Functionalized Morpholine-thiazole Scaffold: Synthetic Strategies and Applications

Page: [729 - 763] Pages: 35

  • * (Excluding Mailing and Handling)

Abstract

The thiazole derivatives as important members of heterocyclic compounds have attracted much synthetic interest due to their different biological properties. In recent years, studies on the synthesis of morpholine compounds have increased because of the properties of this core. In particular, the hybrid structures in which the thiazole ring is linked to morpholine nuclei in one molecular frame have gained popularity. The presented review is an attempt to summarize a huge volume of data on morpholinothiazoles being a widely studied class of these molecules used in modern organic and medicinal chemistry. The manuscript covers the approaches to the synthesis of the morpholinothiazoles derivatives. The synthetic strategies of the target compounds depend on one-pot or multistage reactions or the transformation of other related heterocycles. Additionally, we covered the biological activities and other applications of certain morpholinothiazoles. The information on these compounds made special consideration of medicinal chemists to yield a combinatorial library and carry out thorough efforts in the search of morpholinothiazoles.

Graphical Abstract

[1]
Lombardino, J.G.; Lowe, J.A., III The role of the medicinal chemist in drug discovery — then and now. Nat. Rev. Drug Discov., 2004, 3(10), 853-862.
[http://dx.doi.org/10.1038/nrd1523] [PMID: 15459676]
[2]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[3]
Bairi, S.; Alagarsamy, V.; Rachamalla, S.S. Design, synthesis and biological evaluation of aryl 1,3-oxazole-oxazolo[4,5-b]pyridin-2-yl)benzo[d]thiazol-6-yl)thiazole-2-carboxamides as anticancer agents. Chemical Data Collections, 2022, 40, 100883.
[http://dx.doi.org/10.1016/j.cdc.2022.100883]
[4]
Hassan, E.A.; Shehadi, I.A.; Elmaghraby, A.M.; Mostafa, H.M.; Zayed, S.E.; Abdelmonsef, A.H. Synthesis, molecular docking analysis and in vitro biological evaluation of some new heterocyclic scaffolds-based indole moiety as possible antimicrobial agents. Front. Mol. Biosci., 2022, 8, 775013.
[http://dx.doi.org/10.3389/fmolb.2021.775013] [PMID: 35111810]
[5]
Sujatha, K.; Vedula, R.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth. Commun., 2018, 48(3), 302-308.
[http://dx.doi.org/10.1080/00397911.2017.1399422]
[6]
Abu-Melha, S.; Edrees, M.; Salem, H.; Kheder, N.; Gomha, S.; Abdelaziz, M. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[7]
Nayak, S.; Gaonkar, S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[8]
Kumar, S.; Aggarwal, R. Thiazole: A privileged motif in marine natural products. Mini Rev. Org. Chem., 2018, 16(1), 26-34.
[http://dx.doi.org/10.2174/1570193X15666180412152743]
[9]
Pal’chikov, V.A. Morpholines. Synthesis and biological activity. Russ. J. Org. Chem., 2013, 49(6), 787-814.
[http://dx.doi.org/10.1134/S1070428013060018]
[10]
Pourshojaei, Y.; Abiri, A.; Eskandari, K.; Haghighijoo, Z.; Edraki, N.; Asadipour, A. Phenoxyethyl piperidine/morpholine derivatives as pas and cas inhibitors of cholinesterases: Insights for future drug design. Sci. Rep., 2019, 9(1), 19855.
[http://dx.doi.org/10.1038/s41598-019-56463-2] [PMID: 31882733]
[11]
Zask, A.; Kaplan, J.; Verheijen, J.C.; Richard, D.J.; Curran, K.; Brooijmans, N.; Bennett, E.M.; Toral-Barza, L.; Hollander, I.; Ayral-Kaloustian, S.; Yu, K. Morpholine derivatives greatly enhance the selectivity of mammalian target of rapamycin (mTOR) inhibitors. J. Med. Chem., 2009, 52(24), 7942-7945.
