Low Viscosity Ionic Liquids as Novel Dopants in Poly (Methyl Methacrylate) Polymer Electrolyte: Detailed Photoelectrochemical Studies

Page: [3 - 25] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: A propitious electrolyte for supercapacitors, solid polymer electrolytes (SPEs) has been used because of their flexibility and highly conducting good electrodeelectrolyte interface. Poly (methyl methacrylate) (PMMA)-based SPEs have acknowledged extensive interest due to their integrity in synthesis, good mechanical stability, low binding energy, low mass density with ionic salts, and magnificent charge carrier mobility. Interesting ionic liquids show their novelty towards conductivity enhancement and suppressing crystallinity i.e., acts as a plasticizer as well as an ionic source. Due to these advantageous properties, ionic liquids (ILs) seem to be a good player in developing highly efficient electrochemical devices.

Method: To overcome the low ionic conductivity (σ) and poor mechanical stability. ILs assume to be novel candidates. This study is toward defining the role of ILs as plasticizers, not as a solvent.

Result: Due to the widespread applicability of these ILs, we focus our review on taking a common example of polyether i.e., PMMA using the solution cast method. Electrical and electrochemical are also discussed in detail.

Conclusion: On the the basis of electrical and photoelectrochemical performance reported in this article, we can assure the scientific community that ILs can act as a potential candidate like a plasticizer for highly efficient electrochemical devices.

Graphical Abstract

[1]
Pandey GP, Kumar Y, Hashmi SA. Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem Sec A 2010; 49A(5-6): 743-51.
[2]
Conway BE. Electrochemical supercapacitors: Scientific fundamentals and technological applications. Heidelberg: Springer Science & Business Media 2013.
[3]
Hashmi SA. Supercapacitor: an emerging power source. Natl Acad Sci Lett 2004; 27: 27-46.
[4]
Kumar N, Dixit A, Kumar N, et al. Nanotechnology-Empowered Smart Soldier.Nanotechnology for Defence Applications. Heidelberg: Springer 2019; pp. 255-300.
[5]
Pramanik PKD, Sinhababu N, Mukherjee B, et al. Power consumption analysis, measurement, management, and issues: A state-of-the-art review of smartphone battery and energy usage. IEEE Access 2019; 7: 182113-72.
[http://dx.doi.org/10.1109/ACCESS.2019.2958684]
[6]
Wang Y, Xia Y. Recent progress in supercapacitors: From materials design to system construction. Adv Mater 2013; 25(37): 5336-42.
[http://dx.doi.org/10.1002/adma.201301932] [PMID: 24089352]
[7]
Wayu M. Manganese oxide carbon-based nanocomposite in energy storage applications. Solids 2021; 2(2): 232-48.
[http://dx.doi.org/10.3390/solids2020015]
[8]
Latif FA, Zailani NAM, Al Shukaili ZSM, et al. Review of poly (methyl methacrylate) based polymer electrolytes in solid-state supercapacitors. Int J Electrochem Sci 2022; 17(1): 22013.
[http://dx.doi.org/10.20964/2022.01.44]
[9]
Sharma T, Gultekin B, Dhapola PS, et al. Ionic liquid doped Poly (methyl methacrylate) for energy applications. J Mol Liq 2022; 352: 118494.
[http://dx.doi.org/10.1016/j.molliq.2022.118494]
[10]
Ngai KS, Ramesh S, Ramesh K, Juan JC. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016; 22(8): 1259-79.
[http://dx.doi.org/10.1007/s11581-016-1756-4]
[11]
Arya A, Sharma AL. Polymer electrolytes for lithium ion batteries: a critical study. Ionics 2017; 23(3): 497-540.
[http://dx.doi.org/10.1007/s11581-016-1908-6]
[12]
Zakariya’u I, Sifawa A. Potassium hydroxide doped with (poly(methyl methacrylate) (PMMA) polymer as electrolyte for electrolytic double layer supercapacitor (EDLC) application. Caliph J Sci Tech 2022; 4(1): 87-92.
[http://dx.doi.org/10.4314/cajost.v4i1.11]
[13]
Zakariya’u I, Gultekin B, Singh V, Singh PK. Electrochemical double-layer supercapacitor using poly(methyl methacrylate) solid polymer electrolyte. High Perform Polym 2020; 32(2): 201-7.
