T Lymphocytes in the Pathogenesis and Progression of Alzheimer’s Disease: Pursuing Direct Neuropathological Evidence

Page: [453 - 458] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Multiple studies have proposed important roles of T cells in the pathogenesis of Alzheimer’s disease. Given the successful application of immune-based therapy for cancer and a variety of diseases, T cell-modifying therapy becomes an attractive way to develop new therapies for Alzheimer’s disease and perhaps neurodegenerative diseases in general. However, most of these studies address peripheral T cell responses, while direct pathological evidence documenting T cell infiltration relative to Alzheimer’s disease pathological markers (i.e., amyloid plaque and neurofibrillary tangle) is sparse and at best, very preliminary in both human subjects and relevant animal models. Here, we concisely summarize the available pathological data that directly corresponds to T cell infiltration, critically analyze the current knowledge gaps, and thoughtfully propose several key recommendations for future research.

[1]
Patel, U.; Abernathy, J.; Savani, B.N.; Oluwole, O.; Sengsayadeth, S.; Dholaria, B. CAR T cell therapy in solid tumors: A review of current clinical trials. eJHaem, 2022, 3(S1)(Suppl. 1), 24-31.
[http://dx.doi.org/10.1002/jha2.356] [PMID: 35844304]
[2]
Solomon, G.E. T-cell agents in the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis., 2010, 68(3), 162-165.
[PMID: 20969545]
[3]
Dai, L.; Shen, Y. Insights into T-cell dysfunction in Alzheimer’s disease. Aging Cell, 2021, 20(12), e13511.
[http://dx.doi.org/10.1111/acel.13511] [PMID: 34725916]
[4]
DeMaio, A.; Mehrotra, S.; Sambamurti, K.; Husain, S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J. Neuroinflammation, 2022, 19(1), 251.
[http://dx.doi.org/10.1186/s12974-022-02605-9] [PMID: 36209107]
[5]
Huang, B.; Zhenxin, Y.; Chen, S.; Tan, Z.; Zong, Z.; Zhang, H.; Xiong, X. The innate and adaptive immune cells in Alzheimer’s and Parkinson’s diseases. Oxid. Med. Cell. Longev., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/1315248] [PMID: 36211819]
[6]
Chen, Y.; Colonna, M. Spontaneous and induced adaptive immune responses in Alzheimer’s disease: New insights into old observations. Curr. Opin. Immunol., 2022, 77, 102233.
[http://dx.doi.org/10.1016/j.coi.2022.102233] [PMID: 35839620]
[7]
Togo, T.; Akiyama, H.; Iseki, E.; Kondo, H.; Ikeda, K.; Kato, M.; Oda, T.; Tsuchiya, K.; Kosaka, K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol., 2002, 124(1-2), 83-92.
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[8]
Merlini, M.; Kirabali, T.; Kulic, L.; Nitsch, R.M.; Ferretti, M.T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: An immunohistochemical study. Neurodegener. Dis., 2018, 18(1), 49-56.
[http://dx.doi.org/10.1159/000486200] [PMID: 29402847]
[9]
Unger, M.S.; Li, E.; Scharnagl, L.; Poupardin, R.; Altendorfer, B.; Mrowetz, H.; Hutter-Paier, B.; Weiger, T.M.; Heneka, M.T.; Attems, J.; Aigner, L. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav. Immun., 2020, 89, 67-86.
[http://dx.doi.org/10.1016/j.bbi.2020.05.070] [PMID: 32479993]
[10]
Laurent, C.; Dorothée, G.; Hunot, S.; Martin, E.; Monnet, Y.; Duchamp, M.; Dong, Y.; Légeron, F.P.; Leboucher, A.; Burnouf, S.; Faivre, E.; Carvalho, K.; Caillierez, R.; Zommer, N.; Demeyer, D.; Jouy, N.; Sazdovitch, V.; Schraen-Maschke, S.; Delarasse, C.; Buée, L.; Blum, D. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain, 2017, 140(1), 184-200.
[http://dx.doi.org/10.1093/brain/aww270] [PMID: 27818384]
[11]
Moreno-Valladares, M.; Silva, T.M.; Garcés, J.P.; Saenz-Antoñanzas, A.; Moreno-Cugnon, L.; Álvarez-Satta, M.; Matheu, A. CD8+ T cells are present at low levels in the white matter with physiological and pathological aging. Aging, 2020, 12(19), 18928-18941.
[http://dx.doi.org/10.18632/aging.104043] [PMID: 33049712]
[12]
Batterman, K.V.; Cabrera, P.E.; Moore, T.L.; Rosene, D.L. T cells actively infiltrate the white matter of the aging monkey brain in relation to increased microglial reactivity and cognitive decline. Front. Immunol., 2021, 12, 607691.
