Improved Antitumor Efficacy of a Dextran-based Docetaxel-coupled Conjugate against Triple-Negative Breast Cancer

Page: [775 - 784] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Most chemotherapeutic agents are characterized by poor water solubility and non-specific distribution. Polymer-based conjugates are promising strategies for overcoming these limitations.

Objective: This study aims to fabricate a polysaccharide, dextran-based, dual-drug conjugate by covalently grafting docetaxel (DTX) and docosahexaenoic acid (DHA) onto the bifunctionalized dextran through a long linker, and to investigate the antitumor efficacy of this conjugate against breast cancer.

Methods: DTX was firstly coupled with DHA and covalently bounded with the bifunctionalized dextran (100 kDa) through a long linker to produce a conjugate dextran-DHA-DTX (termed C-DDD). Cytotoxicity and cellular uptake of this conjugate were measured in vitro. Drug biodistribution and pharmacokinetics were investigated through liquid chromatography/mass spectrometry analysis. The inhibitory effects on tumor growth were evaluated in MCF-7- and 4T1-tumor-bearing mice.

Results: The loading capacity of the C-DDD for DTX was 15.90 (weight/weight). The C-DDD possessed good water solubility and was able to self-assemble into nanoparticles measuring 76.8 ± 5.5 nm. The maximum plasma concentration and area under the curve (0-∞) for the released DTX and total DTX from the C-DDD were significantly enhanced compared with the conventional DTX formulation. The C-DDD selectively accumulated in the tumor, with limited distribution was observed in normal tissues. The C-DDD exhibited greater antitumor activity than the conventional DTX in the triplenegative breast cancer model. Furthermore, the C-DDD nearly eliminated all MCF-7 tumors in nude mice without leading to systemic adverse effects.

Conclusion: This dual-drug C-DDD has the potential to become a candidate for clinical application through the optimization of the linker.