[http://dx.doi.org/10.1177/0954008319895556]
[14]
Vondrák J, Reiter J, Velická J, Klápště B, Sedlaříková M, Dvořák J. Ion-conductive polymethylmethacrylate gel electrolytes for lithium batteries. J Power Sources 2005; 146(1-2): 436-40.
[http://dx.doi.org/10.1016/j.jpowsour.2005.03.048]
[15]
Akashi H, Shibuya M, Orui K, Shibamoto G, Sekai K. Practical performances of Li-ion polymer batteries with LiNi0.8Co0.2O2, MCMB, and PAN-based gel electrolyte. J Power Sources 2002; 112(2): 577-82.
[http://dx.doi.org/10.1016/S0378-7753(02)00465-2]
[16]
Uma T, Mahalingam T, Stimming U. Conductivity studies on poly(methyl methacrylate)–Li2SO4 polymer electrolyte systems. Mater Chem Phys 2005; 90(2-3): 245-9.
[http://dx.doi.org/10.1016/j.matchemphys.2003.11.011]
[17]
Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I. Impedance studies on plasticized PMMA-LiX [X: CF3SO3−, N(CF3SO2)2−] polymer electrolytes. Mater Lett 2007; 61(10): 2026-9.
[http://dx.doi.org/10.1016/j.matlet.2006.08.008]
[18]
Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym Rev 2015; 55(4): 678-705.
[http://dx.doi.org/10.1080/15583724.2015.1031377]
[19]
Osman Z, Mohd Ghazali MI, Othman L, Md Isa KB. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes. Results Phys 2012; 2: 1-4.
[http://dx.doi.org/10.1016/j.rinp.2011.12.001]
[20]
Ramesh S, Wong KC. Conductivity, dielectric behaviour and thermal stability studies of lithium ion dissociation in poly(methyl methacrylate)-based gel polymer electrolytes. Ionics 2009; 15(2): 249-54.
[http://dx.doi.org/10.1007/s11581-008-0268-2]
[21]
Dzulkurnain NA, Rani MSA, Ahmad A, Mohamed NS. Effect of lithium salt on physicochemical properties of P(MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics 2018; 24(1): 269-76.
[http://dx.doi.org/10.1007/s11581-017-2190-y]
[22]
Appetecchi GB, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 1995; 40(8): 991-7.
[http://dx.doi.org/10.1016/0013-4686(94)00345-2]
[23]
Kamarudin KH, Rani MSA, Isa MIN. Ionic conductivity and conduction mechanism of biodegradable dual polysaccharides blend electrolytes. American-Eurasian J Sustain Agri 2015; 9(2): 8-14.
[24]
Kausar A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a review. Poly-Plas Techn Mate 2019; 58(8): 821-42.
[http://dx.doi.org/10.1080/25740881.2018.1563112]
[25]
Mark JE. Physical properties of polymers handbook. Heidelberg: Springer 2007.
[http://dx.doi.org/10.1007/978-0-387-69002-5]
[26]
Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym Rev (Phila Pa) 2015; 55(4): 678-705.
[http://dx.doi.org/10.1080/15583724.2015.1031377]
[27]
Zeng WR, Li SF, Chow WK. Preliminary studies on burning behavior of polymethylmethacrylate (PMMA). J Fire Sci 2002; 20(4): 297-317.
[http://dx.doi.org/10.1177/073490402762574749]
[28]
Zhi CY, Bando Y, Wang WL, et al. Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites. J Nanomater 2008; 2008
[29]
Chemical Compatibility Guide: Chemical Resistance Chart Detail. 2015. Avaialble From: www.sevierlab.vet.cornell.edu/resources/Chemical-Resistance-Chart-Detail.pdf
[30]
Resistance to Chemical. 2015. Avaialble From: www.solutions-in-plastics.info
[31]
González-Benito J, Koenig JL. Nature of PMMA dissolution process by mixtures of acetonitrile/alcohol (poor solvent/nonsolvent) monitored by FTIR-imaging. Polymer (Guildf) 2006; 47(9): 3065-72.
