Isolation, Synthetic Studies and Biological Activities of the Marine Triindole Alkaloids Pseudellone C, Metagenetriindole A, Araiosamine A-D and Bengacarboline

Page: [389 - 398] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The indole nucleus is one of the most important ring systems for pharmaceutical development. Various natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna, thus ensuring motivation in the search for newer natural products. The unique structural features of triindole containing three indole rings and impressive biological activities make these alkaloids an attractive target for drug discovery. This minireview highlights the significance of various strategic innovations towards these structurally unique and simplest alkaloids of marine origin (i.e., pseudellone C, metagenetriindole A, araiosamine and bengacarboline) and highlights the isolation, structure, synthesis, biosynthesis and biological activities covering literature till 2023.

Graphical Abstract

[1]
Faulkner, D.J. Marine natural products (1999). Nat. Prod. Rep., 2001, 18(1), 1-49.
[http://dx.doi.org/10.1039/b006897g] [PMID: 11245399]
[2]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery (Antiquity to late 1999). Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[3]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2016, 33(3), 382-431.
[http://dx.doi.org/10.1039/C5NP00156K] [PMID: 26837534]
[4]
Mann, J. Alkaloids. In: Natural Products: Their Chemistry and Biological Significance; Mann, J.; Davidson, R.S.; Hobbs, J.B.; Banthorpe, D.V.; Harborne, J.B., Eds.; Longman, 1994, pp. 389-446.
[5]
Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-derived indole alkaloids and their biological and pharmacological activities. Mar. Drugs, 2021, 20(1), 3.
[http://dx.doi.org/10.3390/md20010003] [PMID: 35049859]
[6]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).In: Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, 2020, pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[7]
Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Calignano, A.; Debitus, C. (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water new caledonian marine sponge (Gellius or Orina sp.). J. Nat. Prod., 1994, 57(9), 1294-1299.
[http://dx.doi.org/10.1021/np50111a020] [PMID: 7798965]
[8]
Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 1994, 42(12), 2449-2451.
[http://dx.doi.org/10.1248/cpb.42.2449] [PMID: 7697760]
[9]
Yoo, M.; Choi, S.U.; Choi, K.Y.; Yon, G.H.; Chae, J.C.; Kim, D.; Zylstra, G.J.; Kim, E. Trisindoline synthesis and anticancer activity. Biochem. Biophys. Res. Commun., 2008, 376(1), 96-99.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.092] [PMID: 18760995]
[10]
Liu, H.B.; Lauro, G.; O’Connor, R.D.; Lohith, K.; Kelly, M.; Colin, P.; Bifulco, G.; Bewley, C.A. Tulongicin, an antibacterial tri-indole alkaloid from a deep-water topsentia sp. sponge. J. Nat. Prod., 2017, 80(9), 2556-2560.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00452] [PMID: 28837335]
[11]
Praveen, P.; Parmeswaran, P.S.; Majik, M.S. Bis(indolyl)methane alkaloids: Isolation, bioactivity, and syntheses. Synthesis, 2012, 47(13), 1827-1837.
[12]
Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2005, 22(1), 15-61.
[http://dx.doi.org/10.1039/b415080p] [PMID: 15692616]
[13]
Somei, M.; Yamada, F. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep., 2005, 22(1), 73-103.
[http://dx.doi.org/10.1039/b316241a] [PMID: 15692618]
[14]
Lunagariya, J.; Bhadja, P.; Zhong, S.; Vekariya, R.; Xu, S. Marine natural product bis-indole alkaloid caulerpin: Chemistry and biology. Mini Rev. Med. Chem., 2019, 19(9), 751-761.
[http://dx.doi.org/10.2174/1389557517666170927154231] [PMID: 28971770]
[15]
Veale, C.G.L.; Davies-Coleman, M.T. Marine bi-, bis-, and trisindole alkaloids. Alkaloids Chem. Biol., 2014, 73, 1-64.
[http://dx.doi.org/10.1016/B978-0-12-411565-1.00001-9] [PMID: 26521648]
[16]
Gupta, L.; Talwar, A.; Chauhan, P.M. Bis and tris indole alkaloids from marine organisms: New leads for drug discovery. Curr. Med. Chem., 2007, 14(16), 1789-1803.
[http://dx.doi.org/10.2174/092986707781058904] [PMID: 17627517]
[17]
Yang, C.G.; Huang, H.; Jiang, B. Progress in studies of novel marine bis(indole) alkaloids. Curr. Org. Chem., 2004, 8(17), 1691-1720.
