp.). Food Chem., 2017, 230, 281-290.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.128] [PMID: 28407912]
[17]
Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; Ma, Z. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol., 2018, 210, 318-339.
[http://dx.doi.org/10.1016/j.jep.2017.08.040] [PMID: 28887216]
[18]
Li, X.; Xia, Y.; Li, G.; Zhan, Z.; Yao, R.; Li, M. Traditional uses, phytochemistry, pharmacology, and toxicology of Akebiae Caulis and its synonyms: A review. J. Ethnopharmacol., 2021, 277, 114245.
[http://dx.doi.org/10.1016/j.jep.2021.114245] [PMID: 34052351]
[19]
Zeng, P.; Li, J.; Chen, Y.; Zhang, L. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci., 2019, 163, 423-444.
[http://dx.doi.org/10.1016/bs.pmbts.2019.03.003] [PMID: 31030757]
[20]
Bai, T.N. Study on the mechanism of action of Lianqiao-4 decoction powder in treating gastroduodenal ulce; Inner Mongolia Minzu University, 2019.
[21]
Wu, Y.Y.; Bai, T.N.; Gong, J.H. Study on the model of abcontrol liver function based on the theory of “essence and dregs decomposition” and genomics of Sulongga-4 intervention mechanism. Liaoning J. Trad. Chinese Med., 2022, 49(02), 144-148.
[22]
Tong, S.; Wang, H. A, L.S.; Bai, T.N.; Gong, J.H.; Jin, W.J.; Dai, L.L.; Ba, G.N.; Cho, S.B.; Fu, M.H. Protective effect and mechanisms of action of Mongolian medicine Sulongga-4 on pyloric ligation-induced gastroduodenal ulcer in rats. World J. Gastroenterol., 2021, 27(16), 1770-1784.
[http://dx.doi.org/10.3748/wjg.v27.i16.1770] [PMID: 33967556]
[23]
Li, X.; Lei, J.B. Bioinformatics; People's Publishing House: Beijing, 2015, p. 176.
[24]
Maimaitiyiming, Y.; Yang, T.; Wang, Q.Q.; Feng, Y.; Chen, Z.; Björklund, M.; Wang, F.; Hu, C.; Hsu, C.H.; Naranmandura, H. Heat treatment promotes ubiquitin-mediated proteolysis of SARSCoV-2 RNA polymerase and decreases viral load. Research, 2022, 2022, 2022/9802969.
[http://dx.doi.org/10.34133/2022/9802969] [PMID: 35321260]
[25]
Beauchamp, E.M.; Leventhal, M.; Bernard, E.; Hoppe, E.R.; Todisco, G.; Creignou, M.; Gallì, A.; Castellano, C.A.; McConkey, M.; Tarun, A.; Wong, W.; Schenone, M.; Stanclift, C.; Tanenbaum, B.; Malolepsza, E.; Nilsson, B.; Bick, A.G.; Weinstock, J.S.; Miller, M.; Niroula, A.; Dunford, A.; Taylor-Weiner, A.; Wood, T.; Barbera, A.; Anand, S.; Psaty, B.M.; Desai, P.; Cho, M.H.; Johnson, A.D.; Loos, R.; MacArthur, D.G.; Lek, M.; Neuberg, D.S.; Lage, K.; Carr, S.A.; Hellstrom-Lindberg, E.; Malcovati, L.; Papaemmanuil, E.; Stewart, C.; Getz, G.; Bradley, R.K.; Jaiswal, S.; Ebert, B.L. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov., 2021, 2(5), 500-517.
[http://dx.doi.org/10.1158/2643-3230.BCD-20-0224] [PMID: 34568833]
[26]
Zeidner, J.F.; Vincent, B.G.; Ivanova, A.; Moore, D.; McKinnon, K.P.; Wilkinson, A.D.; Mukhopadhyay, R.; Mazziotta, F.; Knaus, H.A.; Foster, M.C.; Coombs, C.C.; Jamieson, K.; Van Deventer, H.; Webster, J.A.; Prince, G.T.; DeZern, A.E.; Smith, B.D.; Levis, M.J.; Montgomery, N.D.; Luznik, L.; Serody, J.S.; Gojo, I. Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute myeloid leukemia. Blood Cancer Discov., 2021, 2(6), 616-629.