[http://dx.doi.org/10.1016/j.polymer.2006.02.086]
[32]
Ban M, Yuhara T. Chemical resistance of DLC thin film deposited PMMA substrates. Surf Coat Tech 2009; 203(17-18): 2587-90.
[http://dx.doi.org/10.1016/j.surfcoat.2009.02.051]
[33]
Li J, Li YF, Meng X, et al. Applied Mechanics and Materials. 2010. Available From: https://www.scimagojr.com/journalsearch.php?q=4700151914&tip=sid
[34]
Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 2015; 44(21): 7484-539.
[http://dx.doi.org/10.1039/C5CS00303B] [PMID: 26050756]
[35]
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012; 41(2): 797-828.
[http://dx.doi.org/10.1039/C1CS15060J] [PMID: 21779609]
[36]
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014; 7(5): 1597-614.
[http://dx.doi.org/10.1039/c3ee44164d]
[37]
Iqbal MZ, Aziz U. Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices. J Energy Storage 2022; 46: 103823.
[http://dx.doi.org/10.1016/j.est.2021.103823]
[38]
Wheeler C, West KN, Eckert CA, Liotta CL. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem Commun (Camb) 2001; 10(10): 887-8.
[http://dx.doi.org/10.1039/b101202a]
[39]
Le Boulaire V, Grée R. Wittig reactions in the ionic solvent [bmim][BF4]. Chem Commun (Camb) 2000; 21(22): 2195-6.
[http://dx.doi.org/10.1039/b006666o]
[40]
Ross J, Chen W, Xu L, Xiao J. Ligand effects in palladium-catalyzed allylic alkylation in ionic liquids. Organometallics 2001; 20(1): 138-42.
[http://dx.doi.org/10.1021/om000712y]
[41]
Howarth J, James P, Dai J. Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett 2001; 42(42): 7517-9.
[http://dx.doi.org/10.1016/S0040-4039(01)01601-X]
[42]
Seki S, Kobayashi Y, Miyashiro H, et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 2006; 110(21): 10228-30.
[http://dx.doi.org/10.1021/jp0620872] [PMID: 16722721]
[43]
Sato T, Masuda G, Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 2004; 49(21): 3603-11.
[http://dx.doi.org/10.1016/j.electacta.2004.03.030]
[44]
Wang P, Zakeeruddin SM, Humphry-Baker R, Grätzel M. A binary ionic liquid electrolyte to achieve≥ 7% power conversion efficiencies in dye-sensitized solar cells. Chem Mater 2004; 16(14): 2694-6.
[http://dx.doi.org/10.1021/cm049916l]
[45]
Lewandowski A, Świderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion 2004; 169(1-4): 21-4.
[http://dx.doi.org/10.1016/j.ssi.2003.02.004]
[46]
Ohno H. Design of ion conductive polymers based on ionic liquids. Macromol Symp 2007; 249-250(1): 551-6.
[47]
Watanabe M. design and materialization of ionic liquids based on an understanding of their fundamental properties. electrochemistry (Tokyo) 2016; 84(9): 642-53.
[http://dx.doi.org/10.5796/electrochemistry.84.642]
[48]
Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 1992; (13): 965-7.
[http://dx.doi.org/10.1039/c39920000965]
[49]
Noda A, Watanabe M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 2000; 45(8-9): 1265-70.
[http://dx.doi.org/10.1016/S0013-4686(99)00330-8]
[50]
Susan MABH, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 2005; 127(13): 4976-83.
[http://dx.doi.org/10.1021/ja045155b] [PMID: 15796564]
[51]
Shukla N, Thakur AK. Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO4. Ionics 2009; 15(3): 357-67.
[http://dx.doi.org/10.1007/s11581-008-0275-3]
[52]
Chew KW, Tan KW. The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int J Electrochem Sci 2011; 6(11): 5792-801.
[http://dx.doi.org/10.1016/S1452-3981(23)18445-8]
[53]
Liang B, Tang S, Jiang Q, et al. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 2015; 169: 334-41.
[http://dx.doi.org/10.1016/j.electacta.2015.04.039]
[54]
Latif F, Aziz M, Katun N, Ali AMM, Yahya MZ. The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. J Power Sources 2006; 159(2): 1401-4.