[http://dx.doi.org/10.1021/jm901415x] [PMID: 19916508]
[12]
Chudov, K.A.; Levchenko, K.S.; Yarovenko, V.N.; Krayushkin, M.M.; Barachevskii, V.A.; Baryshnikova, T.K.; Grebennikov, E.P. Synthesis of photoactive 5-aroyl-4-furyl-2-(morpholin-4-yl)thiazoles. Russ. Chem. Bull., 2015, 64(5), 1074-1077.
[http://dx.doi.org/10.1007/s11172-015-0980-9]
[13]
Sever, B.; Türkeş, C.; Altıntop, M.D.; Demir, Y.; Beydemir, Ş. Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int. J. Biol. Macromol., 2020, 163, 1970-1988.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.043] [PMID: 32931834]
[14]
Patila, S.G.; Bagul, R.R.; Swami, M.S.; Hallale, S.N.; Kamble, V.M.; Kotharkar, N.S.; Darade, K. Synthesis of 2-imino-4-thiazolidinone derivatives and its antibacterial activity. J. Chem. Pharm. Res., 2011, 3, 69-76.
[15]
Hanna, M.M.; George, R.F. Facile synthesis and quantitative structure-activity relationship study of antitumor active 2-(4-oxo-thiazolidin-2-ylidene)-3-oxo-propionitriles. Chem. Pharm. Bull., 2012, 60(9), 1195-1206.
[http://dx.doi.org/10.1248/cpb.c12-00498] [PMID: 22976330]
[16]
Bektas, H.; Albay, C.; Mentese, E.; Demirbas, N. New pyridine derivatives as antiurease inhibitors: Synthesis and their evaluation for antimicrobial activities. Rev. Roum. Chim., 2017, 62, 199-205.
[17]
Alexander, R.; Balasundaram, A.; Batchelor, M.; Brookings, D.; Crépy, K.; Crabbe, T.; Deltent, M.F.; Driessens, F.; Gill, A.; Harris, S.; Hutchinson, G.; Kulisa, C.; Merriman, M.; Mistry, P.; Parton, T.; Turner, J.; Whitcombe, I.; Wright, S. 4-(1,3-Thiazol-2-yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase. Bioorg. Med. Chem. Lett., 2008, 18(15), 4316-4320.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.076] [PMID: 18625552]
[18]
Thorat, K.G.; Sekar, N. Pyrrole-thiazole based push-pull chromophores: An experimental and theoretical approach to structural, spectroscopic and NLO properties of the novel styryl dyes. J. Photochem. Photobiol. Chem., 2017, 333, 1-17.
[http://dx.doi.org/10.1016/j.jphotochem.2016.10.009]
[19]
War, J.A.; Srivastava, S.K.; Srivastava, S.D. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 270-278.
[http://dx.doi.org/10.1016/j.saa.2016.07.054] [PMID: 27673496]
[20]
Chhabria, M.; Patel, S.; Dholakia, S.; Mistry, H.; Patel, S. Synthesis and antitubercular activity of a series of thiazole derivatives. Antiinfect. Agents, 2014, 12(2), 149-158.
[http://dx.doi.org/10.2174/22113525113119990119]
[21]
Zimmermann, T.; Fischer, G.W.; Olk, B.; Findeisen, M. Preparation of 2-aminothiazolin-4-ones. Ger. (East) (1991), DD 286355 A5 19910124. 1991.
[22]
Meng, X.; Lu, F.; Zhao, H. Efficient synthesis and crystal structure of 2-amino-4-thiazolinones. Huaxue Xuebao, 2011, 69, 2281-2286.
[23]
Certal, V.; Halley, F.; Virone-Oddos, A.; Filoche-Rommé, B.; Carry, J.C.; Gruss-Leleu, F.; Bertin, L.; Guizani, H.; Pilorge, F.; Richepin, P.; Karlsson, A.; Charrier, V.; Abecassis, P.Y.; Vincent, L.; Nicolas, J.P.; Lengauer, C.; Garcia-Echeverria, C.; Schio, L. Preparation and optimization of new 4-(2-(indolin-1-yl)-2-oxoethyl)-2-morpholinothiazole-5-carboxylic acid and amide derivatives as potent and selective PI3Kβ inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(6), 1506-1510.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.004] [PMID: 24560540]
[24]
Mohbiyaa, D.R.; Mallaha, R.R.; Sreenathb, M.C.; Chitrambalamb, S.; Joeb, I.H.; Sekar, N. Influence of acceptors in NLOphoric aacenaphthene and morpholinothiourea hybrid dyes: Photophysical, viscosity, DFT and Z-Scan study. Opt. Mater., 2019, 89, 178-190.
