Thiazole Derivatives as RORγt Inhibitors: Synthesis, Biological Evaluation, and Docking Analysis

Page: [905 - 917] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer is a serious concern in developing countries. Due to various worldwide impacts, it has surpassed coronary disorders becoming the leading cause of mortality. In cancer progression, the involvement of RORs (retinoic acid receptor-related orphan receptors) has gained attention in the search for versatile agents. Thiazole has the potential to be used as a scaffold in the development of anticancer drugs.

Objective: This work’s major goal was to design and synthesize promising anticancer candidates.

Methods: Docking investigations concerning the RORγt receptor were utilized in the design of the compounds. A series of novel thiazole derivatives was synthesized employing Hantsch synthesis. Melting points, TLC development, and spectral analyses were considered for the synthesized compounds' characterization. Corresponding spectra were analyzed and determined to be consistent with the assigned structure. On 60 human cancer cell lines, selected compounds were investigated in vitro by NCI (National Cancer Institute), USA, for anticancer action.

Results: Varying ratios of anticancer potential were presented by the compounds in in vitro studies. Compound 3c was determined to be the most active compound in the series, with a -15.03 mean growth percent. In silico study revealed that the synthesized compounds could have anticancer possibilities. In the targeted pdb id (6q7a) binding site, compound 3c demonstrated excellent docking scores in molecular docking analyses, supporting its ability to be utilized as a lead compound in rational drug design.

Conclusion: Compounds with satisfactory docking scores within the binding pocket of chosen pdb id (6q7a) validated their suitability for usage as lead compounds in rational drug design. Outcomes of in silico investigations were in agreement with the findings of the cytotoxicity experiments. Leukemia, renal, breast, and lung cancer cell lines were most sensitive to the substance-treated tumor cells. Electronwithdrawing groups were essential for antiproliferative action, according to the findings.

