Study on the Mechanism of Estrogen Regulating Endometrial Fibrosis After Mechanical Injury Via MIR-21-5P/PPARΑ/FAO Axis

Page: [516 - 523] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Intrauterine adhesion (IUA) caused by endometrial mechanical injury has been found as a substantial risk factor for female infertility (e.g., induced abortion). Estrogen is a classic drug for the repair of endometrial injury, but its action mechanism in the clinical application of endometrial fibrosis is still unclear.

Objective: To explore the specific action mechanism of estrogen treatment on IUA.

Methods: The IUA model in vivo and the isolated endometrial stromal cells (ESCs) model in vitro were built. Then CCK8 assay, Real-Time PCR, Western Blot and Dual- Luciferase Reporter Gene assay were applied to determine the targeting action of estrogen on ESCs.

Results: It was found that 17β-estradiol inhibited fibrosis of ESCs by down-regulating miR-21-5p level and activating PPARα signaling. Mechanistically, miR-21-5p significantly reduced the inhibitory effect of 17β-estradiol on fibrotic ESCs (ESCs-F) and its maker protein (e.g., α-SMA, collagen I, and fibronectin), where targeting to PPARα 3’- UTR and blocked its activation and transcription, thus lowering expressions of fatty acid oxidation (FAO) associated key enzyme, provoking fatty accumulation and reactive oxygen species (ROS) production, resulting in endometrial fibrosis. Nevertheless, the PPARα agonist caffeic acid counteracted the facilitation action of miR-21-5p on ESCs-F, which is consistent with the efficacy of estrogen intervention.

Conclusion: In brief, the above findings revealed that the miR-21-5p/PPARα signal axis played an important role in the fibrosis of endometrial mechanical injury and suggested that estrogen might be a promising agent for its progression.

