Bifidobacterial Postbiotics as Health-promoting Agents in Dairy Products

Article ID: e180823219974 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Bifidobacteria, known as probiotics with a broad range of bioactivities, are ordinarily used in the dairy industry to enrich dairy products naturally. Due to the oxygen-sensitive nature of bifidobacteria, the application of this probiotic into dairy products has faced some limitations. On the other hand, in the recent decade, postbiotics, defined as bioactive metabolites derived from probiotics, have caught attention. In this regard, the bioactive metabolites of bifidobacteria, the possibility of use of bifidobacterial postbiotic, and their role in human health are discussed.

Background: Bifidobacteria is a commercial probiotic that is widely used in industries. However, due to its oxygen-sensitive nature, industries have faced some limitations during the addition of the products. Recently it was stated that the metabolites secreted by bifidobacteria have a key role in improving health.

Objective: The possibility of a postbiotic replacement for probiotics in dairy industries and its effect on health are discussed.

Method: the keywords including postbiotic, probiotic, dairy, bifidobacteria, inactivated bifidobacteria, bifidobacteria metabolites, the effect of bifidobacteria on psychology, human health, cancer, and inflammation are searched on Google Scholar as well as more than 600 research and review articles are read.

Result: Bifidobacteria could change gut bacteria positively and improve health directly. Also, the metabolites produced by bifidobacteria indirectly have wide-range effects on health.

Conclusion: Due to the anaerobic nature of bifidobacteria, applying a postbiotic / non-viable form of bifidobacteria is a sagacious option in dairy products.

Graphical Abstract

[1]
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: Conceptualization from a new approach. Curr Opin Food Sci 2020; 32: 103-23.
[http://dx.doi.org/10.1016/j.cofs.2020.03.009]
[2]
Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 2001; 73(2) (Suppl.): 365s-73s.
[http://dx.doi.org/10.1093/ajcn/73.2.365s] [PMID: 11157343]
[3]
de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 2018; 36(8): 2060-76.
[http://dx.doi.org/10.1016/j.biotechadv.2018.09.003] [PMID: 30266342]
[4]
Roy D. Technological aspects related to the use of bifidobacteria in dairy products. Lait 2005; 85(1-2): 39-56.
[http://dx.doi.org/10.1051/lait:2004026]
[5]
Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 2011; 6(3): 261-74.
[http://dx.doi.org/10.1007/s12263-011-0218-x] [PMID: 21499799]
[6]
Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 2019; 20(19): 4673.
[http://dx.doi.org/10.3390/ijms20194673] [PMID: 31547172]
[7]
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol 2016; 7: 979.
[http://dx.doi.org/10.3389/fmicb.2016.00979] [PMID: 27446020]
[8]
EUZéBY JP. List of Bacterial Names with Standing in Nomenclature: A Folder Available on the Internet. Int J Syst Evol Microbiol 1997; 47(2): 590-2.
[http://dx.doi.org/10.1099/00207713-47-2-590]
[9]
Laureys D, Cnockaert M, De Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. Int J Syst Evol Microbiol 2016; 66(3): 1281-6.
[http://dx.doi.org/10.1099/ijsem.0.000877] [PMID: 26739269]
[10]
Bezkorovainy A. Classification of bifidobacteria. In: Biochemistry and physiology of bifidobacteria. CRC Press 2020; pp. 1-28.
[http://dx.doi.org/10.1201/9780367811723-1]
[11]
Turroni F, Peano C, Pass DA, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One 2012; 7(5): e36957.
[http://dx.doi.org/10.1371/journal.pone.0036957] [PMID: 22606315]
[12]
O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 2016; 7: 925.
[http://dx.doi.org/10.3389/fmicb.2016.00925] [PMID: 27379055]
[13]
Fernandes SS, Coelho MS, de las Mercedes Salas-Mellado M. Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources new. In: Bioactive compounds. Elsevier 2019; pp. 129-42.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00007-4]
[14]
Banwo K, Olojede AO, Adesulu-Dahunsi AT, et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci 2021; 43: 101320.
[http://dx.doi.org/10.1016/j.fbio.2021.101320]
[15]
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137: 109660.
[http://dx.doi.org/10.1016/j.foodres.2020.109660] [PMID: 33233239]
[16]
Lee M-J, Zang Z-L, Choi E-Y, Shin H-K, Ji G-E. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J Microbiol Biotechnol 2002; 12(3): 398-405.