[http://dx.doi.org/10.1016/j.jpowsour.2005.12.007]
[55]
Siti Izzati Husna MA, Famiza AL, Sharil Fadli MZ. Effects of dodecanoic acid modified SIO2 on filler dispersion and ionic conductivity of PMMA/ENR 50/LIBF4 electrolytes. In: Materials Science Forum. Trans Tech Publications Ltd. 2016; 846: pp. 528-33.
[56]
Jeedi VR, Narsaiah EL, Yalla M, Swarnalatha R, Reddy SN, Sadananda Chary A. Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte. SN Applied Sciences 2020; 2(12): 2093.
[http://dx.doi.org/10.1007/s42452-020-03868-8]
[57]
Gohel K, Kanchan DK, Machhi HK, Soni SS, Maheshwaran C. Gel polymer electrolyte based on PVDF-HFP:PMMA incorporated with propylene carbonate (PC) and diethyl carbonate (DEC) plasticizers: electrical, morphology, structural and electrochemical properties. Mater Res Express 2020; 7(2): 025301.
[http://dx.doi.org/10.1088/2053-1591/ab6c06]
[58]
Li Y, Wong KW, Dou Q, Ng KM. A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries. J Mater Chem A Mater Energy Sustain 2016; 4(47): 18543-50.
[http://dx.doi.org/10.1039/C6TA09106G]
[59]
Kurapati S, Gunturi SS, Nadella KJ, Erothu H. Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polym Bull 2019; 76(10): 5463-81.
[http://dx.doi.org/10.1007/s00289-018-2659-5]
[60]
Vondrák J. Gel polymer electrolytes based on PMMA. Electrochim Acta. 2001. Available From: https://www.sciencedirect.com/science/article/pii/S0013468601004133
[61]
Pitawala HMJC, Dissanayake MAKL, Seneviratne VA. Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ion 2007; 178(13-14): 885- 8.https://www.sciencedirect.com/science/article/pii/S0167273807001464 [Internet].
[http://dx.doi.org/10.1016/j.ssi.2007.04.008]
[62]
Kumar D, Hashmi SA. Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ion 2010; 181(8-10): 416-23.
[http://dx.doi.org/10.1016/j.ssi.2010.01.025]
[63]
Hong YL. Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-graftedpoly(vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ion 2002; 150(3-14): 317-26.
[64]
Sharma J, Sekhon S. Nanodispersed polymer gel electrolytes: Conductivity modification with the addition of PMMA and fumed silica. Solid State Ion 2007; 178(5-6): 439-45. https://www.sciencedirect.com/science/article/pii/S0167273807000409[Internet].
[http://dx.doi.org/10.1016/j.ssi.2007.01.017]
[65]
Osman Z, Zainol NH, Samin SM, et al. Electrochemical impedance spectroscopy studies of magnesium-based polymethylmethacrylate gel polymer electroytes. Electrochim Acta 2014; 131: 148-53.
[http://dx.doi.org/10.1016/j.electacta.2013.11.189]
[66]
Sindhu KP, Abdul Majeed SSM, Shahitha Parveen J. PEO/PMMA solid nanocomposite polyelectrolyte with enhanced ionic conductivity and promising dielectric properties. J Electron Mater 2021; 50(12): 6654-66.
[http://dx.doi.org/10.1007/s11664-021-09205-y]
[67]
Rajendran S, Bama VS, Prabhu MR. Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes. Ionics 2010; 16(1): 27-32.
[http://dx.doi.org/10.1007/s11581-009-0329-1]
[68]
Saikia D, Kumar A. Ionic transport in P(VDF-HFP)–PMMA–LiCF3SO3–(PC+DEC)–SiO2 composite gel polymer electrolyte. Eur Polym J 2005; 41(3): 563-8.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.10.029]
[69]
Singh PK, Bhattacharya B. Effect of PMMA dispersion on electrolytic properties of PEO: NH4ClO4. Optoelectron Adv Mater Rapid Commun 2013; 7: 157-60.
[70]
Liew CW, Ramesh S, Durairaj R. Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 2012; 27(23): 2996-3004.