[1]
Salazar CA, Isaacson K, Morris S. A comprehensive review of Asherman’s syndrome: Causes, symptoms and treatment options. Curr Opin Obstet Gynecol 2017; 29(4): 249-56.
[http://dx.doi.org/10.1097/GCO.0000000000000378] [PMID: 28582327]
[2]
Leung RKK, Lin Y, Liu Y. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis. Reprod Sci 2021; 28(7): 1812-26.
[http://dx.doi.org/10.1007/s43032-020-00343-y] [PMID: 33125685]
[3]
Zhao X, Liu Y, Zhang A, et al. Logistic regression analyses of factors affecting fertility of intrauterine adhesions patients. Ann Transl Med 2020; 8(4): 49.
[http://dx.doi.org/10.21037/atm.2019.11.115] [PMID: 32175343]
[4]
Young S, Evans-Hoeker E. Endometrial receptivity and intrauterine adhesive disease. Semin Reprod Med 2014; 32(5): 392-401.
[http://dx.doi.org/10.1055/s-0034-1376358] [PMID: 24959821]
[5]
Zhu HY, Ge TX, Pan YB, Zhang SY. Advanced role of hippo signaling in endometrial fibrosis. Chin Med J 2017; 130(22): 2732-7.
[http://dx.doi.org/10.4103/0366-6999.218013] [PMID: 29133764]
[6]
Lee WL, Liu CH, Cheng M, Chang WH, Liu WM, Wang PH. Focus on the primary prevention of intrauterine adhesions: Current concept and vision. Int J Mol Sci 2021; 22(10): 5175.
[http://dx.doi.org/10.3390/ijms22105175] [PMID: 34068335]
[7]
Min J, Lu N, Huang S, et al. Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: A comparison between intrauterine adhesion patients and healthy women. Am J Reprod Immunol 2021; 85(6): e13379.
[http://dx.doi.org/10.1111/aji.13379] [PMID: 33206449]
[8]
Johary J, Xue M, Zhu X, Xu D, Velu PP. Efficacy of estrogen therapy in patients with intrauterine adhesions: Systematic review. J Minim Invasive Gynecol 2014; 21(1): 44-54.
[http://dx.doi.org/10.1016/j.jmig.2013.07.018] [PMID: 23933351]
[9]
Zhang Y, Chen F, Li TC, Duan H, Wu YH. Effects of estradiol at different levels on rabbit endometrial repair after curettage. J Reprod Med 2017; 62(3-4): 138-46.
[PMID: 30230305]
[10]
Zhou Q, Wu X, Dai X, Yuan R, Qi H. The different dosages of estrogen affect endometrial fibrosis and receptivity, but not SDF-1/CXCR4 axis in the treatment of intrauterine adhesions. Gynecol Endocrinol 2018; 34(1): 49-55.
[http://dx.doi.org/10.1080/09513590.2017.1328050] [PMID: 28531361]
[11]
Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 2020; 19(1): 57-75.
[http://dx.doi.org/10.1038/s41573-019-0040-5] [PMID: 31548636]
[12]
Zhao X, Psarianos P, Ghoraie LS, et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat Metab 2019; 1(1): 147-57.
[http://dx.doi.org/10.1038/s42255-018-0008-5] [PMID: 32694814]
[13]
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62(3): 720-33.
[http://dx.doi.org/10.1016/j.jhep.2014.10.039] [PMID: 25450203]
[14]
Li Q, Yao Y, Shi S, et al. Inhibition of miR‐21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM. J Cell Mol Med 2020; 24(1): 910-20.
[http://dx.doi.org/10.1111/jcmm.14800] [PMID: 31680453]
[15]
Su B, Han H, Ji C, et al. MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA. Am J Physiol Renal Physiol 2020; 319(2): F202-14.
[http://dx.doi.org/10.1152/ajprenal.00132.2020] [PMID: 32628541]
[16]
Tan G, Xu F, Song H, et al. Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx. Front Immunol 2018; 9: 1872.
[http://dx.doi.org/10.3389/fimmu.2018.01872] [PMID: 30150992]
[17]
Song YT, Liu PC, Tan J, et al. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res Ther 2021; 12(1): 556.
[http://dx.doi.org/10.1186/s13287-021-02620-2] [PMID: 34717746]
[18]
Rockey DC, Bell PD, Hill JA. Fibrosis- a common pathway to organ injury and failure. N Engl J Med 2015; 372(12): 1138-49.
[http://dx.doi.org/10.1056/NEJMra1300575] [PMID: 25785971]
[19]
Rinella ME. Nonalcoholic fatty liver disease: A systematic review. JAMA 2015; 313(22): 2263-73.
[http://dx.doi.org/10.1001/jama.2015.5370] [PMID: 26057287]
[20]
Chung KW, Lee EK, Lee MK, Oh GT, Yu BP, Chung HY. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol 2018; 29(4): 1223-37.
[http://dx.doi.org/10.1681/ASN.2017070802] [PMID: 29440279]
[21]
Montagner A, Polizzi A, Fouché E, et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016; 65(7): 1202-14.
[http://dx.doi.org/10.1136/gutjnl-2015-310798] [PMID: 26838599]
[22]
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci 2021; 22(16): 8969.
[http://dx.doi.org/10.3390/ijms22168969] [PMID: 34445672]
[23]
Liu L, Wang Y, Yan R, et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci 2019; 238: 116957.
[http://dx.doi.org/10.1016/j.lfs.2019.116957] [PMID: 31655195]
[24]
Wang J, He F, Chen L, et al. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed Pharmacother 2018; 105: 37-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.104] [PMID: 29843043]
[25]
Chen Q, Qiu F, Zhou K, et al. Pathogenic Role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes 2017; 66(6): 1671-82.
[http://dx.doi.org/10.2337/db16-1246] [PMID: 28270521]
[26]
Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 2012; 4(121): 121ra18.
[http://dx.doi.org/10.1126/scitranslmed.3003205] [PMID: 22344686]
[27]
Gao L, Liu Y, Guo S, et al. LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling. Biochim Biophys Acta Mol Basis Dis 2018; 1864(10): 3322-38.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.019] [PMID: 30031228]
[28]
Lyu H, Li X, Wu Q, Hao L. Overexpression of microRNA-21 mediates Ang II-induced renal fibrosis by activating the TGF-β1/Smad3 pathway via suppressing PPARα. J Pharmacol Sci 2019; 141(1): 70-8.
[http://dx.doi.org/10.1016/j.jphs.2019.09.007] [PMID: 31611175]
[29]
Cao J, Liu D, Zhao S, et al. Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway. Braz J Med Biol Res 2020; 53(8): e9794.
[http://dx.doi.org/10.1590/1414-431x20209794] [PMID: 32638833]
[30]
Hou X, Pei F. Retracted article: Estradiol inhibits cytokine-induced expression of VCAM-1 and ICAM-1 in cultured human endothelial cells via AMPK/PPARα activation. Cell Biochem Biophys 2015; 72(3): 709-17.
[http://dx.doi.org/10.1007/s12013-015-0522-y] [PMID: 25627546]
[31]
Yan W, Chen C, Chen H. Estrogen downregulates miR-21 expression and induces inflammatory infiltration of macrophages in polymyositis: Role of CXCL10. Mol Neurobiol 2017; 54(3): 1631-41.
[http://dx.doi.org/10.1007/s12035-016-9769-6] [PMID: 26873848]