Graphical Abstract

[1]
Nayak, S.; Gaonkar, S.L.; Musad, E.A.; Dawsar, A.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc., 2021, 25(8), 101284.
[http://dx.doi.org/10.1016/j.jscs.2021.101284]
[2]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540.
[http://dx.doi.org/10.2174/1570180819666220117123958]
[3]
Abdel-Rahman, S.A.; El-Damasy, A.K.; Hassan, G.S.; Wafa, E.I.; Geary, S.M.; Maarouf, A.R.; Salem, A.K. Cyclohepta[ b ]thiophenes as potential antiproliferative agents: Design, synthesis, in vitro, and in vivo anticancer evaluation. ACS Pharmacol. Transl. Sci., 2020, 3(5), 965-977.
[http://dx.doi.org/10.1021/acsptsci.0c00096] [PMID: 33073194]
[4]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, pharmacological evaluation, and in silico studies of thiophene derivatives. Oncologie, 2021, 23(4), 493-514.
[http://dx.doi.org/10.32604/oncologie.2021.018532]
[5]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[6]
Syed, T.; Asiri, Y.I.; Shaheen, S.; Gangarapu, K. Design, synthesis and anticancer evaluation of structurally modified substituted aryl-quinazoline derivatives as anticancer agents. Synth. Commun., 2021, 51(18), 2782-2795.
[http://dx.doi.org/10.1080/00397911.2021.1941113]
[7]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis and pharmacological study of thiophene derivatives. Int. J. Pharm. Qual. Assur., 2021, 12(3), 282-291.
[8]
Kumar, N.; Bhatnagar, A.; Dudhe, R. Synthesis of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl)-2H-chromen-2-one derivatives and evaluation of their anticancer activity. Arab. J. Chem., 2017, 10, S2443-S2452.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.008]
[9]
Li, Q.; Chen, L.; Jian, X.E.; Lv, D.X.; You, W.W.; Zhao, P.L. Design, synthesis and antiproliferative activity of novel 2,4-diamino-5-methyleneaminopyrimidine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2021, 47(128213), 128213.
[http://dx.doi.org/10.1016/j.bmcl.2021.128213] [PMID: 34157389]
[10]
Monsef, R.; Salavati-Niasari, M. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J. Colloid Interface Sci., 2022, 613, 1-14.
[http://dx.doi.org/10.1016/j.jcis.2022.01.039] [PMID: 35030412]
[11]
Ghiyasiyan-Arani, M.; Salavati-Niasari, M.; Naseh, S. Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason. Sonochem., 2017, 39, 494-503.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.025] [PMID: 28732973]
[12]
Panahi-Kalamuei, M.; Alizadeh, S.; Mousavi-Kamazani, M.; Salavati-Niasari, M. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Ind. Eng. Chem., 2015, 21, 1301-1305.
[http://dx.doi.org/10.1016/j.jiec.2014.05.046]
[13]
Gholami, T.; Salavati-Niasari, M.; Varshoy, S. Electrochemical hydrogen storage capacity and optical properties of NiAl2O4/NiO nanocomposite synthesized by green method. Int. J. Hydrogen Energy, 2017, 42(8), 5235-5245.
[http://dx.doi.org/10.1016/j.ijhydene.2016.10.132]
[14]
Monsef, R.; Ghiyasiyan-Arani, M.; Salavati-Niasari, M. Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason. Sonochem., 2018, 42, 201-211.
[http://dx.doi.org/10.1016/j.ultsonch.2017.11.025] [PMID: 29429662]
[15]
Mir, N.; Salavati-Niasari, M. Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol-gel method and their application in dye-sensitized solar cells. Mater. Res. Bull., 2013, 48(4), 1660-1667.
[http://dx.doi.org/10.1016/j.materresbull.2013.01.006]
[16]
Amiri, M.; Eskandari, K.; Salavati-Niasari, M. Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci., 2019, 271(101982), 101982.
[http://dx.doi.org/10.1016/j.cis.2019.07.003] [PMID: 31325653]
[17]
Monsef, R.; Salavati-Niasari, M. Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens. Bioelectron., 2021, 178(113017), 113017.
[http://dx.doi.org/10.1016/j.bios.2021.113017] [PMID: 33493895]
[18]
Yousefi, S.R.; Sobhani, A.; Alshamsi, H.A.; Salavati-Niasari, M. Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Advances, 2021, 11(19), 11500-11512.