[25]
Avhad, K.C.; Patil, D.S.; Chitrambalam, S.; Sreenath, M.C.; Joe, I.H.; Sekar, N. Viscosity induced emission of red-emitting NLOphoric coumarin morpholine-thiazole hybrid styryl dyes as FMRs: Consolidated experimental and theoretical approach. Opt. Mater., 2018, 79, 90-107.
[http://dx.doi.org/10.1016/j.optmat.2018.03.024]
[26]
Sanad, S.M.H.; Mekky, A.E.M.; El-Idreesy, T.T. Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J. Mol. Struct., 2022, 1248, 131476.
[http://dx.doi.org/10.1016/j.molstruc.2021.131476]
[27]
Vale, L.G.R.; de Aguiar, A.P. Synthesis of 2-(N-morpholine-1-thiocarbonotiol)acetyl)- 2-amino-4-methyl-(thiazol-2-yl)-5-ethyl carboxylate as a potential antimicrobial agent. Braz. J. Dev, 2020, 6, 8346-8351.
[http://dx.doi.org/10.34117/bjdv6n2-225]
[28]
Hanefeld, W.; Helfri, V. Nitrosations of hydrazine derivatives, XI’: 5-nitrorhodanines from 5-monosubstituted rhodanine derivatives under nitrosating conditions. Arch. Pharm. (Weinheim), 1993, 326, 875-878.
[http://dx.doi.org/10.1002/ardp.19933261107]
[29]
Horishny, V.Y.; Chaban, T.I.; Matiychuk, V.S. Synthesis and primary antitumor screening of 5-ylidene derivatives of 3-(morpholin-4-yl)-2-sulfanylidene-1,3-thiazolidin-4-one. Russ. J. Org. Chem., 2020, 56(3), 454-457.
[http://dx.doi.org/10.1134/S1070428020030148]
[30]
War, J.A.; Srivastava, S.K.; Srivastava, S.D. Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules. Eur. J. Chem., 2016, 7(3), 271-279.
[http://dx.doi.org/10.5155/eurjchem.7.3.271-279.1427]
[31]
Vartale, S.P.; Pawar, Y.D.; Halikar, N.K.; Kalyankar, N.D. DMAP as a versatile and highly efficient catalyst for N-acylation and N-sulphonation of substituted indole. Inter. J. Chem. and Pharm. Sci, 2011, 2, 50-56.
[32]
Oglu, S.B.; Yolal, M.; Irbas, A.D.; Bektas, H.; Abbasoglu, R.; Irbas, N.D. Synthesis of linezolid-like molecules and evaluation of their antimicrobial activity. Turk. J. Chem., 2012, 36, 37-53.
[33]
Al-Soliemy, A.M.; Farghaly, T.A.; Abbas, E.M.H.; Shaaban, M.R.; Zayed, M.E.M.; El-Naggar, T.B.A. Synthesis of thiazolyl-N-phenylmorpholine derivatives and their biological activities. Med. Chem., 2021, 17(7), 790-805.
[http://dx.doi.org/10.2174/18756638MTA2aNjkk1] [PMID: 32416682]
[34]
Mekky, A.E.M.; Sanad, S.M.H.; El-Idreesy, T.T. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. Synth. Commun., 2021, 51(21), 3332-3344.
[http://dx.doi.org/10.1080/00397911.2021.1970774]
[35]
Bektaş, H.; Ceylan, Ş.; Demirbaş, N.; Alpay-Karaoğlu, Ş.; Sökmen, B.B. Antimicrobial and antiurease activities of newly synthesized morpholine derivatives containing an azole nucleus. Med. Chem. Res., 2013, 22(8), 3629-3639.
