A Review on the Synthesis and Anticancer Potentials of Imidazothiazole Derivatives

Page: [1733 - 1759] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Cancer is one of the severe diseases in which abnormal cells divide and proliferate in an uncontrolled manner without any regulation. Globally cancer is among the leading causes of death; according to a recent report of by the WHO, around 10 million people died in 2018 due to cancer. It has also been reported that by 2040, approximately 30 million new cases will be reported every year. The increase in the incidences of cancer is taking a toll on the health care system worldwide. Considerable scientific literature is available on anticancer agents but newer therapeutic strategies are still required in this field to address novel approaches to drug design and discovery to counter this problem. Imidazothiazole represents a privileged scaffold in medicinal chemistry and provides the medicinal chemist the possibility to modulate the physiochemical properties of the lead compound. In recent times, imidazothiazole scaffold is broadly explored for its anticancer activity, which acts through various mechanisms such as EGFR, B-RAF, DHFR kinase inhibition and tubulin polymerization inhibition and other molecular mechanisms of action. Due to their feasible synthetic accessibility and promising pharmacological profile, it has attracted various medicinal chemists to explore and develop imidazothiazole derivatives as potent and safe anticancer agents. In the present article, we have reviewed various potent imidazothiazole scaffold-based derivatives reported as anticancer agents, their synthetic strategies, Structure Activity Relationship (SAR), mechanism of action, and molecular docking along with their future perspective. This review will be very useful for medicinal chemists for drug design and development of imidazothiazole-based potent antiproliferative agents.

Graphical Abstract

[1]
Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem., 2022, 5, 100042.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100042]
[2]
Islami, F.; Guerra, C.E.; Minihan, A.; Yabroff, K.R.; Fedewa, S.A.; Sloan, K.; Wiedt, T.L.; Thomson, B.; Siegel, R.L.; Nargis, N.; Winn, R.A.; Lacasse, L.; Makaroff, L.; Daniels, E.C.; Patel, A.V.; Cance, W.G.; Jemal, A. American Cancer Society’s report on the status of cancer disparities in the United States, 2021. CA Cancer J. Clin., 2022, 72(2), 112-143.
[http://dx.doi.org/10.3322/caac.21703] [PMID: 34878180]
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[4]
Haider, K.; Das, S.; Joseph, A.; Yar, M.S. An appraisal of anticancer activity with structure–activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev. Res., 2022, 83(4), 859-890.
[http://dx.doi.org/10.1002/ddr.21925] [PMID: 35297084]
[5]
Jazieh, A.R.; Alkaiyat, M.; Abuelgasim, K.A.; Ardah, H. The trends of cancer patients’ perceptions on the causes and risk factors of cancer over time. Saudi Med. J., 2022, 43(5), 479-485.
[http://dx.doi.org/10.15537/smj.2022.43.5.20210742] [PMID: 35537737]
[6]
Sangamithra, A. The Causes of Cancer: An Analysis of Avoidable Risk Factors. Shanlax Int. J. Econ., 2021, 9(2), 37-40.
[http://dx.doi.org/10.34293/economics.v9i2.3727]
[7]
Haider, K.; Shrivastava, N.; Pathak, A.; Dewangan, R.P.; Yahya, S. Yar, MS Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents. Results Chem., 2021, 4, 100258.
[8]
Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as potential anticancer agents: An update on recent studies. Molecules, 2021, 26(14), 4213.
[http://dx.doi.org/10.3390/molecules26144213] [PMID: 34299488]
[9]
Sbenati, R.M.; Semreen, M.H.; Semreen, A.M.; Shehata, M.K.; Alsaghir, F.M.; El-Gamal, M.I. Evaluation of imidazo[2,1–b]thiazole-based anticancer agents in one decade (2011–2020): Current status and future prospects. Bioorg. Med. Chem., 2021, 29, 115897.
[http://dx.doi.org/10.1016/j.bmc.2020.115897] [PMID: 33316752]
[10]
Jaitak, V. Sahil; Kaur, K. Thiazole and related heterocyclic systems as anticancer agents: A review on synthetic strategies, mechanisms of action and SAR Studies. Curr. Med. Chem., 2022, 29(29), 4958-5009.