Graphical Abstract

[1]
Montero, A.; Fossella, F.; Hortobagyi, G.; Valero, V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. Lancet Oncol., 2005, 6(4), 229-239.
[http://dx.doi.org/10.1016/S1470-2045(05)70094-2] [PMID: 15811618]
[2]
Mohd Gazzali, A.R.; A., Razak S.A.; Fisol, F.A.; Abdulbaqi, M.I.; Parumasivam, T.; Mohtar, N.; Wahab, A.H. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview. Cancers (Basel), 2021, 13, 400.
[http://dx.doi.org/10.3390/cancers13030400] [PMID: 33499040]
[3]
Du, W.; Hong, L.; Yao, T.; Yang, X.; He, Q.; Yang, B.; Hu, Y. Synthesis and evaluation of water-soluble docetaxel prodrugs-docetaxel esters of malic acid. Bioorg. Med. Chem., 2007, 15(18), 6323-6330.
[http://dx.doi.org/10.1016/j.bmc.2007.04.002] [PMID: 17624790]
[4]
Engels, F.K.; Mathot, R.A.A.; Verweij, J. Alternative drug formulations of docetaxel: A review. Anticancer Drugs, 2007, 18(2), 95-103.
[http://dx.doi.org/10.1097/CAD.0b013e3280113338] [PMID: 17159596]
[5]
Picard, M.; Castells, M.C. Re-visiting hypersensitivity reactions to taxanes: A comprehensive review. Clin. Rev. Allergy Immunol., 2015, 49(2), 177-191.
[http://dx.doi.org/10.1007/s12016-014-8416-0] [PMID: 24740483]
[6]
Zhang, E.; Xing, R.; Liu, S.; Li, P. Current advances in development of new docetaxel formulations. Expert Opin. Drug Deliv., 2019, 16(3), 301-312.
[http://dx.doi.org/10.1080/17425247.2019.1583644] [PMID: 30773947]
[7]
He, H.; Liu, L.; Morin, E.E.; Liu, M.; Schwendeman, A. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res., 2019, 52(9), 2445-2461.
[http://dx.doi.org/10.1021/acs.accounts.9b00228] [PMID: 31424909]
[8]
van Eerden, R.A.G.; Mathijssen, R.H.J.; Koolen, S.L.W. Recent clinical developments of nanomediated drug delivery systems of taxanes for the treatment of cancer. Int. J. Nanomedicine, 2020, 15, 8151-8166.
[http://dx.doi.org/10.2147/IJN.S272529] [PMID: 33132699]
[9]
Atrafi, F.; Dumez, H.; Mathijssen, R.H.J. Menke van der Houven van Oordt, C.W.; Rijcken, C.J.F.; Hanssen, R.; Eskens, F.A.L.M.; Schöffski, P. A phase I dose-escalation and pharmacokinetic study of a micellar nanoparticle with entrapped docetaxel (CPC634) in patients with advanced solid tumours. J. Control. Release, 2020, 325, 191-197.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.020] [PMID: 32590047]
[10]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[11]
Piha-Paul, S.A.; Thein, K.Z.; De Souza, P.; Kefford, R.; Gangadhar, T.; Smith, C.; Schuster, S.; Zamboni, W.C.; Dees, C.E.; Markman, B. First‐in‐human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Invest. New Drugs, 2021, 39(4), 1047-1056.
[http://dx.doi.org/10.1007/s10637-021-01081-x] [PMID: 33594602]
[12]
Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym., 2021, 264, 117999.
[http://dx.doi.org/10.1016/j.carbpol.2021.117999] [PMID: 33910733]
[13]
Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine (Lond.), 2018, 13(24), 3149-3158.
[http://dx.doi.org/10.2217/nnm-2018-0331] [PMID: 30516091]
[14]
Ramasamy, S.; Sam David, R.J.R.; Enoch, I.V.M.V. Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 675-682.
[http://dx.doi.org/10.1080/21691401.2018.1468340] [PMID: 29726296]
[15]
Ramasamy, S.; Samathanam, B.; Reuther, H.; Adyanpuram, M.N.M.S.; Enoch, I.V.M.V.; Potzger, K. Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium Ferrite/Cyclodextrin-tethered polymer hybrid. Colloids Surf. B Biointerfaces, 2018, 161, 347-355.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.048] [PMID: 29100128]
[16]
Ramasamy, S.; Enoch, I.V.M.V.; Rex Jeya Rajkumar, S. Polymeric cyclodextrin-dextran spooled nickel ferrite nanoparticles: Expanded anticancer efficacy of loaded camptothecin. Mater. Lett., 2020, 261, 127114.
[http://dx.doi.org/10.1016/j.matlet.2019.127114]
[17]
Han, H.S.; Lee, M.; An, J.Y.; Son, S.; Ko, H.; Lee, H.; Chae, Y.S.; Kang, Y.M.; Park, J.H. A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(4), 789-796.
[http://dx.doi.org/10.1002/jbm.b.33581] [PMID: 26687579]
[18]
Alibolandi, M.; Abnous, K.; Hadizadeh, F.; Taghdisi, S.M.; Alabdollah, F.; Mohammadi, M.; Nassirli, H.; Ramezani, M. Dextran-poly lactide- co -glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J. Control. Release, 2016, 241, 45-56.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.012] [PMID: 27639681]
[19]
Raza, K.; Kumar, N.; Misra, C.; Kaushik, L.; Guru, S.K.; Kumar, P.; Malik, R.; Bhushan, S.; Katare, O.P. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int. J. Biol. Macromol., 2016, 88, 206-212.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.064] [PMID: 27037052]
[20]
Chang, N.; Zhao, Y.; Ge, N.; Qian, L. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Deliv., 2020, 27(1), 1073-1086.
[http://dx.doi.org/10.1080/10717544.2020.1797238] [PMID: 32706272]
[21]
Liu, P.; Situ, J.Q.; Li, W.S.; Shan, C.L.; You, J.; Yuan, H.; Hu, F.Q.; Du, Y.Z. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine, 2015, 11(4), 855-866.
[http://dx.doi.org/10.1016/j.nano.2015.02.002] [PMID: 25725489]
[22]
Zhou, T.; Zhu, B.; Chen, F.; Liu, Y.; Ren, N.; Tang, J.; Ma, X.; Su, Y.; Zhu, X. Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydr. Polym., 2017, 157, 613-619.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.028] [PMID: 27987969]
