Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Carlo Caiati* and Emilio Jirillo

DOI: 10.2174/1871530323666230911141418

Pathogenesis of the Left Ventricular Diastolic Dysfunction: The Immune System Keeps Playing at the Backstage

Page: [173 - 177] Pages: 5

  • * (Excluding Mailing and Handling)

[1]
Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol., 2017, 14(10), 591-602.
[http://dx.doi.org/10.1038/nrcardio.2017.65] [PMID: 28492288]
[2]
Westermann, D.; Lindner, D.; Kasner, M.; Zietsch, C.; Savvatis, K.; Escher, F.; von Schlippenbach, J.; Skurk, C.; Steendijk, P.; Riad, A.; Poller, W.; Schultheiss, H.P.; Tschöpe, C. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail., 2011, 4(1), 44-52.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.109.931451] [PMID: 21075869]
[3]
LeWinter, M.M.; Meyer, M. Mechanisms of diastolic dysfunction in heart failure with a preserved ejection fraction: If it’s not one thing it’s another. Circ. Heart Fail., 2013, 6(6), 1112-1115.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000825] [PMID: 24255055]
[4]
Robles, A.G.; Pollice, P.; Guaricci, A.I.; Caiati, C.; Favale, S. A case of suspected eosinophilic myocarditis recognized by a fully noninvasive approach and safely treated with corticosteroids despite underlying hepatitis C virus-related hepatitis. Future Cardiol., 2020, 16(5), 413-418.
[http://dx.doi.org/10.2217/fca-2019-0032] [PMID: 32316745]
[5]
Cowling, R.T.; Kupsky, D.; Kahn, A.M.; Daniels, L.B.; Greenberg, B.H. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl. Res., 2019, 209, 138-155.
[http://dx.doi.org/10.1016/j.trsl.2019.03.004] [PMID: 30986384]
[6]
Caiati, C.; Argentiero, A.; Favale, S.; Lepera, M.E. Cardiorenal syndrome triggered by slowly progressive drugs toxicity-induced renal failure along with minimal mitral disease: A case report. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(9), 970-977.
[http://dx.doi.org/10.2174/1381612828666220412093734] [PMID: 35418292]
[7]
Caiati, C.; Stanca, A.; Lepera, M.E. Case report: Diagnosis of apical hypertrophic cardiomyopathy that escaped clinical and echocardiographic investigations for twenty years: Reasons and clinical implications. Front. Cardiovasc. Med., 2023, 10, 1157599.
[http://dx.doi.org/10.3389/fcvm.2023.1157599] [PMID: 37168654]
[8]
Caiati, C.; Stanca, A.; Lepera, M.E. Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease. Metabolites, 2023, 13(6), 712.
[http://dx.doi.org/10.3390/metabo13060712] [PMID: 37367870]
[9]
Shen, J.; Xie, X. Insight into the pro-inflammatory and profibrotic role of macrophage in heart failure with preserved ejection fraction. J. Cardiovasc. Pharmacol., 2020, 76(3), 276-285.
[http://dx.doi.org/10.1097/FJC.0000000000000858] [PMID: 32501838]
[10]
Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.T.; Deswal, A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol., 2012, 59(11), 998-1005.
[http://dx.doi.org/10.1016/j.jacc.2011.11.040] [PMID: 22402071]
[11]
Mark, P.B.; Mangion, K.; Rankin, A.J.; Rutherford, E.; Lang, N.N.; Petrie, M.C.; Stoumpos, S.; Patel, R.K. Left ventricular dysfunction with preserved ejection fraction: The most common left ventricular disorder in chronic kidney disease patients. Clin. Kidney J., 2022, 15(12), 2186-2199.
[http://dx.doi.org/10.1093/ckj/sfac146] [PMID: 36381379]
[12]
Meschiari, C.A.; Ero, O.K.; Pan, H.; Finkel, T.; Lindsey, M.L. The impact of aging on cardiac extracellular matrix. Geroscience, 2017, 39(1), 7-18.