[http://dx.doi.org/10.1158/2643-3230.BCD-21-0070] [PMID: 34778801]
[27]
Li, G.; Han, Q.; Lu, P.; Zhang, L.; Zhang, Y.; Chen, S.; Zhang, P.; Zhang, L.; Cui, W.; Wang, H.; Zhang, H. Construction of dual-biofunctionalized chitosan/collagen scaffolds for simultaneous neovascularization and nerve regeneration. Research, 2020, 2020, 2603048.
[http://dx.doi.org/10.34133/2020/2603048] [PMID: 32851386]
[28]
Robsanqempel, The Selection of Mongolian Medicine; Inner Mongolia People's Publishing House: Hohhot, 1977, pp. 37-48.
[29]
Shay, H. A simple method for uniform production of ulceration in the rat. Gastroenterology, 1945, 5.
[30]
Bao, Y.T. Basic theory of Mongolian medicine; Inner Mongolia People's Publishing House: Hohhot, 2007, pp. 58-59.
[31]
Huang, L.; Ning, N.; Zhang, Y. Pathological ratio of acute liver injury induced by concanavalin A, d-galactose and carbon tetrachloride in mice. Pharmacol. Clin. Chinese Mater. Med., 2022, 1-5.
[32]
Tang, Q.J.; Tu, C.; Guo, Y.J. Species differences of bakuchiol-induced liver injury in mice based on transcriptomics. Zhongguo Shiyan Fangjixue Zazhi, 2022, 28(05), 77-85.
[http://dx.doi.org/10.13422/j.cnki.syfjx.20220429]
[33]
Zuo, J.; Liu, Y.P. Cytobiology; People's Medical Publishing House: Beijing, 2015, p. 15.
[34]
Yang, K.Q.; Zhao, J.L.; Mao, X.Q. Extrribosomal functions of ribosomal proteins and their role in disease. Prog. Physiol. Sci., 2021, 52(03), 227-230.
[35]
Shi, Y. Expression of ribosomal protein gene in gastrointestinal tumors. Lab. Med., 2009, 24(12), 861-865.
[36]
Fei, Y.; Cao, Q.Y.; Guan, Y.G. Bioinformatics analysis and validation of key genes in the pathogenesis of adenomyosis. Jiyinzuxue Yu Yingyong Shengwuxue, 2022, 41(01), 203-212.
[http://dx.doi.org/10.13417/j.gab.041.000203]
[37]
Zhang, X.W. Integration analysis of CCL4 induced liver fibrosis model gene chip and screening and verification of core genes; JiLin University, 2021.
[38]
Sheng, B.; Zhang, M.; Ma, P.D. Expression and clinical significance of ribosomal protein L37 in prostate cancer. J. Tianjin Med. Uni., 2015, 21(05), 401-403.
[39]
Zhang, Z.Y. Regulation of CDH11 expression by KLF12 promotes the proliferation of endometrial cancer cells; Nanjing Medical University, 2019.
[40]
Zuo, J.; Liu, Y.P. Cytobiology; People's Medical Publishing House: Beijing, 2015, pp. 201-202.
[41]
Lei, J.P. H3K9 acetylation of GABRA1 genome protein and its gene expression in alcohol-dependent patients; Xinxiang Medical College, 2013.
[42]
An, X.L. Effect of histone deacetylase HDAC3 on proliferation and lipid metabolism of gastric cancer and its molecular mechanism; Southwest University, 2020.
[43]
Chihiro, K.; Hitoshi, T.; Yoshimasa, S. 880 -expression of CAPZA1,A negative regulator of cagadegrading autophagy, is enhanced by oxidative stress-induced histone acetylation in helicobacter pylori -infected gastric mucosa: A possible risk for gastric carcinogenesis. Gastroenterology, 2018, 154(6)
[44]
Xu, Y.; Liao, W.; Luo, Q.; Yang, D.; Pan, M. Histone acetylation regulator-mediated acetylation patterns define tumor malignant pathways and tumor microenvironment in hepatocellular carcinoma. Front. Immunol., 2022, 13, 761046.