[http://dx.doi.org/10.1007/s00044-012-0318-1] [PMID: 23807823]
[36]
Sahin, D.; Bayrak, H.; Demirbas, A.; Demirbas, N.; Alpay-Karaoglu, S. Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial agents. Turk. J. Chem., 2012, 36, 41-426.
[37]
Gouvea, D.; Vasconcellos, F.A.; Berwaldt, G.A.; Neto, A.S.; Fischer, G.; Sakata, R.P.; Almeida, W.P.; Cunico, W. 2-Aryl-3-(2-morpholino-ethyl)thiazolidin-4-ones: Synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur. J. Med. Chem., 2016, 118, 259-265.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.028] [PMID: 27131068]
[38]
Özadali, K.; Ozkannli, F.; Erol, D.; Doğan, A.E.; Erol, K. Synthesis and biological activities of some thiazolidin-4-ones. Arzneimittelforschung, 2006, 56(10), 678-681.
[PMID: 17225562]
[39]
Prasad, D.; Nath, M. Three-component domino reaction in PPG: An easy access to 4-thiazolidinone derivatives. J. Heterocycl. Chem., 2012, 49(3), 628-633.
[http://dx.doi.org/10.1002/jhet.838]
[40]
Merugu, R.C.; Ramesh, D.; Sreenivasulu, B. Microwave assisted synthesis and antibacterial activity of some novel pyrimidines and thiazolidinones. Org. Chem. An Indian J., 2010, 6, 272-275.
[41]
El Bialy, S.A.; Nagy, M.M.; Abdel-Rahman, H.M. Efficient regioselective three-component domino synthesis of 3-(1,2,4-Triazol-5-yl)-1,3-thiazolidin-4-ones as potent antifungal and antituberculosis agents. Arch. Pharm. (Weinheim), 2011, 344(12), 821-829.
[http://dx.doi.org/10.1002/ardp.201100001] [PMID: 21932255]
[42]
Lu, M.; Qi, Y.; Han, Y.; Yi, Q.; Xu, L.; Sun, W.; Ni, G.; Ni, X.; Xu, C. Design and development of novel thiazolidin‐4‐one‐1,3,5‐triazine derivatives as neuro‐protective agent against cerebral ischemia–reperfusion injury in mice via attenuation of NF‐ĸB. Chem. Biol. Drug Des., 2020, 96(5), 1315-1327.
[http://dx.doi.org/10.1111/cbdd.13744] [PMID: 32543026]
[43]
Qi, B.; Yang, Y.; He, H.; Yue, X.; Zhou, Y.; Zhou, X.; Chen, Y.; Liu, M.; Zhang, A.; Wei, F. Identification of novel N-(2-aryl-1, 3-thiazolidin-4-one)-N-aryl ureas showing potent multi-tyrosine kinase inhibitory activities. Eur. J. Med. Chem., 2018, 146, 368-380.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.061] [PMID: 29407963]
[44]
Selvakumar, B.; Elango, K.P. Synthesis, characterization and in vitro antibacterial evaluation of 1-(7,7-dimethyl-2-morpholino-5,6,7,8-tetrahydroquinazolin-4-yl)piperidine-4-carboxamide derivatives. Res. Chem. Intermed., 2017, 43(10), 5535-5546.
[http://dx.doi.org/10.1007/s11164-017-2945-0]
[45]
Liu, C.; Li, B.; Mitscher, L. Synthesis of new TGX-221 analogs. Z. Naturforsch. B. J. Chem. Sci., 2014, 69(7), 817-822.
[http://dx.doi.org/10.5560/znb.2014-4081]
[46]
Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, H.M.; El-Arab, E.E. Synthesis of new azoles and azolopyrimidines incorporating morpholine moiety as potent anti-tumor agents. Croat. Chem. Acta, 2018, 91(1), 43-51.