[http://dx.doi.org/10.2174/0929867329666220318100019] [PMID: 35306982]
[11]
Ahmed, A.; Molvi, K.I.; Patel, H.M.; Ullah, R.; Bari, A. Synthesis of novel 2, 3, 5-tri-substituted thiazoles with anti-inflammatory and antibacterial effect causing clinical pathogens. J. Infect. Public Health, 2020, 13(4), 472-479.
[http://dx.doi.org/10.1016/j.jiph.2020.02.002] [PMID: 32139293]
[12]
Koudad, M.; El Hamouti, C.; Elaatiaoui, A.; Dadou, S.; Oussaid, A.; Abrigach, F.; Pilet, G.; Benchat, N.; Allali, M. Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives. J. Indian Chem. Soc., 2020, 17(2), 297-306.
[13]
Kassab, R.M.; Gomha, S.M.; Muhammad, Z.A.; El-khouly, A.S. Synthesis, biological profile, and molecular docking of some new bis-imidazole fused templates and investigation of their cytotoxic potential as anti-tubercular and/or anticancer prototypes. Med. Chem., 2021, 17(8), 875-886.
[http://dx.doi.org/10.2174/1573406417666201208121458] [PMID: 33292124]
[14]
Tran, T.N.; Henary, M. Synthesis and applications of nitrogen-containing heterocycles as antiviral agents. Molecules, 2022, 27(9), 2700.
[http://dx.doi.org/10.3390/molecules27092700] [PMID: 35566055]
[15]
Borrego-Muñoz, P.; Ospina, F.; Quiroga, D. A compendium of the most promising synthesized organic compounds against several Fusarium oxysporum species: Synthesis, antifungal activity, and perspectives. Molecules, 2021, 26(13), 3997.
[http://dx.doi.org/10.3390/molecules26133997] [PMID: 34208916]
[16]
Kieć-Kononowicz, K.; Robak, J. Evaluation of mercaptoalkyl derivatives of imidazolidine-4-one as potential antioxidants and free radical scavengers. Farmaco, 1996, 51(12), 819-24.
[17]
Andreani, A.; Cavalli, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Recanatini, M.; Garnier, M.; Meijer, L. Imidazo[2,1 -b]thiazolylmethylene- and indolylmethylene-2-indolinones: A new class of cyclin-dependent kinase inhibitors. Design, synthesis, and CDK1/cyclin B inhibition. Anticancer Drug Des., 2000, 15(6), 447-452.
[PMID: 11716438]
[18]
Symoens, J.; Schuermans, Y. Immunopharmacology of levamisole. Z. Hautkr., 1979, 54(9), 394-402.
[PMID: 375604]
[19]
Clegg, W.; Jamieson, C. Pifithrin-β. Acta Crystallogr. Sect. E Struct. Rep. Online, 2005, 61(5), o1486-o1488.
[http://dx.doi.org/10.1107/S160053680501264X]
[20]
Thienpont, D.; Vanparijs, O.F.J.; Raeymaekers, A.H.M.; Vandenberk, J.; Demoen, P.J.A.; Allewijn, F.T.N.; Marsboom, R.P.H.; Niemegeers, C.J.E.; Schellekens, K.H.L.; Janssen, P.A.J. Tetramisole (R 8299), a new, potent broad spectrum anthelmintic. Nature, 1966, 209(5028), 1084-1086.
[http://dx.doi.org/10.1038/2091084a0] [PMID: 5925183]
[21]
Zhou, F.; Ge, Z.; Chen, B. Quizartinib (AC220): A promising option for acute myeloid leukemia. Drug Des. Devel. Ther., 2019, 13, 1117-1125.
[http://dx.doi.org/10.2147/DDDT.S198950] [PMID: 31114157]
[22]
Kampa-Schittenhelm, K.M.; Heinrich, M.C.; Akmut, F.; Döhner, H.; Döhner, K.; Schittenhelm, M.M. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT iso-forms. Mol. Cancer, 2013, 12(1), 19.