[http://dx.doi.org/10.1007/s11357-017-9959-9] [PMID: 28299638]
[13]
Gevaert, A.B.; Shakeri, H.; Leloup, A.J.; Van Hove, C.E.; De Meyer, G.R.Y.; Vrints, C.J.; Lemmens, K.; Van Craenenbroeck, E.M. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circ. Heart Fail., 2017, 10(6), e003806.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003806] [PMID: 28611124]
[14]
Caiati, C.; Siena, P.; Iacovelli, F.; Piscitelli, L.; Pollice, P.; Favale, S.; Lepera Mario, E. Assessing diffuse coronary atherosclerosis in subjects with impaired coronary flow reserve but no angiographic critical stenosis. A transthoracic enhanced color doppler echocardiographyc study. J. Am. Coll. Cardiol., 2021, 17(18)(Suppl. 1), 1429.
[15]
Caiati, C.; Iacovelli, F.; Mancini, G.; Lepera, M.E. Hidden coronary atherosclerosis assessment but not coronary flow reserve helps to explain the slow coronary flow phenomenon in patients with angiographically normal coronary arteries. Diagnostics, 2022, 12(9), 2173.
[http://dx.doi.org/10.3390/diagnostics12092173] [PMID: 36140575]
[16]
Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-specific treatment of heart failure with preserved ejection fraction. Circulation, 2016, 134(1), 73-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021884] [PMID: 27358439]
[17]
Teerlink, J.R.; Sliwa, K.; Opie, L.H. Heart Failure. In: Drugs for the heart; Opie, L.H.; Gersh, B.J., Eds.; Elsevier Saunders: Philadelfia, PA, 2013; pp. 169-223.
[http://dx.doi.org/10.1016/B978-1-4557-3322-4.00015-6]
[18]
Caiati, C.; Argentiero, A.; Forleo, C.; Favale, S.; Lepera, M.E. Predictors of exercise capacity in dilated cardiomyopathy with focus on pulmonary venous flow recorded with transesophageal eco-doppler. J. Clin. Med., 2021, 10(24), 5954.
[http://dx.doi.org/10.3390/jcm10245954] [PMID: 34945249]
[19]
Tribouilloy, C.; Rusinaru, D.; Mahjoub, H.; Soulière, V.; Lévy, F.; Peltier, M.; Slama, M.; Massy, Z. Prognosis of heart failure with preserved ejection fraction: A 5 year prospective population-based study. Eur. Heart J., 2008, 29(3), 339-347.
[http://dx.doi.org/10.1093/eurheartj/ehm554] [PMID: 18156618]
[20]
Sanders-van Wijk, S.; van Empel, V.; Davarzani, N.; Maeder, M.T.; Handschin, R.; Pfisterer, M.E.; Brunner-La Rocca, H.P. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur. J. Heart Fail., 2015, 17(10), 1006-1014.
[http://dx.doi.org/10.1002/ejhf.414] [PMID: 26472682]
[21]
Griendling, K.K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ. Res., 2000, 86(5), 494-501.
[http://dx.doi.org/10.1161/01.RES.86.5.494] [PMID: 10720409]
[22]
Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311401] [PMID: 29700084]
[23]
Mohammed, S.F.; Hussain, S.; Mirzoyev, S.A.; Edwards, W.D.; Maleszewski, J.J.; Redfield, M.M. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation, 2015, 131(6), 550-559.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.009625] [PMID: 25552356]
[24]
Schulz, R.; Heusch, G. Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation, 2009, 119(10), 1355-1357.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.846105] [PMID: 19255338]
[25]
Condorelli, G.; Morisco, C.; Latronico, M.V.G.; Claudio, P.P.; Dent, P.; Tsichlis, P.; Condorelli, G.; Frati, G.; Drusco, A.; Croce, C.M.; Napoli, C. TNF‐α signal transduction in rat neonatal cardiac myocytes: Definition of pathways generating from the TNF‐α receptor. FASEB J., 2002, 16(13), 1732-1737.
[http://dx.doi.org/10.1096/fj.02-0419com] [PMID: 12409315]
[26]
Honsho, S.; Nishikawa, S.; Amano, K.; Zen, K.; Adachi, Y.; Kishita, E.; Matsui, A.; Katsume, A.; Yamaguchi, S.; Nishikawa, K.; Isoda, K.; Riches, D.W.H.; Matoba, S.; Okigaki, M.; Matsubara, H. Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ. Res., 2009, 105(11), 1149-1158.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.208199] [PMID: 19834007]
[27]
Carnicer, R.; Suffredini, S.; Liu, X.; Reilly, S.; Simon, J.N.; Surdo, N.C.; Zhang, Y.H.; Lygate, C.A.; Channon, K.M.; Casadei, B. The subcellular localization of neuronal nitric oxide synthase determines the downstream effects of NO on myocardial function. Cardiovasc. Res., 2017, 113(3), 321-331.