[http://dx.doi.org/10.5562/cca3279]
[47]
Ray, S.; Bhaumik, A.; Dutta, A.; Butcher, R.J.; Mukhopadhyay, C. A new application of rhodanine as a green sulfur transferring agent for a clean functional group interconversion of amide to thioamide using reusable MCM-41 mesoporous silica. Tetrahedron Lett., 2013, 54(17), 2164-2170.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.045]
[48]
Veisia, H.; Naeimia, A.; Malekib, B.; Ashrafib, S.S.; Sedrpoushanc, A. Synthesis of 5-Alkylidene-2,4-thiazolidinediones and Rhodanines Promoted by Propylamino-functionalized Nano-structured SBA-15. Org. Prep. Proced. Int., 2015, 47, 1-7.
[49]
Turkevich, N.M.; Besyadetska, O.I. Preparation of 2-morpholino-2-thiazolin-4-one or its derivatives. U.S.S.R. Patent, SU 196855 1967.
[50]
Guihéneuf, S.; Paquin, L.; Carreaux, F.; Durieu, E.; Benedettid, H.; Guevel, R.; Corlu, A.; Meijer, L.; Bazureau, J.P. Microwave assisted organic synthesis (MAOS) of New dispacamide a derivatives bearing a thiazolinone platform, biological assays on inhibition of protein kinases and cell effects. Curr. Microw. Chem., 2014, 1(1), 33-40.
[http://dx.doi.org/10.2174/22133356114019990002]
[51]
Raouf, A.R.A.; Omar, M.T.; Omran, S.M.A.; El-Bayoumy, K.E.; Thiazolidinones, I.I. Reaction of secondary amines with 5-arylidene-rhodanines and their salts. Acta Chir. Acad. Sci. Hung., 1974, 83, 359-365.
[52]
Omar, M.T.; Sherif, F.A. Reactions of 5-arylmethylene-4-oxo-2-thioxothiazolidines with amines. Indian J. Chem., 1981, 20B, 849-851.
[53]
Moharram, H.H.; Tammam, G.H.; Mansour, S.A. Reaction of 5-arylidenerhodanine with cyclic secondary amines. Egypt. J. Chem., 1983, 26, 441-445.
[54]
Lapiere, C. Quelques dérivés de la rhodanine et de la thiazolinone. J. Pharm. Belg., 1956, 11(1-2), 3-8.
[PMID: 13320273]
[55]
Kandeel, K.A. Synthesis and structure of some new thiazolidin-4-ones and thiazolin-4-ones of anticipated biological activity. ARKIVOC, 2006, 2006(10), 1-6.
[http://dx.doi.org/10.3998/ark.5550190.0007.a01]
[56]
Kutschy, P.; Dzurilla, M.; Kristian, P.; Kutschyová, K. Synthesis of 2-substituted 5-arylidenethiazolin-4-ones from α,β-unsaturated acyl isothiocyanates. Collect. Czech. Chem. Commun., 1981, 46(2), 436-445.
[http://dx.doi.org/10.1135/cccc19810436]
[57]
Harhash, A.H.; Elnagdi, M.H.; Elsannib, C.A.S. Reactions with 2-thiazolin 5-ones. IV. Action of amines on 4-substituted 2-alkoxy- and 2-benzylmercapto-2-thiazolin-5-ones. J. Prakt. Chem., 1973, 315(2), 211-220.
[http://dx.doi.org/10.1002/prac.19733150204]
[58]
Sravya, G.; Reddy, N.B.; Zyryanov, G.V. Zyryanov, Synthesis of a new class of thiazolyl morpholines/thiomorpholines and evaluation as antimicrobials. AIP Conf. Proc, 2020, 2280, 040046.
[http://dx.doi.org/10.1063/5.0018081]
[59]
Abu-Melha, S. Molecular modeling and docking of new 2-acetamidothiazole-based compounds as antioxidant agents. J. Saudi Chem. Soc., 2022, 26(2), 101431.
[http://dx.doi.org/10.1016/j.jscs.2022.101431]
[60]
Ezer, M.; Yıldırım, L.T.; Bayro, O.; Verspohl, E.J.; Dundar, O.B. Synthesis and antidiabetic activity of morpholinothiazolyl-2,4-thiazolidindione derivatives. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 419-427.