[23]
Sugahara, S.; Kajiki, M.; Kuriyama, H.; Kobayashi, T. Complete regression of xenografted human carcinomas by a paclitaxel-carboxymethyl dextran conjugate (AZ10992). J. Control. Release, 2007, 117(1), 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.009] [PMID: 17126446]
[24]
Yurko-Mauro, K.; Van Elswyk, M.; Teo, L. A scoping review of interactions between omega-3 long-chain polyunsaturated fatty acids and genetic variation in relation to cancer risk. Nutrients, 2020, 12(6), 1647.
[http://dx.doi.org/10.3390/nu12061647] [PMID: 32498320]
[25]
Park, M.; Kim, H. Anti-cancer mechanism of docosahexaenoic acid in pancreatic carcinogenesis: A mini-review. J. Cancer Prev., 2017, 22(1), 1-5.
[http://dx.doi.org/10.15430/JCP.2017.22.1.1] [PMID: 28382280]
[26]
Javadian, M.; Shekari, N. Soltani - Zangbar, M.S.; Mohammadi, A.; Mansoori, B.; Maralbashi, S.; Shanehbandi, D.; Baradaran, B.; Darabi, M.; Kazemi, T. Docosahexaenoic acid suppresses migration of triple‐negative breast cancer cell through targeting metastasis‐related genes and microRNA under normoxic and hypoxic conditions. J. Cell. Biochem., 2020, 121(3), 2416-2427.
[http://dx.doi.org/10.1002/jcb.29464] [PMID: 31713924]
[27]
Ljungblad, L.; Bergqvist, F.; Tümmler, C.; Madawala, S.; Olsen, T.K.; Andonova, T.; Jakobsson, P.J.; Johnsen, J.I.; Pickova, J.; Strandvik, B.; Kogner, P.; Gleissman, H.; Wickström, M. Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E2 and suppress tumor growth in medulloblastoma. Life Sci., 2022, 295, 120394.
[http://dx.doi.org/10.1016/j.lfs.2022.120394] [PMID: 35157910]
[28]
West, L.; Yin, Y.; Pierce, S.R.; Fang, Z.; Fan, Y.; Sun, W.; Tucker, K.; Staley, A.; Zhou, C.; Bae-Jump, V. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am. J. Cancer Res., 2020, 10(12), 4450-4463.
[PMID: 33415010]
[29]
Newell, M.; Baker, K.; Postovit, L.; Field, C. A critical review on the effect of docosahexaenoic acid (DHA) on cancer cell cycle progression. Int. J. Mol. Sci., 2017, 18(8), 1784.
[http://dx.doi.org/10.3390/ijms18081784] [PMID: 28817068]
[30]
Corsetto, P. Colombo, I.; Kopecka, J.; Rizzo, A.; Riganti, C. ω-3 long chain polyunsaturated fatty acids as sensitizing agents and multidrug resistance revertants in cancer Therapy. Int. J. Mol. Sci., 2017, 18(12), 2770.
[http://dx.doi.org/10.3390/ijms18122770] [PMID: 29261109]
[31]
Song, E.; Kim, H. Docosahexaenoic acid induces oxidative DNA damage and apoptosis, and enhances the chemosensitivity of cancer cells. Int. J. Mol. Sci., 2016, 17(8), 1257.
[http://dx.doi.org/10.3390/ijms17081257] [PMID: 27527148]
[32]
Goupille, C.; Vibet, S.; Frank, P.G.; Mahéo, K. EPA and DHA fatty acids induce a remodeling of tumor vasculature and potentiate docetaxel activity. Int. J. Mol. Sci., 2020, 21(14), 4965.
[http://dx.doi.org/10.3390/ijms21144965] [PMID: 32674321]
[33]
Newell, M.; Goruk, S.; Schueler, J.; Mazurak, V.; Postovit, L.M.; Field, C.J. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J. Nutr. Biochem., 2022, 107, 109018.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109018] [PMID: 35489658]
[34]
Chauvin, L.; Goupille, C.; Blanc, C.; Pinault, M.; Domingo, I.; Guimaraes, C.; Bougnoux, P.; Chevalier, S.; Mahéo, K. Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(4), 380-390.
[http://dx.doi.org/10.1016/j.bbalip.2016.01.012] [PMID: 26821209]
[35]
Homsi, J.; Bedikian, A.Y.; Papadopoulos, N.E.; Kim, K.B.; Hwu, W.J.; Mahoney, S.L.; Hwu, P. Phase 2 open-label study of weekly docosahexaenoic acid-paclitaxel in patients with metastatic uveal melanoma. Melanoma Res., 2010, 20(6), 507-510.
[http://dx.doi.org/10.1097/CMR.0b013e3283403ce9] [PMID: 20881508]
[36]
Bedikian, A.Y.; DeConti, R.C.; Conry, R.; Agarwala, S.; Papadopoulos, N.; Kim, K.B.; Ernstoff, M. Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann. Oncol., 2011, 22(4), 787-793.
[http://dx.doi.org/10.1093/annonc/mdq438] [PMID: 20855467]
[37]
Li, B.; Tan, T.; Chu, W.; Zhang, Y.; Ye, Y.; Wang, S.; Qin, Y.; Tang, J.; Cao, X. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv., 2022, 29(1), 75-88.
[http://dx.doi.org/10.1080/10717544.2021.2018523] [PMID: 34964421]
[38]
Wang, R.; Yang, H.; Khan, A.R.; Yang, X.; Xu, J.; Ji, J.; Zhai, G. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J. Colloid Interface Sci., 2021, 598, 213-228.
[http://dx.doi.org/10.1016/j.jcis.2021.04.056] [PMID: 33901847]
[39]
Moradi Kashkooli, F.; Soltani, M.; Souri, M.; Meaney, C.; Kohandel, M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today, 2021, 36, 101057.
[http://dx.doi.org/10.1016/j.nantod.2020.101057]
[40]
Abazari, M.A.; Soltani, M.; Kashkooli, F.M. Targeted nano-sized drug delivery to heterogeneous solid tumor microvasculatures: Implications for immunoliposomes exhibiting bystander killing effect. Phys. Fluids, 2023, 35(1), 011905.
[http://dx.doi.org/10.1063/5.0130259]
[41]
Dong, P.; Liu, J.; Lv, H.; Wu, J.; Zhang, N.; Wang, S.; Li, X.; Hu, J.; Wang, A.; Li, D.J.; Wang, D.; Cao, S.; Xie, L.; Shi, Y. The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid. Biomater. Sci., 2022, 10(13), 3454-3465.
[http://dx.doi.org/10.1039/D2BM00337F] [PMID: 35647736]