[http://dx.doi.org/10.1186/1476-4598-12-19] [PMID: 23497317]
[23]
Minor, R.K.; Baur, J.A.; Gomes, A.P.; Ward, T.M.; Csiszar, A.; Mercken, E.M.; Abdelmohsen, K.; Shin, Y.K.; Canto, C.; Scheibye-Knudsen, M.; Krawczyk, M.; Irusta, P.M.; Martín-Montalvo, A.; Hubbard, B.P.; Zhang, Y.; Lehrmann, E.; White, A.A.; Price, N.L.; Swindell, W.R.; Pearson, K.J.; Becker, K.G.; Bohr, V.A.; Gorospe, M.; Egan, J.M.; Talan, M.I.; Auwerx, J.; Westphal, C.H.; Ellis, J.L.; Ungvari, Z.; Vlasuk, G.P.; Elliott, P.J.; Sinclair, D.A.; de Cabo, R. SRT1720 improves survival and healthspan of obese mice. Sci. Rep., 2011, 1(1), 70.
[http://dx.doi.org/10.1038/srep00070] [PMID: 22355589]
[24]
Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; Qiu, X.; Stockman, B.; Thanabal, V.; Varghese, A.; Ward, J.; Withka, J.; Ahn, K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem., 2010, 285(11), 8340-8351.
[http://dx.doi.org/10.1074/jbc.M109.088682] [PMID: 20061378]
[25]
Bhatia, P.; Sharma, V.; Alam, O.; Manaithiya, A.; Alam, P. Kahksha; Alam, M.T.; Imran, M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem., 2020, 204, 112640.
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[26]
Nerdy, N.; Lestari, P.; Fahdi, F.; Putra, E.D.L.; Amir, S.A.B.; Yusuf, F.; Bakri, T.K. In silico studies of sesquiterpene lactones from vernonia amygdalina delile on the expression of EGFR and VEGFR as a new anticancer potential. Pharmacogn. J., 2022, 14(1), 91-97.
[http://dx.doi.org/10.5530/pj.2022.14.13]
[27]
Singh, D.; Kumar Attri, B.; Kaur Gill, R.; Bariwal, J. Review on EGFR inhibitors: Critical updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917] [PMID: 26996617]
[28]
Reid, A.; Vidal, L.; Shaw, H.; de Bono, J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer, 2007, 43(3), 481-489.
[http://dx.doi.org/10.1016/j.ejca.2006.11.007] [PMID: 17208435]
[29]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[30]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[31]
Du, X.; Yang, B.; An, Q.; Assaraf, Y.G.; Cao, X.; Xia, J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation, 2021, 2(2), 100103.
[http://dx.doi.org/10.1016/j.xinn.2021.100103] [PMID: 34557754]
[32]
Abd El-Meguid, E.A.; Naglah, A.M.; Moustafa, G.O.; Awad, H.M.; El Kerdawy, A.M. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: Synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg. Med. Chem. Lett., 2022, 58, 128529.
[http://dx.doi.org/10.1016/j.bmcl.2022.128529] [PMID: 35007724]
[33]
Deng, X.; Tan, X.; An, T.; Ma, Q.; Jin, Z.; Wang, C.; Meng, Q.; Hu, C. Synthesis, characterization, and biological activity of a novel series of Benzo [4, 5] imidazo [2, 1-b] thiazole derivatives as potential epidermal growth factor receptor inhibitors. Molecules, 2019, 24(4), 682.
[http://dx.doi.org/10.3390/molecules24040682] [PMID: 30769844]
[34]
Segers, V.F.M.; Dugaucquier, L.; Feyen, E.; Shakeri, H.; De Keulenaer, G.W. The role of ErbB4 in cancer. Cell Oncol. (Dordr.), 2020, 43(3), 335-352.
[http://dx.doi.org/10.1007/s13402-020-00499-4] [PMID: 32219702]
[35]
Sundvall, M.; Iljin, K.; Kilpinen, S.; Sara, H.; Kallioniemi, O.P.; Elenius, K. Role of ErbB4 in breast cancer. J. Mammary Gland Biol. Neoplasia, 2008, 13(2), 259-268.
[http://dx.doi.org/10.1007/s10911-008-9079-3] [PMID: 18454307]
[36]
Lucas, L.M.; Dwivedi, V.; Senfeld, J.I.; Cullum, R.L.; Mill, C.P.; Piazza, J.T.; Bryant, I.N.; Cook, L.J.; Miller, S.T.; Lott, J.H., IV; Kelley, C.M.; Knerr, E.L.; Markham, J.A.; Kaufmann, D.P.; Jacobi, M.A.; Shen, J.; Riese, D.J., II The Yin and Yang of ERBB4: Tumor Suppressor and oncoprotein. Pharmacol. Rev., 2022, 74(1), 18-47.