[http://dx.doi.org/10.1557/jmr.2012.343]
[71]
Singh B, Sekhon SS. Ion conducting behaviour of polymer electrolytes containing ionic liquids. Chem Phys Lett 2005; 414(1-3): 34-9.
[http://dx.doi.org/10.1016/j.cplett.2005.08.046]
[72]
Vygodskii YS, Mel’nik OA, Lozinskaya EI, et al. The influence of ionic liquid’s nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polym Adv Technol 2007; 18(1): 50-63.
[http://dx.doi.org/10.1002/pat.795]
[73]
Fedosse Zornio C, Livi S, Duchet-Rumeau J, Gerard JF. Ionic liquid-nanostructured poly(methyl methacrylate). Nanomaterials (Basel) 2019; 9(10): 1376.
[http://dx.doi.org/10.3390/nano9101376] [PMID: 31561407]
[74]
Ramesh S, Liew CW, Ramesh K. Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Solids 2011; 357(10): 2132-8.
[http://dx.doi.org/10.1016/j.jnoncrysol.2011.03.004]
[75]
Development of ion conducting ionic liquid-based gel polymer electrolyte membrane PMMA/BMPyr. TFSI-With improved electrical, optical, thermal and structural properties. Solid State Ion 2017; 310: 166-75.
[http://dx.doi.org/10.1016/j.ssi.2017.08.012]
[76]
Tiyapiboonchaiya C, MacFarlane DR, Sun J, Forsyth M. Polymer‐in‐ionic‐liquid electrolytes. Macromol Chem Phys 2002; 203(13): 1906-11.
[http://dx.doi.org/10.1002/1521-3935(200209)203:13<1906:AID-MACP1906>3.0.CO;2-I]
[77]
Li Y, Wai Wong K, Dou Q, Zhang W, Wang L, Ming Ng K. A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries. New J Chem 2017; 41(21): 13096-103.
[http://dx.doi.org/10.1039/C7NJ02827J]
[78]
Zailani NAM, Latif FA, Ali AMM, Zainuddin LW, Kamaruddin R, Yahya MZA. Effect of ionic liquid incarceration during free radical polymerization of PMMA on its structural and electrical properties. Ionics 2017; 23(2): 295-301.
[http://dx.doi.org/10.1007/s11581-016-1827-6]
[79]
Kaur DP, Yamada K, Park JS, Sekhon SS. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid. J Phys Chem B 2009; 113(16): 5381-90.
[http://dx.doi.org/10.1021/jp810286d] [PMID: 19323513]
[80]
Grishina EP, Ramenskaya LM, Mudrov AN. Conductivity and dielectric properties of heterogeneous films based on homo- and copolymers of methyl (methacrylate) and vinyl pyrrolidone doped with ionic liquid. Eur Polym J 2014; 59: 247-53.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.07.041]
[81]
Ramesh S, Liew CW. Tailor-made fumed silica-based nano-composite polymer electrolytes consisting of BmImTFSI ionic liquid. Iran Polym J 2012; 21(4): 273-81.
[http://dx.doi.org/10.1007/s13726-012-0022-5]
[82]
Tamilarasan P, Ramaprabhu S. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte. Mater Chem Phys 2014; 148(1-2): 48-56.
[http://dx.doi.org/10.1016/j.matchemphys.2014.07.010]
[83]
Kufian MZ, Ramesh S, Arof AK. PMMA-LiTFSI based gel polymer electrolyte for lithium-oxygen cell application. Opt Mater 2021; 120: 111418.
[http://dx.doi.org/10.1016/j.optmat.2021.111418]
[84]
Yusoff NFM, Idris N. Ionic liquid base PVDF/PMMA gel polymer electrolyte for lithium rechargeable battery. J Mech Eng Sci 2017; 11(4): 3152-65.
[http://dx.doi.org/10.15282/jmes.11.4.2017.18.0284]
[85]
Wang A, Xu H, Zhou Q, et al. Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. J Solid State Electrochem 2017; 21(8): 2355-64.
[http://dx.doi.org/10.1007/s10008-017-3582-7]
[86]
Li L, Wang F, Li J, Yang X, You J. Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrogen Energy 2017; 42(17): 12087-93.