[http://dx.doi.org/10.1039/D0RA10288A] [PMID: 35423650]
[19]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4(10), e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[20]
Marin, J.J.G.; Romero, M.R.; Blazquez, A.G.; Herraez, E.; Keck, E.; Briz, O. Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anticancer. Agents Med. Chem., 2009, 9(2), 162-184.
[http://dx.doi.org/10.2174/187152009787313828] [PMID: 19199863]
[21]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[22]
Zimmermann, S.; Dziadziuszko, R.; Peters, S. Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases. Cancer Treat. Rev., 2014, 40(6), 716-722.
[http://dx.doi.org/10.1016/j.ctrv.2014.03.005] [PMID: 24759599]
[23]
Ismael, G.F.V.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev., 2008, 34(1), 81-91.
[http://dx.doi.org/10.1016/j.ctrv.2007.08.001] [PMID: 17905518]
[24]
Lu, Y.; Mahato, R.I. Pharmaceutical perspectives of cancer therapeutics; Springer: New York, NY, 2016.
[25]
Mishra, R.; Kumar, N.; Sachan, N. Thiophene and its analogs as prospective antioxidant agents: A retrospect. Mini Rev. Med. Chem., 2021, 21.
[http://dx.doi.org/10.2174/1389557521666211022145458]
[26]
Bahadur, S.; Prakash, A. A comprehensive review on nanomedicine: Promising approach for treatment of brain tumor through intranasal administration. Curr. Drug Targets, 2022, 24(1), 71-88.
[http://dx.doi.org/10.2174/1389450124666221019141044]
[27]
Rizwanullah, M.; Ahmad, M. Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application Biochim. Biophys. Acta Gen. Subj., 2021, 1865(9), 129936.
[http://dx.doi.org/10.1016/j.bbagen.2021.129936]
[28]
Yadav, D.; Semwal, B.C.; Dewangan, H.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J. Biomater. Sci. Polym. Ed., 2022, 1-14.
[http://dx.doi.org/10.1080/09205063.2022.215578]
[29]
Pandey, S. N.; Singh, G.; Semwal, B. C.; Gupta, G.; Alharbi, K. S.; Almalki, W. H.; Albratty, M.; Najmi, A.; Meraya, A. M. TherapeuAnticancertic approaches of nutraceuticals in the prevention of alzheimer’s disease. J. Food Biochem., 2022, , 46.(12) e14426.
[http://dx.doi.org/10.1111/jfbc.14426]
[30]
Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem., 2020, 57(6), 2304-2329.
[http://dx.doi.org/10.1002/jhet.3970]
[31]
Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene scaffold as prospective antimicrobial agent: A review: Thiophene as antimicrobial agent: A review. J. Heterocycl. Chem., 2018, 55(9), 2019-2034.
[http://dx.doi.org/10.1002/jhet.3249]
[32]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6]
[33]
Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965.
[http://dx.doi.org/10.2174/1389557520666200715104555]
[34]
Mishra, R.; Sharma, P.K.; Verma, P.K.; Tomer, I.; Mathur, G.; Dhakad, P.K. Biological potential of thiazole derivatives of synthetic origin. J. Heterocycl. Chem., 2017, 54(4), 2103-2116.
[http://dx.doi.org/10.1002/jhet.2827]
[35]
Mishra, R.; Tomar, I. Pyrimidine: The molecule of diverse biological and medicinal importance. Int. J. Pharm. Sci. Res., 2011, 2(4), 758.
[36]
Tomer, I.; Mishra, R. Priyanka; Sharma, N.K.; Jha, K.K. Oxazole: The molecule of diverse biological and medicinal significance. J. Pharm. Res., 2011, 4(9), 2975-2980.
[37]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I. Synthesis, properties and biological activity of thiophene: A review. Der Pharma Chem., 2011, 3(4), 38-54.
[38]
Elewa, S.I.; Mansour, E.; Nassar, I.F.; Mekawey, A.A.I. Synthesis of some new pyrazoline-based thiazole derivatives and evaluation of their antimicrobial, antifungal, and anticancer activities. Russ. J. Bioorganic Chem., 2020, 46(3), 382-392.
[http://dx.doi.org/10.1134/s1068162020030061]
[39]
Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.; Bavantula, R. 1,2,3-triazole-thiazole hybrids: synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33(127746), 127746.