[http://dx.doi.org/10.3109/14756366.2011.594047] [PMID: 21740103]
[61]
Rahimizadeh, M.; Bakavoli, M.; Shiri, A.; Faridnia, R.; Pordeli, P.; Oroojalian, F. Thiazolo[4,5-d]pyrimidines: synthesis and antibacterial evaluation. Heterocycl. Commun., 2011, 17(1-2), 43-47.
[http://dx.doi.org/10.1515/hc.2011.016]
[62]
Henriksson, M.; Homan, E.; Johansson, L.; Vallgarda, J.; Williams, M.; Bercot, E.A.; Fotsch, C.H.; Li, A.; Cai, G.; Hungate, R.W. Preparation of 2-aminothiazolin-4-ones as inhibitors of 11-bhydroxy steroid dehydrogenase type 1. PCT Int. Appl. WO Patent 2007061661 A2 20070531, 2007.
[63]
Ahmad, H.; Ahmad, F.; Parveen, S.; Ahmad, S.; Azam, S.S.; Hassan, A. A combine approach of chemical synthesis, biological evaluation and structural dynamics studies revealed thiazole substituted arylamine derivatives as potent FabH enzyme inhibitors. Bioorg. Chem., 2020, 105, 104426.
[http://dx.doi.org/10.1016/j.bioorg.2020.104426] [PMID: 33161255]
[64]
Prokopenko, V.M.; Sviripa, V.N.; Brovarets, V.S.; Rusanov, E.B.; Drach, B.S. Successive reaction of 2-aryl-4-dichloromethylideneoxazol-54H-ones with 2-amino-1,3-thiazoles and strongly basic nitrogen-containing reagents. Russ. J. Gen. Chem., 2008, 78(4), 649-654.
[http://dx.doi.org/10.1134/S1070363208040221]
[65]
Bacha, M.M.; Nadeem, H.; Zaib, S.; Sarwar, S.; Imran, A.; Rahman, S.U.; Ali, H.S.; Arif, M.; Iqbal, J. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. BMC Chem., 2021, 15(1), 28-42.
[http://dx.doi.org/10.1186/s13065-021-00756-z] [PMID: 33906691]
[66]
Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. Discovery of novel isothiazole, 1,2,3-thiadiazole, and thiazole-based cinnamamides as fungicidal candidates. J. Agric. Food Chem., 2019, 67(45), 12357-12365.
[http://dx.doi.org/10.1021/acs.jafc.9b03891] [PMID: 31596575]
[67]
Lo, C.P. The reaction of 5-ethoxymethylenerhodanines with amines. J. Am. Chem. Soc., 1958, 80(13), 3466-3468.
[http://dx.doi.org/10.1021/ja01546a064]
[68]
Yarovenko, V.N.; Nikitina, A.S.; Zavarzin, I.V.; Krayushkin, M.M.; Kovalenko, L.V. Synthesis of 2-thioxo-1,3-thiazolidin-4-one derivatives. Russ. Chem. Bull., 2007, 56(8), 1624-1630.
[http://dx.doi.org/10.1007/s11172-007-0254-2]
[69]
Shi, H.B.; Hu, W.X.; Zhang, W.M.; Wu, Y.F. Synthesis of 5-acetyl-2-arylamino-4-methylthiazole thiosemicarbazones under microwave irradiation and their in vitro anticancer activity. J. Chem. Res., 2016, 40(2), 67-72.
[http://dx.doi.org/10.3184/174751916X14519928918516]
[70]
Rama, S.; Vadali, L.R.; Konda, R.B.; Jaldu, R.; Vemavarapu, G.P.S.; Palla, V.K.; Yerva, E.R. WO Patent 2014057498 A220140417, 2014.
[71]
Wang, H.; Xu, Z.; Deng, G.J.; Huang, H. Selective formation of 2‐(2‐aminophenyl)benzothiazoles via copper‐catalyzed aerobic C−C bond cleavage of isatins. Adv. Synth. Catal., 2020, 362(8), 1663-1668.
[http://dx.doi.org/10.1002/adsc.201901670]
[72]
Polniaszek, R. WO Patent 2010115000 A2 20101007, 2010.