[http://dx.doi.org/10.1016/j.ijhydene.2017.02.085]
[87]
Verma H, Mishra K, Rai DK. Microporous PVDF–PMMA blend-based gel polymer electrolyte for electrochemical applications: Effect of PMMA on electrochemical and structural properties. J Electron Mater 2021; 51: 635-51.
[http://dx.doi.org/10.1007/s11664-021-09314-8]
[88]
Mahipal YK, Agrawal RC, Hanisah Y, et al. Materials and electrical property studies on polymer electrolyte membranes incorporating with room temperature ionic liquid. IJTAE 2016; 6: 18-25.
[89]
Sundararajan V, Selvaraj G, Ng HM, et al. Exploring the effect of novel N-butyl-6-methylquinolinium bis(trifluoromethylsulfonyl)imide ionic liquid addition to poly(methyl methacrylate-co-methacrylic) acid electrolyte system as employed in gel-state dye sensitized solar cells. Electrochim Acta 2017; 240: 361-70.
[http://dx.doi.org/10.1016/j.electacta.2017.04.097]
[90]
Ramesh S, Wen LC. Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 2010; 16(3): 255-62.
[http://dx.doi.org/10.1007/s11581-009-0388-3]
[91]
Deepa M, Agnihotry SA, Gupta D, Chandra R. Ion-pairing effects and ion–solvent–polymer interactions in LiN(CF3SO2)2–PC–PMMA electrolytes: a FTIR study. Electrochim Acta 2004; 49(3): 373-83.
[http://dx.doi.org/10.1016/j.electacta.2003.08.020]
[92]
Ab Rani MA. Synthesis, Characterization and Physical-Chemical Properties of Room Temperature Ionic Liquids with a variety of Cations, Paired With Bis(trifluoromethylsulfonyl)imide Anion 2012.
[93]
Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf) 1973; 14(11): 589.
[http://dx.doi.org/10.1016/0032-3861(73)90146-8]
[94]
Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 1975; 7(5): 319-27.
[http://dx.doi.org/10.1002/pi.4980070505]
[95]
Armand MB, Chabagno JM, Duclot MJ. Fast Ionic Transport in Solids: Crystalline solids with liquid-like ionic conductivities are revolutionizing solid-state electrochemistry. Science 1979; 204(4400): 1371-9.
[http://dx.doi.org/10.1126/science.204.4400.1371]
[96]
Torres FG, Arroyo J, Alvarez R, Rodriguez S, Troncoso O, López D. Carboxymethyl κ/ι-hybrid carrageenan doped with NH4I as a template for solid bio-electrolytes development. Mater Chem Phys 2019; 223: 659-65.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.051]
[97]
Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion 2014; 262: 738-42.
[http://dx.doi.org/10.1016/j.ssi.2013.08.014]
[98]
Isa MIN, Sohaimy MIH, Ahmad NH. Carboxymethyl cellulose plasticized polymer application as bio-material in solid-state hydrogen ionic cell. Int J Hydrogen Energy 2021; 46(11): 8030-9.
[http://dx.doi.org/10.1016/j.ijhydene.2020.11.274]
[99]
Shriver DF, Papke BL, Ratner MA, Dupon R, Wong T, Brodwin M. Structure and ion transport in polymer-salt complexes. Solid State Ion 1981; 5: 83-8.
[http://dx.doi.org/10.1016/0167-2738(81)90199-5]
[100]
Seol ML, Nam I, Sadatian E, Dutta N, Han JW, Meyyappan M. Printable gel polymer electrolytes for solid-state printed supercapacitors. Materials (Basel) 2021; 14(2): 316.
[http://dx.doi.org/10.3390/ma14020316] [PMID: 33435423]
[101]
Younesi R, Veith GM, Johansson P, Edström K, Vegge T. Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S. Energy Environ Sci 2015; 8(7): 1905-22.
[http://dx.doi.org/10.1039/C5EE01215E]
[102]
Watanabe M, Yamada SI, Sanui K, Ogata N. High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. J Chem Soc Chem Commun 1993; (11): 929-31.
[http://dx.doi.org/10.1039/c39930000929]
[103]
Pham P. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. London: IntechOpen 2022.