[17]
Li J, Wang W, Xu SX, Magarvey NA, McCormick JK. Lactobacillus reuteri -produced cyclic dipeptides quench agr -mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci USA 2011; 108(8): 3360-5.
[http://dx.doi.org/10.1073/pnas.1017431108] [PMID: 21282650]
[18]
Kamiya T, Wang L, Forsythe P, et al. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 2006; 55(2): 191-6.
[http://dx.doi.org/10.1136/gut.2005.070987] [PMID: 16361309]
[19]
Dinić M, Lukić J, Djokić J, et al. Lactobacillus fermentum postbioticinduced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front Microbiol 2017; 8: 594.
[http://dx.doi.org/10.3389/fmicb.2017.00594] [PMID: 28428777]
[20]
Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, et al. In silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria. Probiotics Antimicrob Proteins 2020; 12(2): 608-22.
[http://dx.doi.org/10.1007/s12602-019-09568-z] [PMID: 31280464]
[21]
Vries W, Stouthamer AH. Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Microbiol 1969; 65(3): 275-87.
[http://dx.doi.org/10.1007/BF00407109] [PMID: 4915432]
[22]
Peng M, Tabashsum Z, Anderson M, et al. Effectiveness of probiotics, prebiotics, and prebiotic‐like components in common functional foods. Compr Rev Food Sci Food Saf 2020; 19(4): 1908-33.
[http://dx.doi.org/10.1111/1541-4337.12565] [PMID: 33337097]
[23]
Linares DM, Gómez C, Renes E, et al. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 2017; 8: 846.
[http://dx.doi.org/10.3389/fmicb.2017.00846] [PMID: 28572792]
[24]
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, et al. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2023; 63(26): 8375-402.
[http://dx.doi.org/10.1080/10408398.2022.2056727] [PMID: 35348016]
[25]
Leahy SC, Higgins DG, Fitzgerald GF, Sinderen D. Getting better with bifidobacteria. J Appl Microbiol 2005; 98(6): 1303-15.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02600.x] [PMID: 15916644]
[26]
Gorissen L, Raes K, Weckx S, et al. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl Microbiol Biotechnol 2010; 87(6): 2257-66.
[http://dx.doi.org/10.1007/s00253-010-2713-1] [PMID: 20556602]
[27]
Gorissen L, De Vuyst L, Raes K, De Smet S, Leroy F. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains. Int J Food Microbiol 2012; 155(3): 234-40.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.012] [PMID: 22405353]
[28]
Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients 2011; 3(1): 118-34.
[http://dx.doi.org/10.3390/nu3010118] [PMID: 22254078]
[29]
Gagnon M, Savard P, Rivière A, LaPointe G, Roy D. Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Research International 2015; 2015.
[30]
Özer B. Production of concentrated products. Fermented milks 2006; 128-55.
[31]
Rajakovich LJ, Balskus EP. Metabolic functions of the human gut microbiota: The role of metalloenzymes. Nat Prod Rep 2019; 36(4): 593-625.
[http://dx.doi.org/10.1039/C8NP00074C] [PMID: 30452039]
[32]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[33]
Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev 2016; 30(14): 1589-97.
[http://dx.doi.org/10.1101/gad.284091.116] [PMID: 27474437]
[34]
D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 2012; 112(5): 975-84.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05261.x] [PMID: 22335359]
[35]
Sugahara H, Odamaki T, Hashikura N, Abe F, Xiao J. Differences in folate production by bifidobacteria of different origins. Biosci Microbiota Food Health 2015; 34(4): 87-93.
[http://dx.doi.org/10.12938/bmfh.2015-003] [PMID: 26594608]
[36]
Solopova A, Bottacini F, Venturi degli Esposti E, et al. Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal bifidobacterium longum subsp. infantis ATCC 15697. Front Microbiol 2020; 11: 573335.
[http://dx.doi.org/10.3389/fmicb.2020.573335] [PMID: 33042083]
[37]
You J, Pan X, Yang C, et al. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68: 46-58.
[http://dx.doi.org/10.1016/j.ymben.2021.08.009] [PMID: 34481976]
[38]
Jung HS, Kim KR, Kim KH, et al. Investigation on human milk oligosaccharide utilization and vitamin B biosynthesis by Bifidobacterium strains isolated from infant feces. Microbiological Society of Korea 2020; 56(3): 297-306.