[http://dx.doi.org/10.1093/cvr/cvx002] [PMID: 28158509]
[28]
Pan, Y.; Wang, Y.; Zhao, Y.; Peng, K.; Li, W.; Wang, Y.; Zhang, J.; Zhou, S.; Liu, Q.; Li, X.; Cai, L.; Liang, G. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes, 2014, 63(10), 3497-3511.
[http://dx.doi.org/10.2337/db13-1577] [PMID: 24848068]
[29]
Lu, S.; Liao, Z.; Lu, X.; Katschinski, D.M.; Mercola, M.; Chen, J.; Heller Brown, J.; Molkentin, J.D.; Bossuyt, J.; Bers, D.M. Hyperglycemia acutely increases cytosolic reactive oxygen species via O -linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ. Res., 2020, 126(10), e80-e96.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316288] [PMID: 32134364]
[30]
Stienstra, R.; van Diepen, J.A.; Tack, C.J.; Zaki, M.H.; van de Veerdonk, F.L.; Perera, D.; Neale, G.A.; Hooiveld, G.J.; Hijmans, A.; Vroegrijk, I.; van den Berg, S.; Romijn, J.; Rensen, P.C.N.; Joosten, L.A.B.; Netea, M.G.; Kanneganti, T.D. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15324-15329.
[http://dx.doi.org/10.1073/pnas.1100255108] [PMID: 21876127]
[31]
Finucane, O.M.; Lyons, C.L.; Murphy, A.M.; Reynolds, C.M.; Klinger, R.; Healy, N.P.; Cooke, A.A.; Coll, R.C.; McAllan, L.; Nilaweera, K.N.; O’Reilly, M.E.; Tierney, A.C.; Morine, M.J.; Alcala-Diaz, J.F.; Lopez-Miranda, J.; O’Connor, D.P.; O’Neill, L.A.; McGillicuddy, F.C.; Roche, H.M. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes, 2015, 64(6), 2116-2128.
[http://dx.doi.org/10.2337/db14-1098] [PMID: 25626736]
[32]
Bergman, B.C.; Brozinick, J.T.; Strauss, A.; Bacon, S.; Kerege, A.; Bui, H.H.; Sanders, P.; Siddall, P.; Wei, T.; Thomas, M.K.; Kuo, M.S.; Perreault, L. Muscle sphingolipids during rest and exercise: A C18:0 signature for insulin resistance in humans. Diabetologia, 2016, 59(4), 785-798.
[http://dx.doi.org/10.1007/s00125-015-3850-y] [PMID: 26739815]
[33]
Deng, Y.; Xie, M.; Li, Q.; Xu, X.; Ou, W.; Zhang, Y.; Xiao, H.; Yu, H.; Zheng, Y.; Liang, Y.; Jiang, C.; Chen, G.; Du, D.; Zheng, W.; Wang, S.; Gong, M.; Chen, Y.; Tian, R.; Li, T. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res., 2021, 128(2), 232-245.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317933] [PMID: 33176578]
[34]
Nevers, T.; Salvador, A.M.; Grodecki-Pena, A.; Knapp, A.; Velázquez, F.; Aronovitz, M.; Kapur, N.K.; Karas, R.H.; Blanton, R.M.; Alcaide, P. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail., 2015, 8(4), 776-787.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002225] [PMID: 26022677]
[35]
Tang, H.; Zhong, Y.; Zhu, Y.; Zhao, F.; Cui, X.; Wang, Z. Low responder T cell susceptibility to the suppressive function of regulatory T cells in patients with dilated cardiomyopathy. Heart, 2010, 96(10), 765-771.
[http://dx.doi.org/10.1136/hrt.2009.184945] [PMID: 20448127]
[36]
Tang, T.T.; Ding, Y.J.; Liao, Y.H.; Yu, X.; Xiao, H.; Xie, J.J.; Yuan, J.; Zhou, Z.H.; Liao, M.Y. Yao, R Defective circulating CD4CD25+ Foxp3+CD127(low) regulatory T-cells in patients with chronic heart failure. Cell. Physiol. Biochem., 2010, 25(4-5), 451-458.