[http://dx.doi.org/10.1124/pharmrev.121.000381] [PMID: 34987087]
[37]
Xu, J.; Gong, L.; Qian, Z.; Song, G.; Liu, J. ERBB4 promotes the proliferation of gastric cancer cells via the PI3K/Akt signaling pathway. Oncol. Rep., 2018, 39(6), 2892-2898.
[http://dx.doi.org/10.3892/or.2018.6343] [PMID: 29620274]
[38]
Kurppa, K.J.; Denessiouk, K.; Johnson, M.S.; Elenius, K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene, 2016, 35(10), 1283-1291.
[http://dx.doi.org/10.1038/onc.2015.185] [PMID: 26050618]
[39]
Zaraei, S.O.; Sbenati, R.M.; Alach, N.N.; Anbar, H.S.; El-Gamal, R.; Tarazi, H.; Shehata, M.K.; Abdel-Maksoud, M.S.; Oh, C.H.; El-Gamal, M.I. Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors. Eur. J. Med. Chem., 2021, 224, 113674.
[http://dx.doi.org/10.1016/j.ejmech.2021.113674] [PMID: 34237622]
[40]
Riedemann, J.; Macaulay, V.M. IGF1R signalling and its inhibition. Endocr. Relat. Cancer, 2006, 13(Suppl. 1), S33-S43.
[http://dx.doi.org/10.1677/erc.1.01280] [PMID: 17259557]
[41]
King, H.; Aleksic, T.; Haluska, P.; Macaulay, V.M. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat. Rev., 2014, 40(9), 1096-1105.
[http://dx.doi.org/10.1016/j.ctrv.2014.07.004] [PMID: 25123819]
[42]
Kucab, J.E.; Dunn, S.E. Role of IGF-1R in mediating breast cancer invasion and metastasis. Breast Dis., 2003, 17(1), 41-47.
[http://dx.doi.org/10.3233/BD-2003-17105] [PMID: 15687676]
[43]
Gadekar, P.K.; Urunkar, G.; Roychowdhury, A.; Sharma, R.; Bose, J.; Khanna, S.; Damre, A.; Sarveswari, S. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg. Chem., 2021, 115, 105151.
[http://dx.doi.org/10.1016/j.bioorg.2021.105151] [PMID: 34333424]
[44]
Keller, E.T.; Fu, Z.; Brennan, M. The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochem. Pharmacol., 2004, 68(6), 1049-1053.
[http://dx.doi.org/10.1016/j.bcp.2004.04.024] [PMID: 15313400]
[45]
Escara-Wilke, J.; Yeung, K.; Keller, E.T. Raf kinase inhibitor protein (RKIP) in cancer. Cancer Metastasis Rev., 2012, 31(3-4), 615-620.
[http://dx.doi.org/10.1007/s10555-012-9365-9] [PMID: 22684368]
[46]
Sharma, A.; Shah, S.R.; Illum, H.; Dowell, J. Vemurafenib. Drugs, 2012, 72(17), 2207-2222.
[http://dx.doi.org/10.2165/11640870-000000000-00000] [PMID: 23116250]
[47]
Menzies, A.M.; Long, G.V.; Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Devel. Ther., 2012, 6, 391-405.
[PMID: 23251089]
[48]
Brose, M.S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero, R.; Einhorn, E.; Herlyn, M.; Minna, J.; Nicholson, A.; Roth, J.A.; Albelda, S.M.; Davies, H.; Cox, C.; Brignell, G.; Stephens, P.; Futreal, P.A.; Wooster, R.; Stratton, M.R.; Weber, B.L. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 2002, 62(23), 6997-7000.
[PMID: 12460918]
[49]
Anbar, H.S.; El-Gamal, M.I.; Tarazi, H.; Lee, B.S.; Jeon, H.R.; Kwon, D.; Oh, C.H. Imidazothiazole-based potent inhibitors of V600E-B-RAF kinase with promising anti-melanoma activity: biological and computational studies. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1712-1726.