[39]
Peluzio MCG, Martinez JA, Milagro FI. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci Technol 2021; 108: 11-26.
[http://dx.doi.org/10.1016/j.tifs.2020.12.004]
[40]
Czajeczny D, Wójciak R, Czajeczny D, Kabzińska-Milewska K. Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation may change the mineral balance in healthy young women. J Elem 2021; 26(4/2021)
[http://dx.doi.org/10.5601/jelem.2021.26.1.2121]
[41]
Li C, Huang Q, Yang R, et al. Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int 2019; 30(5): 1003-13.
[http://dx.doi.org/10.1007/s00198-019-04855-5] [PMID: 30666372]
[42]
Skrypnik K. Bogdański P, Schmidt M, Suliburska J. The effect of multispecies probiotic supplementation on iron status in rats. Biol Trace Elem Res 2019; 192(2): 234-43.
[http://dx.doi.org/10.1007/s12011-019-1658-1] [PMID: 30746586]
[43]
Vazquez-Gutierrez P, Lacroix C, Jaeggi T, Zeder C, Zimmerman MB, Chassard C. Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiol 2015; 15(1): 3.
[http://dx.doi.org/10.1186/s12866-014-0334-z] [PMID: 25591860]
[44]
LeBlanc JG, Matar C, Valdéz JC, LeBlanc J, Perdigon G. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J Dairy Sci 2002; 85(11): 2733-42.
[http://dx.doi.org/10.3168/jds.S0022-0302(02)74360-9] [PMID: 12487440]
[45]
Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J Funct Foods 2015; 17: 640-56.
[http://dx.doi.org/10.1016/j.jff.2015.06.021]
[46]
Losurdo L, Quintieri L, Caputo L, Gallerani R, Mayo B, De Leo F. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum. FEMS Microbiol Lett 2013; 340(1): 24-32.
[http://dx.doi.org/10.1111/1574-6968.12068] [PMID: 23278337]
[47]
Meng D, Sommella E, Salviati E, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 2020; 88(2): 209-17.
[http://dx.doi.org/10.1038/s41390-019-0740-x] [PMID: 31945773]
[48]
Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020; 12(1): 1801944.
[http://dx.doi.org/10.1080/19490976.2020.1801944] [PMID: 32795116]
[49]
Wang Y, Wu Y, Wang Y, et al. Antioxidant properties of probiotic bacteria. Nutrients 2017; 9(5): 521.
[http://dx.doi.org/10.3390/nu9050521] [PMID: 28534820]
[50]
Martorell P, Alvarez B, Llopis S, et al. Heat-treated Bifidobacterium longum CECT-7347: A whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties. Antioxidants 2021; 10(4): 536.
[http://dx.doi.org/10.3390/antiox10040536] [PMID: 33808122]
[51]
Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 2013; 97(2): 809-17.
[http://dx.doi.org/10.1007/s00253-012-4241-7] [PMID: 22790540]
[52]
Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci 2014; 97(12): 7334-43.
[http://dx.doi.org/10.3168/jds.2014-7912] [PMID: 25282420]
[53]
Darvishi N, Fard NA, Sadrnia M. Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. Biotechnol Rep (Amst) 2021; 31: e00654.
[http://dx.doi.org/10.1016/j.btre.2021.e00654] [PMID: 34258243]
[54]
Inturri R, Stivala A, Furneri PM, Blandino G. Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 e Lactobacillus rhamnosus HN001 alone and in combination. Eur Rev Med Pharmacol Sci 2016; 20(23): 4943-9.
[PMID: 27981539]
[55]
Lee DK, Park SY, An HM, et al. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Arch Oral Biol 2011; 56(10): 1047-54.
[http://dx.doi.org/10.1016/j.archoralbio.2011.03.002] [PMID: 21439550]
[56]
Lee DK, Kim MJ, Ham JW, et al. In Vitro evaluation of antibacterial activities and anti-inflammatory effects of Bifidobacterium spp. addressing acne vulgaris. Arch Pharm Res 2012; 35(6): 1065-71.
[http://dx.doi.org/10.1007/s12272-012-0614-9] [PMID: 22870816]
[57]
Muñoz-Quezada S, Chenoll E, María Vieites J, et al. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 2013; 109(S2) (Suppl. 2): S51-62.