[73]
Kononenko, V.E.; Zhitar, B.E.; Baranov, S.N. Mannich reaction with 4-azolidones and their analogs. Zhurnal Organicheskoi Khimii, 1973, 9, 61-63.
[74]
Wang, Z.; Shi, H.; Zheng, H.; Shi, H.; Zhen, A.; Yang, Z.; Ma, Y.; Dong, Q. Synthesis of 2-thioxo-4-thiazolinone derivatives. Youji Huaxue, 1994, 14, 190-194.
[75]
Aly, Y.L.; El-Barbary, A.A.; El-Shehawy, A.A. Alkylation of thiohydantoins including synthesis, conformational and configurational studies of some acetylated S-pyranosides. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(1), 185-202.
[http://dx.doi.org/10.1080/10426500490257131]
[76]
Taflan, E.; Bayrak, H.; Er, M.; Alpay Karaoğlu, Ş.; Bozdeveci, A. Novel imidazo[2,1-b][1,3,4]thiadiazole (ITD) hybrid compounds: Design, synthesis, efficient antibacterial activity and antioxidant effects. Bioorg. Chem., 2019, 89, 102998.
[http://dx.doi.org/10.1016/j.bioorg.2019.102998] [PMID: 31128819]
[77]
Karumanchi, S.K.; Atmakuri, L.R.; Mandava, V.B.R.; Rajala, S. Synthesis and hypoglycemic and anti-inflammatory activity screening of novel substituted 5-[morpholino(phenyl)methyl]-thiazoli-dine-2,4-diones and their molecular docking studies. Turkish Journal of Pharmaceutical Sciences, 2019, 16(4), 380-391.
[http://dx.doi.org/10.4274/tjps.galenos.2018.82612] [PMID: 32454740]
[78]
Sarhan, A.A.O.; Elsherif, H.N.A.H.; Mahmoud, A.M.; Habib, O.M.A. Synthesis, characterization and studies of new 3-benzyl-4 H -1,2,4-triazole-5-thiol and thiazolo[3,2-b][1,2,4]triazole-5(6 H)-one heterocycles. J. Heterocycl. Chem., 2008, 45(3), 897-907.
[http://dx.doi.org/10.1002/jhet.5570450339]
[79]
Mondal, S.; Samanta, S.; Singsardar, M.; Hajra, A. Aminomethylation of imidazoheterocycles with morpholine. Org. Lett., 2017, 19(14), 3751-3754.
[http://dx.doi.org/10.1021/acs.orglett.7b01594] [PMID: 28678513]
[80]
Lamphon, R.Q.; El-Gaby, M.S.A.; Khafagy, M.M.; El-Hag Ali, G.A.M.; El-Maghraby, A.A.; Eyada, H.A.; Helal, M.H.M. Studies on thiazolopyridines. Part 5: Synthesis of hitherto unknown thiazolinone and thiazolo[3,2-a]pyridine derivatives having in their structure the morpholin-4-YL moiety. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(7), 1279-1292.
[http://dx.doi.org/10.1080/10426500490468092]
[81]
Synthesis and characterization of novel thiazolidinone derivatives of C-Mannich bases. Heterocycl. Lett, 2018, 8, 593-601.
[82]
Venkatesan, S.; Singh, R. Anti-inflammatory activity studies of newly synthesized thiazolidinone derivatives. Inter. J. Chem. Pharm. Sci, 2010, 1, 17-23.
[83]
Ahmadi, A.; Khalili, M.; Samavat, S.; Shahbazi, E.; Nahri-Niknafs, B. Synthesis and evaluation of the hypoglycemic and hypolipidemic activity of novel arylidene thiazolidinedione analogs on a type 2 diabetes model. Pharm. Chem. J., 2016, 50(3), 165-171.
[http://dx.doi.org/10.1007/s11094-016-1416-z]
[84]
Gadekar, P.K.; Urunkar, G.; Roychowdhury, A.; Sharma, R.; Bose, J.; Khanna, S.; Damre, A.; Sarveswari, S. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg. Chem., 2021, 115, 105151.
[http://dx.doi.org/10.1016/j.bioorg.2021.105151] [PMID: 34333424]