[http://dx.doi.org/10.2174/1385272043369656]
[18]
Keawprdub, N.; Houghton, P.; Eno-Amooquaye, E.; Burke, P. Activity of extracts and alkaloids of thai Alstonia species against human lung cancer cell lines. Planta Med., 1997, 63(2), 97-101.
[http://dx.doi.org/10.1055/s-2006-957621] [PMID: 9140219]
[19]
Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914.
[http://dx.doi.org/10.3390/md13084814] [PMID: 26287214]
[20]
Liu, W.; Li, H.J.; Xu, M.Y.; Ju, Y.C.; Wang, L.Y.; Xu, J.; Yang, D.P.; Lan, W.J. Pseudellones A–C, three alkaloids from the marine-derived fungus Pseudallescheria ellipsoidea F42–3. Org. Lett., 2015, 17(21), 5156-5159.
[http://dx.doi.org/10.1021/acs.orglett.5b02311] [PMID: 26452138]
[21]
Yan, X.; Tang, X.X.; Chen, L.; Yi, Z.W.; Fang, M.J.; Wu, Z.; Qiu, Y.K. Two new cytotoxic indole alkaloids from a deep-sea sediment derived metagenomic clone. Mar. Drugs, 2014, 12(4), 2156-2163.
[http://dx.doi.org/10.3390/md12042156] [PMID: 24717525]
[22]
Wei, X.; Henriksen, N.M.; Skalicky, J.J.; Harper, M.K.; Cheatham, T.E., III; Ireland, C.M.; Van Wagoner, R.M. Araiosamines A-D: Tris-bromoindole cyclic guanidine alkaloids from the marine sponge Clathria (Thalysias) araiosa. J. Org. Chem., 2011, 76(14), 5515-5523.
[http://dx.doi.org/10.1021/jo200327d] [PMID: 21462976]
[23]
Berlinck, R.G.S.; Romminger, S. The chemistry and biology of guanidine natural products. Nat. Prod. Rep., 2016, 33(3), 456-490.
[http://dx.doi.org/10.1039/C5NP00108K] [PMID: 26689539]
[24]
Foderaro, T.A.; Barrows, L.R.; Lassota, P.; Ireland, C.M. Bengacarboline, a New β-carboline from a marine ascidian Didemnum sp. J. Org. Chem., 1997, 62(17), 6064-6065.
[http://dx.doi.org/10.1021/jo962422q]
[25]
Dewick, P.M. Medicinal Natural Products. A Biosynthetic Approach, 2nd ed; John Wiley & Sons Ltd.: Chichester, New York, 2002.
[26]
Roberts, M.F.; Wink, M. Introduction.In: Alkaloids: Biochemistry, Ecology and Medicinal Applications; Roberts, M.F.; Wink, M., Eds.; Plenum Press: New York, 1998, pp. 1-7.
[http://dx.doi.org/10.1007/978-1-4757-2905-4_1]
[27]
Kutchan, T.M. Alkaloid biosynthesis – The basis for metabolic engineering of medicinal plants. Plant Cell, 1995, 7(7), 1059-1070.
[http://dx.doi.org/10.2307/3870057] [PMID: 12242397]
[28]
Herbert, R.B. The biosynthesis of plant alkaloids and nitrogenous microbial metabolites (1997 to 1998). Nat. Prod. Rep., 2001, 18(1), 50-65.
[http://dx.doi.org/10.1039/a809393h] [PMID: 11245400]
[29]
Radwanski, E.R.; Last, R.L. Tryptophan biosynthesis and metabolism: Biochemical and molecular genetics. Plant Cell, 1995, 7(7), 921-934.
[PMID: 7640526]
[30]
Hesse, M. Alkaloids, Nature’s Curse or Blessing; Wiley-VCH: Weinheim, Germany, 2002, p. 413.
[31]
Zenk, M.H.; Juenger, M. Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry, 2007, 68(22-24), 2757-2772.
[http://dx.doi.org/10.1016/j.phytochem.2007.07.009] [PMID: 17719615]
[32]
Heravi, M.M.; Amiri, Z.; Kafshdarzadeh, K.; Zadsirjan, V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Advances, 2021, 11(53), 33540-33612.
[http://dx.doi.org/10.1039/D1RA05972F] [PMID: 35497516]
[33]
Garbe, T.R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. Indolyl carboxylic acids by condensation of indoles with alpha-keto acids. J. Nat. Prod., 2000, 63(5), 596-598.
[http://dx.doi.org/10.1021/np990517s] [PMID: 10843566]
[34]
Chakrabarty, M.; Ghosh, N.; Basak, R.; Harigaya, Y. A facile and efficient synthesis of 2, 2‐bis(3′/2′‐indolyl) ethylamines and three bisindolic natural products. Synth. Commun., 2004, 34(3), 421-434.