[http://dx.doi.org/10.3389/fimmu.2021.607691] [PMID: 33664743]
[13]
Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783.
[http://dx.doi.org/10.1038/nn.4288] [PMID: 27227366]
[14]
Berger, T.; Weerth, S.; Kojima, K.; Linington, C.; Wekerle, H.; Lassmann, H. Experimental autoimmune encephalomyelitis: The antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Invest., 1997, 76(3), 355-364.
[PMID: 9121118]
[15]
Rogers, J.; Luber-Narod, J.; Styren, S.D.; Civin, W.H. Expression of immune system-associated antigens by cells of the human central nervous system: Relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging, 1988, 9(4), 339-349.
[http://dx.doi.org/10.1016/S0197-4580(88)80079-4] [PMID: 3263583]
[16]
Unger, M.S.; Marschallinger, J.; Kaindl, J.; Klein, B.; Johnson, M.; Khundakar, A.A.; Roßner, S.; Heneka, M.T.; Couillard-Despres, S.; Rockenstein, E.; Masliah, E.; Attems, J.; Aigner, L. Doublecortin expression in CD8+ T-cells and microglia at sites of amyloid-β plaques: A potential role in shaping plaque pathology? Alzheimers Dement., 2018, 14(8), 1022-1037.
[http://dx.doi.org/10.1016/j.jalz.2018.02.017] [PMID: 29630865]
[17]
Itagaki, S.; McGeer, P.L.; Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci. Lett., 1988, 91(3), 259-264.
[http://dx.doi.org/10.1016/0304-3940(88)90690-8] [PMID: 2972943]
[18]
Yan, P.; Bero, A.W.; Cirrito, J.R.; Xiao, Q.; Hu, X.; Wang, Y.; Gonzales, E.; Holtzman, D.M.; Lee, J.M. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci., 2009, 29(34), 10706-10714.
[http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009] [PMID: 19710322]
[19]
Radde, R.; Bolmont, T.; Kaeser, S.A.; Coomaraswamy, J.; Lindau, D.; Stoltze, L.; Calhoun, M.E.; Jäggi, F.; Wolburg, H.; Gengler, S.; Haass, C.; Ghetti, B.; Czech, C.; Hölscher, C.; Mathews, P.M.; Jucker, M. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep., 2006, 7(9), 940-946.
[http://dx.doi.org/10.1038/sj.embor.7400784] [PMID: 16906128]
[20]
Ferretti, M.T.; Merlini, M.; Späni, C.; Gericke, C.; Schweizer, N.; Enzmann, G.; Engelhardt, B.; Kulic, L.; Suter, T.; Nitsch, R.M. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav. Immun., 2016, 54, 211-225.
[http://dx.doi.org/10.1016/j.bbi.2016.02.009] [PMID: 26872418]
[21]
Browne, T.C.; McQuillan, K.; McManus, R.M.; O’Reilly, J.A.; Mills, K.H.G.; Lynch, M.A. IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol., 2013, 190(5), 2241-2251.
[http://dx.doi.org/10.4049/jimmunol.1200947] [PMID: 23365075]
[22]
Chen, X.; Firulyova, M.; Manis, M.; Herz, J.; Smirnov, I.; Aladyeva, E.; Wang, C.; Bao, X.; Finn, M.B.; Hu, H.; Shchukina, I.; Kim, M.W.; Yuede, C.M.; Kipnis, J.; Artyomov, M.N.; Ulrich, J.D.; Holtzman, D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615(7953), 668-677.
[http://dx.doi.org/10.1038/s41586-023-05788-0] [PMID: 36890231]
[23]
Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology, 2002, 58(12), 1791-1800.
[http://dx.doi.org/10.1212/WNL.58.12.1791] [PMID: 12084879]
[24]
Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol., 2006, 112(4), 389-404.
[http://dx.doi.org/10.1007/s00401-006-0127-z] [PMID: 16906426]
[25]
Urban, S.L.; Jensen, I.J.; Shan, Q.; Pewe, L.L.; Xue, H.H.; Badovinac, V.P.; Harty, J.T. Peripherally induced brain tissue–resident memory CD8+ T cells mediate protection against CNS infection. Nat. Immunol., 2020, 21(8), 938-949.
[http://dx.doi.org/10.1038/s41590-020-0711-8] [PMID: 32572242]
[26]
Smolders, J.; Heutinck, K.M.; Fransen, N.L.; Remmerswaal, E.B.M.; Hombrink, P.; ten Berge, I.J.M.; van Lier, R.A.W.; Huitinga, I.; Hamann, J. Tissue-resident memory T cells populate the human brain. Nat. Commun., 2018, 9(1), 4593.