[http://dx.doi.org/10.1017/S0007114512005211] [PMID: 23360881]
[58]
Ma L, Tu H, Chen T. Postbiotics in human health: A narrative review. Nutrients 2023; 15(2): 291.
[http://dx.doi.org/10.3390/nu15020291] [PMID: 36678162]
[59]
Nie R, Hao X, Liu G, et al. Controlled release study on bifidocin a from a polyvinyl alcohol/chitosan blend particle-based biodegradable and active packaging coupled with mechanistic assessment and experimental modeling. J Biomed Nanotechnol 2021; 17(11): 2226-39.
[http://dx.doi.org/10.1166/jbn.2021.3188] [PMID: 34906283]
[60]
Liu G, Ren L, Song Z, Wang C, Sun B. Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control 2015; 50: 889-95.
[http://dx.doi.org/10.1016/j.foodcont.2014.10.049]
[61]
Rodriguez A. Evaluation of the synbiotic strategy as prevention and treatment of swine digestive pathologies 2019.
[62]
Yildirim Z, Winters DK, Johnson MG. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 1999; 86(1): 45-54.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00629.x] [PMID: 10030011]
[63]
Kadhem BM, Mater HN, Alsaadi LG, et al. Antibacterial activity of a novel lectin produced by bee honey bifidobacterium adolescentis against multidrug resistant salmonella typhi. J Pharma Sci and Res 2019; 11(3): 1102-6.
[64]
Yang J, Yang H. Non-antibiotic therapy for Clostridioides difficile infection: a review. Crit Rev Clin Lab Sci 2019; 56(7): 493-509.
[http://dx.doi.org/10.1080/10408363.2019.1648377] [PMID: 31411909]
[65]
Mohamed S, Elmohamady MN, Abdelrahman S, Amer MM, Abdelhamid AG. Antibacterial effects of antibiotics and cell-free preparations of probiotics against Staphylococcus aureus and Staphylococcus epidermidis associated with conjunctivitis. Saudi Pharm J 2020; 28(12): 1558-65.
[http://dx.doi.org/10.1016/j.jsps.2020.10.002] [PMID: 33424249]
[66]
Ghazvini RD, Kouhsari E, Zibafar E, Hashemi SJ, Amini A, Niknejad F. Antifungal activity and aflatoxin degradation of Bifidobacterium bifidum and Lactobacillus fermentum against toxigenic Aspergillus parasiticus. Open Microbiol J 2016; 10(1): 197-201.
[http://dx.doi.org/10.2174/1874285801610010197] [PMID: 28077976]
[67]
Amiri S, Rezaei Mokarram R, Sowti Khiabani M, Rezazadeh Bari M, Alizadeh Khaledabad M. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. Lebensm Wiss Technol 2022; 153: 112449.
[http://dx.doi.org/10.1016/j.lwt.2021.112449]
[68]
Sosa-Castañeda J, Hernández-Mendoza A, Astiazarán-García H, et al. Screening of Lactobacillus strains for their ability to produce conjugated linoleic acid in milk and to adhere to the intestinal tract. J Dairy Sci 2015; 98(10): 6651-9.
[http://dx.doi.org/10.3168/jds.2014-8515] [PMID: 26233456]
[69]
Florence ACR, da Silva RC, do Espírito Santo AP, Gioielli LA, Tamime AY, de Oliveira MN. Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy Sci Technol 2009; 89(6): 541-53.
[http://dx.doi.org/10.1051/dst/2009030]
[70]
Cruz BCS, Sarandy MM, Messias AC, Gonçalves RV, Ferreira CLLF, Peluzio MCG. Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review. Nutr Rev 2020; 78(8): 667-87.
[http://dx.doi.org/10.1093/nutrit/nuz087] [PMID: 31917829]
[71]
Marcobal A, Barboza M, Froehlich JW, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 2010; 58(9): 5334-40.
[http://dx.doi.org/10.1021/jf9044205] [PMID: 20394371]
[72]
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7(3): 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[73]
Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7(4): 198-206.
[http://dx.doi.org/10.1007/s13668-018-0248-8] [PMID: 30264354]
[74]
Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol 2017; 35: 8-15.