[http://dx.doi.org/10.3389/fimmu.2022.761046] [PMID: 35145517]
[45]
Wang, Y.; Zhu, Q.; Hu, H.; Zhu, H.; Yang, B.; He, Q.; Yu, L.; Zeng, S. Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma. Biochem. Pharmacol., 2021, 188, 114546.
[http://dx.doi.org/10.1016/j.bcp.2021.114546] [PMID: 33838133]
[46]
Jin, Q.; Hu, H.; Yan, S.; Jin, L.; Pan, Y.; Li, X.; Peng, Y.; Cao, P. lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity. Front. Oncol., 2021, 11, 572585.
[http://dx.doi.org/10.3389/fonc.2021.572585] [PMID: 33718133]
[47]
Taniue, K.; Hayashi, T.; Kamoshida, Y.; Kurimoto, A.; Takeda, Y.; Negishi, L.; Iwasaki, K.; Kawamura, Y.; Goshima, N.; Akiyama, T. UHRF1-KAT7-mediated regulation of TUSC3 expression via histone methylation/acetylation is critical for the proliferation of colon cancer cells. Oncogene, 2020, 39(5), 1018-1030.
[http://dx.doi.org/10.1038/s41388-019-1032-y] [PMID: 31582837]
[48]
Hou, H.H.; Guo, J.J.; Cao, N.J. Histone H3K27 acetylation activates TRIM11 expression and promotes colon cancer cell proliferation. J. Shanxi Uni, 2022, 1-8.
[49]
Tan, Q.H. Research progress of histone deacetylase SIRT6 in breast cancer. Acta Acad. Med. Guangxi, 2021, 38(06), 1218-1222.
[http://dx.doi.org/10.16190/j.cnki.45-1211/r.2021.06.027]
[50]
Chn, J.; Peng, L.F. Research progress on the role of cathepsin G in the development of inflammatory diseases. Shandong Yiyao, 2017, 57(21), 98-101.
[51]
Torriglia, A.; Martin, E.; Jaadane, I. The hidden side of SER -PINB1 /leukocyte elastase inhibitor. Semin. Cell Dev. Biol., 2017, 62, 178-186.
[http://dx.doi.org/10.1016/j.semcdb.2016.07.010] [PMID: 27422329]
[52]
Lin, D.D.; Wei, C.W.; Wu, A.S. Research progress of complement system in perioperative neurocognitive disorders. J. Clin. Anesthesiol., 2021, 37(12), 1310-1313.
[53]
Burgener, S.S.; Leborgne, N.G.F.; Snipas, S.J. Cathepsin G inhibition by serpinb1 and serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-Driven inflammation. Cell Rep., 2019, 27(12), 3646-3656.
[http://dx.doi.org/10.1016/j.celrep.2019.05.065]
[54]
Cao, X.T.; He, W. Medical immunology; People's Medical Publishing House: Beijing, 2015, p. 95.
[55]
Huang, M. Mechanism of pyroptosis mediated by membrane attack complex C5B-9 in renal tubular epithelial cells sensitized to trichloroethylene; Anhui Medical University, 2021.
[56]
Roxana, A.R.; Nermin, K.; Michael, B.G. Membraneattack complex induces RPE cell death in Stargardt Disease. Invest. Ophthalmol. Vis. Sci., 2021, 62(8)
[57]
Diaz, D.O.; Worboys, J.; Martin, S.F. Internalization of the membrane attack complex triggers NLRP3 inflammasome activation and IL-1β secretion in human macrophages. Front. Immunol., 2021, 12.
[58]
Michailidou, I.; Jongejan, A.; Vreijling, J.P.; Georgakopoulou, T.; de Wissel, M.B.; Wolterman, R.A.; Ruizendaal, P.; Klar-Mohamad, N.; Grootemaat, A.E.; Picavet, D.I.; Kumar, V.; van Kooten, C.; Woodruff, T.M.; Morgan, B.P.; van der Wel, N.N.; Ramaglia, V.; Fluiter, K.; Baas, F. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol. Commun., 2018, 6(1), 36.
[http://dx.doi.org/10.1186/s40478-018-0536-y] [PMID: 29724241]