[104]
Lvovich VF. Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Hoboken: John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118164075]
[105]
Abidin SZZ, Yahya MZA, Hassan OH, Ali AMM. Conduction mechanism of lithium bis(oxalato)borate–cellulose acetate polymer gel electrolytes. Ionics 2014; 20(12): 1671-80.
[http://dx.doi.org/10.1007/s11581-014-1127-y]
[106]
Rani MSA, Mohamed NS, Isa MIN. Investigation of the ionic conduction mechanism in carboxymethyl cellulose/chitosan biopolymer blend electrolyte impregnated with ammonium nitrate. IJPAC Int J Polym Anal Charact 2015; 20(6): 491-503.
[http://dx.doi.org/10.1080/1023666X.2015.1050803]
[107]
Deraman SK, Mohamed NS, Subban RHY. Ionic liquid incorporated PVC based polymer electrolytes: Electrical and dielectric properties. Sains Malays 2014; 43: 877-83.
[108]
Musiani M, Orazem ME, Pébère N, Tribollet B, Vivier V. Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films. J Electrochem Soc 2011; 158(12): C424.
[http://dx.doi.org/10.1149/2.039112jes]
[109]
Lim Y, Jung HA, Hwang H. Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 2018; 11(10): 2559.
[http://dx.doi.org/10.3390/en11102559]
[110]
Rani MSA, Hassan NH, Ahmad A, Kaddami H, Mohamed NS. Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices. Ionics 2016; 22(10): 1855-64.
[http://dx.doi.org/10.1007/s11581-016-1728-8]
[111]
Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR. Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 2012; 74: 39-45.
[http://dx.doi.org/10.1016/j.electacta.2012.03.171]
[112]
Xuan D, Liu J, Wang D, et al. Facile preparation of low-cost and cross-linked carbon nanofibers derived from PAN/PMMA/lignin as supercapacitor electrodes. Energy Fuels 2021; 35(1): 796-805.
[http://dx.doi.org/10.1021/acs.energyfuels.0c02511]
[113]
Shabeeba P, Thayyil MS, Pillai MP, et al. PMMA-RTIL electrolyte for high-energy supercapacitors: A comparison of different anions. J Mol Liq 2019; 294: 111671.
[http://dx.doi.org/10.1016/j.molliq.2019.111671]
[114]
Tien CP, Liang WJ, Kuo PL, Teng H-S. Electric double layer capacitors with gelled polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide) diamines. Electrochim Acta 2008; 53(13): 4505-11.
[http://dx.doi.org/10.1016/j.electacta.2008.01.021]
[115]
Liew CW, Ramesh S, Arof AK. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrogen Energy 2014; 39(6): 2953-63.
[http://dx.doi.org/10.1016/j.ijhydene.2013.06.061]
[116]
Estaline Amitha F, Leela Mohana Reddy A, Ramaprabhu S. A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes. J Nanopart Res 2009; 11(3): 725-9.
[http://dx.doi.org/10.1007/s11051-008-9497-6]
[117]
Liew CW, Ramesh S, Arof AK. Investigation of ionic liquid-doped ion conducting polymer electrolytes for carbon-based electric double layer capacitors (EDLCs). Mater Des 2016; 92: 829-35.
[http://dx.doi.org/10.1016/j.matdes.2015.12.115]
[118]
Khawaja M, Khanfar MF, Oghlenian T, et al. Fabrication and Electrochemical Characterization of Carbon Based Supercapacitor Electrodes. 2019 10th International Renewable Energy Congress (IREC). Sousse,Tunisia. 2019.
[http://dx.doi.org/10.1109/IREC.2019.8754605]
[119]
Aziz SB, Brza MA, Mishra K, et al. Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: dextran polymer blend electrolytes. J Mater Res Technol 2020; 9(2): 1137-50.
[http://dx.doi.org/10.1016/j.jmrt.2019.11.042]
[120]
Chauhan JK, Kumar M, Yadav M, Tiwari T, Srivastava N. Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application. Ionics 2017; 23(10): 2943-9.
[http://dx.doi.org/10.1007/s11581-017-2136-4]
[121]
Aziz SB, Hamsan MH, Brza MA, et al. Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys 2019; 15: 102584.
[http://dx.doi.org/10.1016/j.rinp.2019.102584]