[http://dx.doi.org/10.1016/j.mib.2016.10.003] [PMID: 27883933]
[75]
Gosálbez L, Ramón D. Probiotics in transition: novel strategies. Trends Biotechnol 2015; 33(4): 195-6.
[http://dx.doi.org/10.1016/j.tibtech.2015.01.006] [PMID: 25702610]
[76]
Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016; 22(6): 598-605.
[http://dx.doi.org/10.1038/nm.4102] [PMID: 27158904]
[77]
Sarkar S. Whether viable and dead probiotic are equally efficacious? Nutr Food Sci 2018; 48(2): 285-300.
[http://dx.doi.org/10.1108/NFS-07-2017-0151]
[78]
Collado MC, Vinderola G, Salminen S. Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef Microbes 2019; 10(7): 711-9.
[http://dx.doi.org/10.3920/BM2019.0015] [PMID: 31965850]
[79]
Bouhnik Y, Pochart P, Marteau P, Arlet G, Goderel I, Rambaud JC. Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk. Gastroenterology 1992; 102(3): 875-8.
[http://dx.doi.org/10.1016/0016-5085(92)90172-U] [PMID: 1537524]
[80]
Bouhnik Y, Flourié B, Riottot M, et al. Effects of fructo‐oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer 1996; 26(1): 21-9.
[http://dx.doi.org/10.1080/01635589609514459]
[81]
Berrada N, Lemeland JF, Laroche G, Thouvenot P, Piaia M. Bifidobacterium from fermented milks: Survival during gastric transit. J Dairy Sci 1991; 74(2): 409-13.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78183-6] [PMID: 2045548]
[82]
Yaeshima T, Takahashi S, Ishibashi N, Shimamura S. Identification of bifidobacteria from dairy products and evaluation of a microplate hybridization method. Int J Food Microbiol 1996; 30(3): 303-13.
[http://dx.doi.org/10.1016/0168-1605(96)00956-7] [PMID: 8854183]
[83]
Marteau P, Minekus M, Havenaar R, Huis In’t Veld JHJ. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci 1997; 80(6): 1031-7.
[http://dx.doi.org/10.3168/jds.S0022-0302(97)76027-2] [PMID: 9201571]
[84]
Pochart P, Marteau P, Bouhnik Y, Goderel I, Bourlioux P, Rambaud JC. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 1992; 55(1): 78-80.
[http://dx.doi.org/10.1093/ajcn/55.1.78] [PMID: 1728822]
[85]
Sanz Y. Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. Int Dairy J 2007; 17(11): 1284-9.
[http://dx.doi.org/10.1016/j.idairyj.2007.01.016]
[86]
Dash G, Raman RP, Pani Prasad K, Makesh M, Pradeep MA, Sen S. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol 2015; 43(1): 167-74.
[http://dx.doi.org/10.1016/j.fsi.2014.12.007] [PMID: 25542379]
[87]
Molaee Parvarei M, Fazeli MR, Mortazavian AM, et al. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt. Food Res Int 2021; 140: 110030.
[http://dx.doi.org/10.1016/j.foodres.2020.110030] [PMID: 33648258]
[88]
de Almada CN, Almada CN, Martinez RCR, Sant’Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016; 58: 96-114.
[http://dx.doi.org/10.1016/j.tifs.2016.09.011]
[89]
Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol 2018; 75: 105-14.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[90]
Shigwedha N, Sichel L, Jia L, Zhang L. Probiotical cell fragments (PCFs) as “novel nutraceutical ingredients”. J Biosci Med 2014; 2(3): 43-55.
[http://dx.doi.org/10.4236/jbm.2014.23007]
[91]
Arunachalam KD. Role of Bifidobacteria in nutrition, medicine and technology. Nutr Res 1999; 19(10): 1559-97.
[http://dx.doi.org/10.1016/S0271-5317(99)00112-8]
[92]
Homayouni A, Alizadeh M, Alikhah H, Zijah V. Functional dairy probiotic food development: trends, concepts, and products. In Immunology and Microbiology. In: Rigobelo E, Ed. Probiotics. Rijeka: InTech 2012; pp. 197-212.
[http://dx.doi.org/10.5772/48797]
[93]
Gomes AMP, Malcata FX. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 1999; 10(4-5): 139-57.