[http://dx.doi.org/10.1016/j.bmcl.2020.127746]
[40]
Tratrat, C.; Haroun, M.; Paparisva, A.; Kamoutsis, C.; Petrou, A.; Gavalas, A.; Eleftheriou, P.; Geronikaki, A.; Venugopala, K.N.; Kochkar, H.; Nair, A.B. New substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones as possible anti-inflammatory agents. Molecules, 2021, 26(3), 659.
[http://dx.doi.org/10.3390/molecules26030659]
[41]
Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents. Sci. Pharm., 2020, 88(1), 16.
[http://dx.doi.org/10.3390/scipharm88010016]
[42]
Lamut, A.; Gjorgjieva, M.; Naesens, L.; Liekens, S.; Lillsunde, K-E.; Tammela, P.; Kikelj, D. Tomašič, T. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg. Chem., 2020, 98(103733), 103733.
[http://dx.doi.org/10.1016/j.bioorg.2020.103733]
[43]
Alqahtani, A.M.; Bayazeed, A.A. Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. Arab. J. Chem., 2021, 14(1), 102914.
[http://dx.doi.org/10.1016/j.arabjc.2020.11.020]
[44]
Isha; Sachan, N. Design, synthesis and biological assessment of thiazole derivatives as possible antioxidant and antimicrobial agents. J. Pharm. Res. Int., 2021, 24-32.
[http://dx.doi.org/10.9734/jpri/2021/v33i53a33635]
[45]
Zhang, Y.; Luo, X.Y.; Wu, D.H.; Xu, Y. ROR nuclear receptors: Structures, related diseases, and drug discovery. Acta Pharmacol. Sin., 2015, 36(1), 71-87.
[http://dx.doi.org/10.1038/aps.2014.120]
[46]
Giguere, V. Orphan nuclear receptors: From gene to function. Endocr. Rev., 1999, 20(5), 689-725.
[http://dx.doi.org/10.1210/er.20.5.689]
[47]
Laudet, V. Evolution of the nuclear receptor superfamily: Early diversification from an ancestral orphan receptor. J. Mol. Endocrinol., 1997, 19(3), 207-226.
[48]
Hummasti, S.; Tontonoz, P. Adopting new orphans into the family of metabolic regulators. Mol. Endocrinol., 2008, 22(8), 1743-1753.
[http://dx.doi.org/10.1210/me.2007-0566]
[49]
Ortiz, M.A. TOR: A new orphan receptor expressed in the thymus that can modulate retinoid and thyroid hormone signals. Mol. Endocrinol., 1995, 9(12), 1679-1691.
[http://dx.doi.org/10.1210/me.9.12.1679]
[50]
Fan, J.; Lv, Z.; Yang, G.; Liao, T.T.; Xu, J.; Wu, F.; Huang, Q.; Guo, M.; Hu, G.; Zhou, M.; Duan, L.; Liu, S.; Jin, Y. Retinoic acid receptor-related orphan receptors: Critical roles in tumorigenesis. Front. Immunol., 2018, 9.
[http://dx.doi.org/10.3389/fimmu.2018.01187]
[51]
Huh, J.R.; Littman, D.R. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications: HIGHLIGHTS. Eur. J. Immunol., 2012, 42(9), 2232-2237.
[http://dx.doi.org/10.1002/eji.201242740]
[52]
Lee, E.J.; Park, H.J.; Lee, I.J.; Kim, W.W.; Ha, S.J.; Suh, Y.G.; Seong, J. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds. PLoS One, 2014, 9(9), e106423.
[http://dx.doi.org/10.1371/journal.pone.0106423]
[53]
Saddawi-Konefka, R.; Seelige, R.; Gross, E.T.E.; Levy, E.; Searles, S.C.; Washington, A., Jr; Santosa, E.K.; Liu, B.; O’Sullivan, T.E.; Harismendy, O.; Bui, J.D. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep., 2016, 16(9), 2348-2358.
[http://dx.doi.org/10.1016/j.celrep.2016.07.075]
[54]
Wu, F.; Xu, J.; Huang, Q.; Han, J.; Duan, L.; Fan, J.; Lv, Z.; Guo, M.; Hu, G.; Chen, L.; Zhang, S.; Tao, X.; Ma, W.; Jin, Y. The role of interleukin-17 in lung cancer. Mediators Inflamm., 2016, 2016, 8494079.
[http://dx.doi.org/10.1155/2016/8494079]
[55]
Hoegenauer, K.; Kallen, J.; Jiménez-Núñez, E.; Strang, R.; Ertl, P.; Cooke, N.G.; Hintermann, S.; Voegtle, M.; Betschart, C.; McKay, D.J.J.; Wagner, J.; Ottl, J.; Beerli, C.; Billich, A.; Dawson, J.; Kaupmann, K.; Streiff, M.; Gobeau, N.; Harlfinger, S.; Stringer, R.; Guntermann, C. Structure-based and property-driven optimization of N-aryl imidazoles toward potent and selective oral RORγt inhibitors. J. Med. Chem., 2019, 62(23), 10816-10832.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01291]