[http://dx.doi.org/10.1080/14756366.2020.1819260] [PMID: 32962435]
[50]
Abdel-Maksoud, M.S.; Kim, M.R.; El-Gamal, M.I.; Gamal El-Din, M.M.; Tae, J.; Choi, H.S.; Lee, K.T.; Yoo, K.H.; Oh, C.H. Design, synthesis, in vitro antiproliferative evaluation, and kinase inhibitory effects of a new series of imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2015, 95, 453-463.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.065] [PMID: 25841200]
[51]
Ammar, U.M.; Abdel-Maksoud, M.S.; Ali, E.M.H.; Mersal, K.I.; Ho Yoo, K.; Oh, C.H. Structural optimization of imidazothiazole derivatives affords a new promising series as B-Raf V600E inhibitors; synthesis, in vitro assay and in silico screening. Bioorg. Chem., 2020, 100, 103967.
[http://dx.doi.org/10.1016/j.bioorg.2020.103967] [PMID: 32470760]
[52]
Abdel-Maksoud, M.S.; Ammar, U.M.; Oh, C.H. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold. Bioorg. Med. Chem., 2019, 27(10), 2041-2051.
[http://dx.doi.org/10.1016/j.bmc.2019.03.062] [PMID: 30955995]
[53]
Ammar, U.M.; Abdel-Maksoud, M.S.; Mersal, K.I.; Ali, E.M.H.; Yoo, K.H.; Choi, H.S.; Lee, J.K.; Cha, S.Y.; Oh, C.H. Modification of imidazothiazole derivatives gives promising activity in B-Raf kinase enzyme inhibition; synthesis, in vitro studies and molecular docking. Bioorg. Med. Chem. Lett., 2020, 30(20), 127478.
[http://dx.doi.org/10.1016/j.bmcl.2020.127478] [PMID: 32781217]
[54]
Raimondi, M.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6), 1140.
[http://dx.doi.org/10.3390/molecules24061140] [PMID: 30909399]
[55]
Blaney, J.M.; Hansch, C.; Silipo, C.; Vittoria, A. Structure-activity relationships of dihydrofolated reductase inhibitors. Chem. Rev., 1984, 84(4), 333-407.
[http://dx.doi.org/10.1021/cr00062a002]
[56]
da Cunha, E.F.F.; Ramalho, T.C.; Maia, E.R.; de Alencastro, R.B. The search for new DHFR inhibitors: A review of patents, January 2001 – February 2005. Expert Opin. Ther. Pat., 2005, 15(8), 967-986.
[http://dx.doi.org/10.1517/13543776.15.8.967]
[57]
Rao, K.N.; Venkatachalam, S.R. Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: The in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol. In Vitro, 2000, 14(1), 53-59.
[http://dx.doi.org/10.1016/S0887-2333(99)00092-2] [PMID: 10699361]
[58]
Chu, E.; Callender, M.A.; Farrell, M.P.; Schmitz, J.C. Thymidylate synthase inhibitors as anticancer agents: From bench to bedside. Cancer Chemother. Pharmacol., 2003, 52(Suppl. 1), 80-89.
[http://dx.doi.org/10.1007/s00280-003-0625-9] [PMID: 12819937]
[59]
Ng, H.L.; Ma, X.; Chew, E.H.; Chui, W.K. Design, synthesis, and biological evaluation of coupled bioactive scaffolds as potential anticancer agents for dual targeting of dihydrofolate reductase and thioredoxin reductase. J. Med. Chem., 2017, 60(5), 1734-1745.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01253] [PMID: 28177228]
[60]
Singh, P.; Kaur, M.; Sachdeva, S. Mechanism inspired development of rationally designed dihydrofolate reductase inhibitors as anticancer agents. J. Med. Chem., 2012, 55(14), 6381-6390.
[http://dx.doi.org/10.1021/jm300644g] [PMID: 22734697]
[61]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Imidazo[2′,1′:2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2018, 80, 11-23.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.025] [PMID: 29864684]
[62]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[63]
Downing, K.H.; Nogales, E. Tubulin and microtubule structure. Curr. Opin. Cell Biol., 1998, 10(1), 16-22.
[http://dx.doi.org/10.1016/S0955-0674(98)80082-3] [PMID: 9484591]
[64]
Teicher, B.A. Newer cytotoxic agents: Attacking cancer broadly. Clin. Cancer Res., 2008, 14(6), 1610-1617.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2249] [PMID: 18347161]
[65]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[66]
Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev., 2007, 27(2), 209-238.