[http://dx.doi.org/10.1081/SCC-120027281]
[35]
Sathieshkumar, P.P.; Latha, P.; Nagarajan, R. Total synthesis of pseudellone C. Eur. J. Org. Chem., 2017, 2017(22), 3161-3164.
[http://dx.doi.org/10.1002/ejoc.201700491]
[36]
Holland, M.C.; Metternich, J.B.; Mück-Lichtenfeld, C.; Gilmour, R. Cation–π interactions in iminium ion activation: Correlating quadrupole moment & enantioselectivity. Chem. Commun., 2015, 51(25), 5322-5325.
[http://dx.doi.org/10.1039/C4CC08520E] [PMID: 25434331]
[37]
Wang, D.; Neupane, P.; Ragnarsson, L.; Capon, R.; Lewis, R. Synthesis of pseudellone analogs and characterization as novel T-type calcium channel blockers. Mar. Drugs, 2018, 16(12), 475-487.
[http://dx.doi.org/10.3390/md16120475] [PMID: 30487473]
[38]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110(8), 4489-4497.
[http://dx.doi.org/10.1021/cr900211p] [PMID: 20380420]
[39]
Pon Sathieshkumar, P.; Nagarajan, R. Total synthesis of metagenetriindole A and deoxytopsentin. ChemistrySelect, 2017, 2(4), 1686-1688.
[http://dx.doi.org/10.1002/slct.201602014]
[40]
Kornblum, N.; Jones, W.J.; Anderson, G.J. A new and selective method of oxidation. The conversion of alkyl halide and alkyl tosylates to aldehydes. J. Am. Chem. Soc., 1959, 81(15), 4113-4114.
[http://dx.doi.org/10.1021/ja01524a080]
[41]
Tian, M.; Yan, M.; Baran, P.S. 11-step total synthesis of araiosamines. J. Am. Chem. Soc., 2016, 138(43), 14234-14237.
[http://dx.doi.org/10.1021/jacs.6b09701] [PMID: 27748593]
[42]
Mecozzi, T.; Petrini, M.; Profeta, R. Reaction of α-amidoalkylphenyl sulfones with lithiated nitriles: Syn-selective synthesis of β-amino nitriles. J. Org. Chem., 2001, 66(24), 8264-8267.
[http://dx.doi.org/10.1021/jo0160423] [PMID: 11722239]
[43]
Wan, S.; Green, M.E.; Park, J.H.; Floreancig, P.E. Multicomponent approach to the synthesis of oxidized amides through nitrile hydrozirconation. Org. Lett., 2007, 9(26), 5385-5388.
[http://dx.doi.org/10.1021/ol702184n] [PMID: 18020344]
[44]
Katritzky, A.R.; Rogovoy, B.V. Recent developments in guanylating agents. ARKIVOC, 2005, 2005(4), 49-87.
[http://dx.doi.org/10.3998/ark.5550190.0006.406]
[45]
Feichtinger, K.; Zapf, C.; Sings, H.L.; Goodman, M. Diprotected triflylguanidines: A new class of guanidinylation reagents. J. Org. Chem., 1998, 63(12), 3804-3805.
[http://dx.doi.org/10.1021/jo980425s]
[46]
Pouilhès, A.; Langlois, Y.; Chiaroni, A. First synthesis of marine alkaloid (±)-bengacarboline. Synlett, 2003, 10, 1488-1490.
[47]
Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure–activity relationship of mono-indole-, bis-indole-, and tris-indole-based sulfonamides as potential anticancer agents. Mol. Divers., 2013, 17(3), 595-604.
[http://dx.doi.org/10.1007/s11030-013-9457-7] [PMID: 23813045]
[48]
Bedel, O.; Haudrechy, A.; Pouilhès, A.; Langlois, Y. Syntheses of antiangiogenic or cytotoxic natural products: Fumagillin and bengacarboline. Pure Appl. Chem., 2005, 77(7), 1139-1152.
[http://dx.doi.org/10.1351/pac200577071139]
[49]
Annie, P.; Cyrille, K.; Yves, L.; Jean-Pierre, B.; Stéphane, V.; Jean-Philippe, A.; Jean-Marc, B.; Anna, K.; Christian, B. Synthesis and biological evaluation of bengacarboline derivatives. Bioorg. Med. Chem. Lett., 2008, 18, 1212-1216.
[50]
Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and cytotoxicity of novel 2,2′-bis- and 2,2′,2″-tris-indolylmethanes-based bengacarboline analogs. Arch. Pharm. Res., 2012, 35(6), 949-954.
[http://dx.doi.org/10.1007/s12272-012-0601-1] [PMID: 22870803]