[http://dx.doi.org/10.1038/s41467-018-07053-9] [PMID: 30389931]
[27]
Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Gearing, M.; Grinberg, L.T.; Hof, P.R.; Hyman, B.T.; Jellinger, K.; Jicha, G.A.; Kovacs, G.G.; Knopman, D.S.; Kofler, J.; Kukull, W.A.; Mackenzie, I.R.; Masliah, E.; McKee, A.; Montine, T.J.; Murray, M.E.; Neltner, J.H.; Santa-Maria, I.; Seeley, W.W.; Serrano-Pozo, A.; Shelanski, M.L.; Stein, T.; Takao, M.; Thal, D.R.; Toledo, J.B.; Troncoso, J.C.; Vonsattel, J.P.; White, C.L., III; Wisniewski, T.; Woltjer, R.L.; Yamada, M.; Nelson, P.T. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol., 2014, 128(6), 755-766.
[http://dx.doi.org/10.1007/s00401-014-1349-0] [PMID: 25348064]
[28]
Gate, D.; Tapp, E.; Leventhal, O.; Shahid, M.; Nonninger, T.J.; Yang, A.C.; Strempfl, K.; Unger, M.S.; Fehlmann, T.; Oh, H.; Channappa, D.; Henderson, V.W.; Keller, A.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Poston, K.L.; Wyss-Coray, T. CD4 + T cells contribute to neurodegeneration in Lewy body dementia. Science, 2021, 374(6569), 868-874.
[http://dx.doi.org/10.1126/science.abf7266] [PMID: 34648304]
[29]
Mihaescu, A.S.; Valli, M.; Uribe, C.; Diez-Cirarda, M.; Masellis, M.; Graff-Guerrero, A.; Strafella, A.P. Beta amyloid deposition and cognitive decline in Parkinson’s disease: A study of the PPMI cohort. Mol. Brain, 2022, 15(1), 79.
[http://dx.doi.org/10.1186/s13041-022-00964-1] [PMID: 36100909]
[30]
Dugger, B.N.; Serrano, G.E.; Sue, L.I.; Walker, D.G.; Adler, C.H.; Shill, H.A.; Sabbagh, M.N.; Caviness, J.N.; Hidalgo, J.; Saxon-LaBelle, M.; Chiarolanza, G.; Mariner, M.; Henry-Watson, J.; Beach, T.G. Presence of striatal amyloid plaques in Parkinson’s disease dementia predicts concomitant Alzheimer’s disease: Usefulness for amyloid imaging. J. Parkinsons Dis., 2012, 2(1), 57-65.
[http://dx.doi.org/10.3233/JPD-2012-11073] [PMID: 22924088]
[31]
Sarasa, M.; Pesini, P. Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res., 2009, 6(2), 171-178.
[http://dx.doi.org/10.2174/156720509787602834] [PMID: 19355852]
[32]
Sparks, D.L.; Schreurs, B.G. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11065-11069.
[http://dx.doi.org/10.1073/pnas.1832769100] [PMID: 12920183]
[33]
Weiss, C.; Bertolino, N.; Procissi, D.; Aleppo, G.; Smith, Q.C.; Viola, K.L.; Bartley, S.C.; Klein, W.L.; Disterhoft, J.F. Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement., 2022, 8(1), e12241.
[http://dx.doi.org/10.1002/trc2.12241] [PMID: 35128030]
[34]
Essayan-Perez, S.; Zhou, B.; Nabet, A.M.; Wernig, M.; Huang, Y.W.A. Modeling Alzheimer’s disease with human iPS cells: Advancements, lessons, and applications. Neurobiol. Dis., 2019, 130, 104503.
[http://dx.doi.org/10.1016/j.nbd.2019.104503] [PMID: 31202913]
[35]
Altendorfer, B.; Unger, M.S.; Poupardin, R.; Hoog, A.; Asslaber, D.; Gratz, I.K.; Mrowetz, H.; Benedetti, A.; de Sousa, D.M.B.; Greil, R.; Egle, A.; Gate, D.; Wyss-Coray, T.; Aigner, L. Transcriptomic profiling identifies CD8+ T cells in the brain of aged and Alzheimer’s disease transgenic mice as tissue-resident memory T cells. J. Immunol., 2022, 209(7), 1272-1285.
[http://dx.doi.org/10.4049/jimmunol.2100737] [PMID: 36165202]
[36]
Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science, 2019, 363(6434), 1463-1467.
[http://dx.doi.org/10.1126/science.aaw1219] [PMID: 30923225]