[http://dx.doi.org/10.1002/med.20080] [PMID: 16788980]
[67]
Ren, Y.; Wang, Y.; Li, G.; Zhang, Z.; Ma, L.; Cheng, B.; Chen, J. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J. Med. Chem., 2021, 64(8), 4498-4515.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01837] [PMID: 33788562]
[68]
Ma, W.; Chen, P.; Huo, X.; Ma, Y.; Li, Y.; Diao, P.; Yang, F.; Zheng, S.; Hu, M.; You, W.; Zhao, P. Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur. J. Med. Chem., 2020, 208, 112847.
[http://dx.doi.org/10.1016/j.ejmech.2020.112847] [PMID: 33022479]
[69]
Baig, M.F.; Nayak, V.L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem., 2018, 77, 515-526.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.005] [PMID: 29459129]
[70]
Bin Sayeed, I.; Garikapati, K.R.; Makani, V.K.K.; Nagarajan, A.; Shareef, M.A.; Alarifi, A.; Pal-Bhadra, M.; Kamal, A. Development and biological evaluation of imidazothiazole propenones as tubulin inhibitors that effectively triggered apoptotic cell death in alveolar lung cancer cell line. ChemistrySelect, 2017, 2(22), 6480-6487.
[http://dx.doi.org/10.1002/slct.201701563]
[71]
Sultana, F.; Reddy Bonam, S.; Reddy, V.G.; Nayak, V.L.; Akunuri, R.; Rani Routhu, S.; Alarifi, A.; Halmuthur, M.S.K.; Kamal, A. Synthe-sis of benzo[d]imidazo[2,1- b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.019] [PMID: 29102724]
[72]
Shaik, S.P.; Vishnuvardhan, M.V.P.S.; Sultana, F.; Subba Rao, A.V.; Bagul, C.; Bhattacharjee, D.; Kapure, J.S.; Jain, N.; Kamal, A. Design and synthesis of 1,2,3-triazolo linked benzo[ d]imidazo[2,1- b]thiazole conjugates as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(13), 3285-3297.
[http://dx.doi.org/10.1016/j.bmc.2017.04.013] [PMID: 28462842]
[73]
Shaik, S.P.; Nayak, V.L.; Sultana, F.; Rao, A.V.S.; Shaik, A.B.; Babu, K.S.; Kamal, A. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur. J. Med. Chem., 2017, 126, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.060] [PMID: 27744185]
[74]
Löb, S.; Königsrainer, A.; Rammensee, H.G.; Opelz, G.; Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer, 2009, 9(6), 445-452.
[http://dx.doi.org/10.1038/nrc2639] [PMID: 19461669]
[75]
Selvan, S.R.; Dowling, J.P.; Kelly, W.K.; Lin, J. Indoleamine 2,3-dioxygenase (IDO): biology and target in cancer immunotherapies. Curr. Cancer Drug Targets, 2016, 16(9), 755-764.
[http://dx.doi.org/10.2174/1568009615666151030102250] [PMID: 26517538]
[76]
Moffett, J.R.; Namboodiri, M.A.A. Tryptophan and the immune response. Immunol. Cell Biol., 2003, 81(4), 247-265.
[http://dx.doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x] [PMID: 12848846]
[77]
Brody, J.R.; Costantino, C.L.; Berger, A.C.; Sato, T.; Lisanti, M.P.; Yeo, C.J.; Emmons, R.V.; Witkiewicz, A.K. Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle, 2009, 8(12), 1930-1934.
[http://dx.doi.org/10.4161/cc.8.12.8745] [PMID: 19448397]
[78]
Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: Clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1331] [PMID: 22068654]
[79]
Munn, D.H.; Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest., 2007, 117(5), 1147-1154.
[http://dx.doi.org/10.1172/JCI31178] [PMID: 17476344]
[80]
Katz, J.B.; Muller, A.J.; Prendergast, G.C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev., 2008, 222(1), 206-221.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00610.x] [PMID: 18364004]
[81]
Van den Eynde, B.J.; van Baren, N.; Baurain, JF. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma. Annu. Rev. Cancer Biol., 2020, 4, 89.241-256.
[82]
Yue, E.W.; Sparks, R.; Polam, P.; Modi, D.; Douty, B.; Wayland, B.; Glass, B.; Takvorian, A.; Glenn, J.; Zhu, W.; Bower, M.; Liu, X.; Leffet, L.; Wang, Q.; Bowman, K.J.; Hansbury, M.J.; