Association of Human Endogenous Retrovirus-W (HERV-W) Copies with Pemphigus Vulgaris

Page: [683 - 688] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Pemphigus is classified as a group of chronic, recurrent, and potentially fatal bullous autoimmune diseases that leads to blisters and skin lesions resulting from IgG antibodies and the loss of cellular connections in the epidermis. Human endogenous retrovirus (HERV) sequences and their products (RNA, cytosolic DNA, and proteins) can modulate the immune system and contribute to autoimmunity. The extent to which, HERV-W env copies may be involved in the pathogenesis of pemphigus remains to be elucidated.

Aim: This study aimed to comparatively evaluate the relative levels of HERV-W env DNA copy numbers in the peripheral blood mononuclear cells (PBMCs) of pemphigus vulgaris patients and healthy controls.

Methods: Thirty-one pemphigus patients and the corresponding age- and sex-matched healthy controls were included in the study. The relative levels of HERV-W env DNA copy numbers were then evaluated by qPCR using specific primers, in the PBMCs of the patients and controls.

Results: Our results indicated that relative levels of HERV-W env DNA copy numbers in the patients were significantly higher than that in the controls (1.67±0.86 vs. 1.17±0.75; p = 0.02). There was also a significant difference between the HERV-W env copies of male and female patients (p = 0.001). Furthermore, there was no relationship between the HERV-W env copy number and disease onset (p = 0.19) . According to the obtained data, we could not find any relationship between the HERV-W env copy number and serum Dsg1(p=0.86) and Dsg3 (p=0.76) levels.

Conclusion: Our results indicated a positive link between the HERV-W env copies and pathogenesis of pemphigus. The association between clinical severity score and HERVW env copies in the PBMCs as a biomarker for pemphigus needs further studies.

[1]
Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al. Pemphigus. Nat Rev Dis Primers 2017; 3(1): 17026.
[http://dx.doi.org/10.1038/nrdp.2017.26] [PMID: 28492232]
[2]
Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019; 2: 100014.
[http://dx.doi.org/10.1016/j.jtauto.2019.100014] [PMID: 32743502]
[3]
Kárpáti S. Amagai M, Prussick R, Cehrs K, Stanley JR. Pemphigus vulgaris antigen, a desmoglein type of cadherin, is localized within keratinocyte desmosomes. J Cell Biol 1993; 122(2): 409-15.
[http://dx.doi.org/10.1083/jcb.122.2.409] [PMID: 8320263]
[4]
Koch PJ, Walsh MJ, Schmelz M, Goldschmidt MD, Zimbelmann R, Franke WW. Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur J Cell Biol 1990; 53(1): 1-12.
[PMID: 1706270]
[5]
Amagai M, Koch PJ, Nishikawa T, Stanley JR. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J Invest Dermatol 1996; 106(2): 351-5.
[http://dx.doi.org/10.1111/1523-1747.ep12343081] [PMID: 8601740]
[6]
Amagai M. Autoimmune and infectious skin diseases that target desmogleins. Proc Jpn Acad, Ser B, Phys Biol Sci 2010; 86(5): 524-37.
[http://dx.doi.org/10.2183/pjab.86.524] [PMID: 20467217]
[7]
Ruocco E, Wolf R, Ruocco V, Brunetti G, Romano F, Lo Schiavo A. Pemphigus: Associations and management guidelines: Facts and controversies. Clin Dermatol 2013; 31(4): 382-90.
[http://dx.doi.org/10.1016/j.clindermatol.2013.01.005] [PMID: 23806155]
[8]
Lo Schiavo A, Ruocco E, Brancaccio G, Caccavale S, Ruocco V, Wolf R. Bullous pemphigoid: Etiology, pathogenesis, and inducing factors: Facts and controversies. Clin Dermatol 2013; 31(4): 391-9.
[http://dx.doi.org/10.1016/j.clindermatol.2013.01.006] [PMID: 23806156]
[9]
Gil JM, Weber R, Rosales CB, et al. Study of the association between human leukocyte antigens (HLA) and pemphigus vulgaris in Brazilian patients. Int J Dermatol 2017; 56(5): 557-62.
[http://dx.doi.org/10.1111/ijd.13577] [PMID: 28197992]
[10]
Yang J, Siqueira MF, Behl Y, Alikhani M, Graves DT. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. FASEB J 2008; 22(11): 3956-67.
[http://dx.doi.org/10.1096/fj.08-111013] [PMID: 18676404]
[11]
Vodo D, Sarig O, Geller S, et al. Identification of a functional risk variant for pemphigus vulgaris in the ST18 gene. PLoS Genet 2016; 12(5): e1006008.
[http://dx.doi.org/10.1371/journal.pgen.1006008] [PMID: 27148741]
[12]
Karimi A, Madjd Z, Habibi L, Akrami SM. Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells. Biol Trace Elem Res 2014; 160(1): 143-51.
[http://dx.doi.org/10.1007/s12011-014-0015-7] [PMID: 24894828]
[13]
Costas J. Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol Biol Evol 2002; 19(4): 526-33.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a004108] [PMID: 11919294]
[14]
Mason AL, Xu L, Guo L, Garry RF. Retroviruses in autoimmune liver disease: Genetic or environmental agents? Arch Immunol Ther Exp 1999; 47(5): 289-97.
[PMID: 10604234]
[15]
Mommert M, Tabone O, Oriol G, et al. LTR-retrotransposon transcriptome modulation in response to endotoxin-induced stress in PBMCs. BMC Genomics 2018; 19(1): 522.
[http://dx.doi.org/10.1186/s12864-018-4901-9] [PMID: 29976163]
[16]
Perron H, Garson JA, Bedin F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci 1997; 94(14): 7583-8.
[http://dx.doi.org/10.1073/pnas.94.14.7583]
[17]
Blond JL, Besème F, Duret L, et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 1999; 73(2): 1175-85.
[http://dx.doi.org/10.1128/JVI.73.2.1175-1185.1999] [PMID: 9882319]
[18]
de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T. Survey of human genes of retroviral origin: Identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 2003; 77(19): 10414-22.
[http://dx.doi.org/10.1128/JVI.77.19.10414-10422.2003] [PMID: 12970426]
[19]
Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000; 403(6771): 785-9.
[http://dx.doi.org/10.1038/35001608] [PMID: 10693809]
[20]
Grandi N, Tramontano E. HERV envelope proteins: Physiological role and pathogenic potential in cancer and autoimmunity. Front Microbiol 2018; 9(462): 462.
[http://dx.doi.org/10.3389/fmicb.2018.00462] [PMID: 29593697]
[21]
Grِger V, Emmer A, Staege M, Cynis H. Endogenous retroviruses in nervous system disorders. Pharmaceuticals 2021; 14(1): 70.
[http://dx.doi.org/10.3390/ph14010070] [PMID: 33467098]
[22]
Laska MJ, Troldborg A, Hauge EM, Bahrami S, Stengaard-Pedersen K. Human endogenous retroviral genetic element with immunosuppressive activity in both human autoimmune diseases and experimental arthritis. Arthritis Rheumatol 2017; 69(2): 398-409.
[http://dx.doi.org/10.1002/art.39867] [PMID: 27696782]
[23]
Karimi A, Esmaili N, Ranjkesh M, Zolfaghari MA. Expression of human endogenous retroviruses in pemphigus vulgaris patients. Mol Biol Rep 2019; 46(6): 6181-6.
[http://dx.doi.org/10.1007/s11033-019-05053-6] [PMID: 31473891]
[24]
Molès J-P, Tesniere A, Guilhou J-J. A new endogenous retroviral sequence is expressed in skin of patients with psoriasis. Br J Dermatol 2005; 153(1): 83-9.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06555.x] [PMID: 16029331]
[25]
Ma L, Chung WK. Quantitative analysis of copy number variants based on real-time LightCycler PCR. Curr Protoc Hum Genet 2014; 80: 7.21.1-7.21.7.21.8..
[http://dx.doi.org/10.1002/0471142905.hg0721s80]
[26]
Karimi A, Madjd Z, Habibi L, Akrami SM. Exposure of hepatocellular carcinoma cells to low-level As2O3 causes an extra toxicity pathway via L1 retrotransposition induction. Toxicol Lett 2014; 229(1): 111-7.
[http://dx.doi.org/10.1016/j.toxlet.2014.05.025] [PMID: 24960058]
[27]
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules 2020; 10(7): 1044.
[http://dx.doi.org/10.3390/biom10071044] [PMID: 32674342]
[28]
Brodziak A, Ziَółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Kokot T, Klakla K. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med Sci Monit 2012; 18(6): RA80-8.
[PMID: 22648263]
[29]
Balada E, Vilardell-Tarrés M, Ordi-Ros J. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int Rev Immunol 2010; 29(4): 351-70.
[http://dx.doi.org/10.3109/08830185.2010.485333] [PMID: 20635879]
[30]
Emmer A, Staege MS, Kornhuber ME. The retrovirus/ superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol 2014; 34(8): 1087-96.
[http://dx.doi.org/10.1007/s10571-014-0100-7] [PMID: 25138639]
[31]
Romano CM. Erratum: Genomic analysis of ERVWE2 locus in patients with Multiple sclerosis: Absence of genetic association but potential role of Human Endogenous retrovirus type W elements in molecular mimicry with myelin antigen. Front Microbiol 2013; 4: 345.
[http://dx.doi.org/10.3389/fmicb.2013.00345] [PMID: 24302922]
[32]
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative roles for epstein-barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Front Immunol 2021; 12: 757302.
[http://dx.doi.org/10.3389/fimmu.2021.757302] [PMID: 34790199]
[33]
Mameli G, Poddighe L, Astone V, et al. Novel reliable real time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 2009; 161(1): 98-106.
[http://dx.doi.org/10.1016/j.jviromet.2009.05.024] [PMID: 19505508]
[34]
Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, et al. The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One 2013; 8(1): e53623.
[http://dx.doi.org/10.1371/journal.pone.0053623] [PMID: 23308264]