[37]
Tang, T.T.; Zhu, Z.F.; Wang, J.; Zhang, W.C.; Tu, X.; Xiao, H.; Du, X.L.; Xia, J.H.; Dong, N.G.; Su, W.; Xia, N.; Yan, X.X.; Nie, S.F.; Liu, J.; Zhou, S.F.; Yao, R.; Xie, J.J.; Jevallee, H.; Wang, X.; Liao, M.Y.; Shi, G.P.; Fu, M.; Liao, Y.H.; Cheng, X. Impaired thymic export and apoptosis contribute to regulatory T-cell defects in patients with chronic heart failure. PLoS One, 2011, 6(9), e24272.
[http://dx.doi.org/10.1371/journal.pone.0024272] [PMID: 21935395]
[38]
Li, N.; Bian, H.; Zhang, J.; Li, X.; Ji, X.; Zhang, Y. The Th17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. Clin. Chim. Acta, 2010, 411(23-24), 1963-1968.
[39]
Franssen, C.; Chen, S.; Unger, A.; Korkmaz, H.I.; De Keulenaer, G.W.; Tschöpe, C.; Leite-Moreira, A.F.; Musters, R.; Niessen, H.W.M.; Linke, W.A.; Paulus, W.J.; Hamdani, N. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail., 2016, 4(4), 312-324.
[http://dx.doi.org/10.1016/j.jchf.2015.10.007] [PMID: 26682792]
[40]
Carrillo-Salinas, F.J.; Anastasiou, M.; Ngwenyama, N.; Kaur, K.; Tai, A.; Smolgovsky, S.A.; Jetton, D.; Aronovitz, M.; Alcaide, P. Gut dysbiosis induced by cardiac pressure overload enhances adverse cardiac remodeling in a T cell-dependent manner. Gut Microbes, 2020, 12(1), 1823801.
[http://dx.doi.org/10.1080/19490976.2020.1823801] [PMID: 33103561]
[41]
Fukunaga, T.; Soejima, H.; Irie, A.; Sugamura, K.; Oe, Y.; Tanaka, T.; Nagayoshi, Y.; Kaikita, K.; Sugiyama, S.; Yoshimura, M.; Nishimura, Y.; Ogawa, H. Relation between CD4+ T-cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol., 2007, 100(3), 483-488.
[http://dx.doi.org/10.1016/j.amjcard.2007.03.052] [PMID: 17659933]
[42]
Blander, J.M.; Longman, R.S.; Iliev, I.D.; Sonnenberg, G.F.; Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol., 2017, 18(8), 851-860.
[http://dx.doi.org/10.1038/ni.3780] [PMID: 28722709]
[43]
Bhatia, A.; Kanwal, A.; Garg, Y.; Kanwar, N.; Chopra, S.; Tambuwala, M.M.; Dodiya, H. Microbiome medicine: microbiota in development and management of cardiovascular diseases. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(14), 1344-1356.
[http://dx.doi.org/10.2174/1871530322666220624161712] [PMID: 35761484]
[44]
Mocan, M.; Mocan Hognogi, L.D.; Anton, F.P.; Chiorescu, R.M.; Goidescu, C.M.; Stoia, M.A.; Farcas, A.D. Biomarkers of inflammation in left ventricular diastolic dysfunction. Dis. Markers, 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/7583690] [PMID: 31275453]
[45]
Genkel, V.; Kuznetsova, A.; Pykhova, L.; Nikushkina, K.; Savochkina, A.; Dolgushin, I.; Shaposhnik, I. Prognostic significance of hypertriglyceridemia in patients at high and very high cardiovascular risk depending on the concentration of highsensitivity C-reactive protein. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(14), 1403-1409.
[http://dx.doi.org/10.2174/1871530322666220427094330] [PMID: 35490328]
[46]
van der Hoef, C.C.S.; Boorsma, E.M.; Emmens, J.E.; van Essen, B.J.; Metra, M.; Ng, L.L.; Anker, S.D.; Dickstein, K.; Mordi, I.R.; Dihoum, A.; Lang, C.C.; van Veldhuisen, D.J.; Lam, C.S.P.; Voors, A.A. Biomarker signature and pathophysiological pathways in patients with chronic heart failure and metabolic syndrome. Eur. J. Heart Fail., 2023, 25(2), 163-173.
[http://dx.doi.org/10.1002/ejhf.2760] [PMID: 36597718]
[47]
Ma, J.; Zhang, R.; Wang, P. Inflammasomes as potential therapeutic targets in atherosclerotic cardiovascular disease. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(14), 1378-1389.
[http://dx.doi.org/10.2174/1871530322666220407090916] [PMID: 35392792]