[http://dx.doi.org/10.1016/S0924-2244(99)00033-3]
[94]
Dave RI, Shah NP. Evaluation of media for selective enumeration of streptococcus thermophilus, lactobacillus delbrueckii ssp. bulgaricus, lactobacillus acidophilus, and bifidobacteria. J Dairy Sci 1996; 79(9): 1529-36.
[http://dx.doi.org/10.3168/jds.S0022-0302(96)76513-X] [PMID: 8899517]
[95]
Sun W, Griffiths MW. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int J Food Microbiol 2000; 61(1): 17-25.
[http://dx.doi.org/10.1016/S0168-1605(00)00327-5] [PMID: 11028956]
[96]
Homayouni Rad A, Yari Khosroushahi A, Khalili M, Jafarzadeh S. Folate bio-fortification of yoghurt and fermented milk: A review. Dairy Sci Technol 2016; 96(4): 427-41.
[http://dx.doi.org/10.1007/s13594-016-0286-1]
[97]
Roy D, Ward P, Champagne G. Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int J Food Microbiol 1996; 29(1): 11-29.
[http://dx.doi.org/10.1016/0168-1605(95)00013-5] [PMID: 8722183]
[98]
Samona A, Robinson RK. Effect of yogurt cultures on the survival of bifidobacteria in fermented milks. Int J Dairy Technol 1994; 47(2): 58-60.
[http://dx.doi.org/10.1111/j.1471-0307.1994.tb01273.x]
[99]
Gomes A M, Malcata F, Klaver F, Grande H. Incorporation and survival of Bifidobacterium sp. strain Bo and Lactobacillus acidophilus strain Ki in a cheese product. 1995.
[100]
Hamann WT, Marth EH. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts. J Food Prot 1984; 47(10): 781-6.
[http://dx.doi.org/10.4315/0362-028X-47.10.781] [PMID: 30934509]
[101]
Dave RI, Shah NP. Characteristics of bacteriocin produced by Lactobacillus acidophilus LA-1. Int Dairy J 1997; 7(11): 707-15.
[http://dx.doi.org/10.1016/S0958-6946(97)00095-2]
[102]
Karimi R, Mortazavian AM, Da Cruz AG. Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Sci Technol 2011; 91(3): 283-308.
[http://dx.doi.org/10.1007/s13594-011-0005-x]
[103]
Martinovic A, Brede ME, Vegarud GE, Østlie HM, Narvhus J, Skeie SB. Survival of lactic acid and propionibacteria in low- and full-fat Dutch-type cheese during human digestion ex vivo. Lett Appl Microbiol 2016; 62(5): 404-10.
[http://dx.doi.org/10.1111/lam.12561] [PMID: 26950045]
[104]
Oh NS, Joung JY, Lee JY, Kim SH, Kim Y. Characterization of the microbial diversity and chemical composition of Gouda cheese made by potential probiotic strains as an adjunct starter culture. J Agric Food Chem 2016; 64(39): 7357-66.
[http://dx.doi.org/10.1021/acs.jafc.6b02689] [PMID: 27606488]
[105]
Araújo KBS, Rangel AHN, Fonseca FCE, et al. Influence of the year and calving season on production, composition and mozzarella cheese yield of water buffalo in the State of Rio Grande Do Norte, Brazil. Ital J Anim Sci 2012; 11(1): e16.
[http://dx.doi.org/10.4081/ijas.2012.e16]
[106]
Giraffa G. Selection and design of lactic acid bacteria probiotic cultures. Eng Life Sci 2012; 12(4): 391-8.
[http://dx.doi.org/10.1002/elsc.201100118]
[107]
Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN. The proteotytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 1996; 70(2-4): 187-221.
[http://dx.doi.org/10.1007/BF00395933] [PMID: 8879407]
[108]
Sabikhi L, Kumar MHS, Mathur BN. Bifidobacterium bifidum in probiotic Edam cheese: Influence on cheese ripening. J Food Sci Technol 2014; 51(12): 3902-9.
[http://dx.doi.org/10.1007/s13197-013-0945-7] [PMID: 25477659]
[109]
Dinakar P, Mistry VV. Growth and viability of Bifidobacterium bifidum in cheddar cheese. J Dairy Sci 1994; 77(10): 2854-64.
[http://dx.doi.org/10.3168/jds.S0022-0302(94)77225-8] [PMID: 7836576]
[110]
Ong L, Henriksson A, Shah NP. Chemical analysis and sensory evaluation of Cheddar cheese produced with Lactobacillus acidophilus, Lb. casei, Lb. paracasei or Bifidobacterium sp. Int Dairy J 2007; 17(8): 937-45.
[http://dx.doi.org/10.1016/j.idairyj.2007.01.002]
[111]
Prado MR, Blandón LM, Vandenberghe LPS, et al. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 2015; 6: 1177.
[http://dx.doi.org/10.3389/fmicb.2015.01177] [PMID: 26579086]
[112]
Serafini F, Turroni F, Ruas-Madiedo P, et al. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int J Food Microbiol 2014; 178: 50-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.02.024] [PMID: 24667318]
[113]
Akın MB, Akın MS, Kırmacı Z. Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food Chem 2007; 104(1): 93-9.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.030]
[114]
Davidson RH, Duncan SE, Hackney CR, Eigel WN, Boling JW. Probiotic culture survival and implications in fermented frozen yogurt characteristics. J Dairy Sci 2000; 83(4): 666-73.
[http://dx.doi.org/10.3168/jds.S0022-0302(00)74927-7] [PMID: 10791781]
[115]
Corrêa SBM, Castro IA, Saad SMI. Probiotic potential and sensory properties of coconut flan supplemented with Lactobacillus paracasei and Bifidobacterium lactis. Int J Food Sci Technol 2008; 43(9): 1560-8.
[http://dx.doi.org/10.1111/j.1365-2621.2007.01585.x]
[116]
Buriti FCA. Haíssa, Cardarelli R, Saad SMI. Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. J Food Prot 2007; 70(1): 228-35.
[http://dx.doi.org/10.4315/0362-028X-70.1.228] [PMID: 17265887]
[117]
Karaçalı R, Özdemİr Nİ Çon AH. Aromatic and functional aspects of kefir produced using soya milk and Bifidobacterium species. Int J Dairy Technol 2018; 71(4): 921-33.
[http://dx.doi.org/10.1111/1471-0307.12537]
[118]
Kataria A, Achi SC, Halami PM. Effect of encapsulation on viability of bifidobacterium longum CFR815J and physiochemical properties of ice cream. Indian J Microbiol 2018; 58(2): 248-51.
[http://dx.doi.org/10.1007/s12088-018-0720-6] [PMID: 29651187]
[119]
Pinto SS, Fritzen-Freire CB, Muñoz IB, Barreto PLM, Prudêncio ES, Amboni RDMC. Effects of the addition of microencapsulated Bifidobacterium BB-12 on the properties of frozen yogurt. J Food Eng 2012; 111(4): 563-9.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.03.016]
[120]
Kalliomäki M, Carmen Collado M, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008; 87(3): 534-8.
[http://dx.doi.org/10.1093/ajcn/87.3.534] [PMID: 18326589]
[121]
Gao X, Jia R, Xie L, Kuang L, Feng L, Wan C. Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: a case–control study. BMC Pediatr 2015; 15(1): 64.
[http://dx.doi.org/10.1186/s12887-015-0384-x] [PMID: 26024884]
[122]
Santacruz A, Collado MC, García-Valdés L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010; 104(1): 83-92.
[http://dx.doi.org/10.1017/S0007114510000176] [PMID: 20205964]
[123]
Ménard O, Butel MJ, Gaboriau-Routhiau V, Waligora-Dupriet AJ. Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol 2008; 74(3): 660-6.
[http://dx.doi.org/10.1128/AEM.01261-07] [PMID: 18083875]
[124]
Homayouni Rad A, Torab R, Ghalibaf M, Norouzi S, Mehrabany EV. Might patients with immune-related diseases benefit from probiotics? Nutrition 2013; 29(3): 583-6.
[http://dx.doi.org/10.1016/j.nut.2012.10.008] [PMID: 23398922]
[125]
Di Gioia D, Aloisio I, Mazzola G, Biavati B. Bifidobacteria: Their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 2014; 98(2): 563-77.
[http://dx.doi.org/10.1007/s00253-013-5405-9] [PMID: 24287935]
[126]
Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Ageing of the human metaorganism: The microbial counterpart. Age (Omaha) 2012; 34(1): 247-67.
[http://dx.doi.org/10.1007/s11357-011-9217-5] [PMID: 21347607]
[127]
Malaguarnera G, Leggio F, Vacante M, et al. Probiotics in the gastrointestinal diseases of the elderly. J Nutr Health Aging 2012; 16(4): 402-10.
[http://dx.doi.org/10.1007/s12603-011-0357-1] [PMID: 22499466]
[128]
Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014; 20(41): 15163-76.
[http://dx.doi.org/10.3748/wjg.v20.i41.15163] [PMID: 25386066]
[129]
Ornella Guardamagna M, Francesca Abello M, Paola Cagliero D, Maddalena Rossi D. Bifidobacteria supplementation: effects on plasma lipid profile in dyslipidemic children 2014.
[130]
Savignac HM, Kiely B, Dinan TG, Cryan JF. B ifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 2014; 26(11): 1615-27.
[http://dx.doi.org/10.1111/nmo.12427] [PMID: 25251188]
[131]
Park AJ, Bercik P, Huang X, et al. The anxiolytic effect of Bifidobacterium longum Ncc3001 requires vagal integrity for gut-brain communication. Gastroenterology 2011; 140(5): S-18-9.
[http://dx.doi.org/10.1016/S0016-5085(11)60072-3]
[132]
Nakamura T, Sasaki T, Fujimori M, et al. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem 2002; 66(11): 2362-6.
[http://dx.doi.org/10.1271/bbb.66.2362] [PMID: 12506973]
[133]
Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and cancer: the emerging beneficial role of bifidobacteria in cancer immunotherapy. Front Microbiol 2020; 11: 575072.
[http://dx.doi.org/10.3389/fmicb.2020.575072] [PMID: 33013813]
[134]
Verma R, Lee C, Jeun EJ, et al. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3 + regulatory T cells. Sci Immunol 2018; 3(28): eaat6975.
[http://dx.doi.org/10.1126/sciimmunol.aat6975] [PMID: 30341145]
[135]
Cronin M, Morrissey D, Rajendran S, et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 2010; 18(7): 1397-407.
[http://dx.doi.org/10.1038/mt.2010.59] [PMID: 20389288]
[136]
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015; 350(6264): 1084-9.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[137]
Rong Y, Dong Z, Hong Z, et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Exp Cell Res 2017; 358(2): 352-9.
[http://dx.doi.org/10.1016/j.yexcr.2017.07.009] [PMID: 28694023]
[138]
Allen AP, Hutch W, Borre YE, et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 2016; 6(11): e939-.
[http://dx.doi.org/10.1038/tp.2016.191] [PMID: 27801892]
[139]
Wang H, Braun C, Murphy EF, Enck P. Bifidobacterium longum 1714™ Strain Modulates Brain Activity of Healthy Volunteers During Social Stress. Am J Gastroenterol 2019; 114(7): 1152-62.
[http://dx.doi.org/10.14309/ajg.0000000000000203] [PMID: 30998517]
[140]
Tamime A, Skriver A, Nilsson L. Starter cultures 2006; 11-52.
[http://dx.doi.org/10.1002/9780470995501.ch2]
[141]
Patel A, Shah N, Prajapati J. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach. Croat J Food Sci Technol 2013; 5(2): 85-91.
[142]
Crittenden RG, Martinez NR, Playne MJ. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 2003; 80(3): 217-22.
[http://dx.doi.org/10.1016/S0168-1605(02)00170-8] [PMID: 12423923]
[143]
Gonzalez-Gonzalez C, Gibson T, Jauregi P. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int J Food Microbiol 2013; 167(2): 131-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.09.002] [PMID: 24135669]
[144]
Van Nieuwenhove CP, Oliszewski R, González SN, Pérez Chaia AB. Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Lett Appl Microbiol 2007; 44(5): 467-74.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02135.x] [PMID: 17451511]
[145]
Prasanna PHP, Grandison AS, Charalampopoulos D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res Int 2013; 51(1): 15-22.
[http://dx.doi.org/10.1016/j.foodres.2012.11.016]
[146]
Ewaschuk JB, Diaz H, Meddings L, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295(5): G1025-34.
[http://dx.doi.org/10.1152/ajpgi.90227.2008] [PMID: 18787064]
[147]
Chandan RC. Enhancing market value of milk by adding cultures. J Dairy Sci 1999; 82(10): 2245-56.
[http://dx.doi.org/10.3168/jds.S0022-0302(99)75472-X] [PMID: 10531614]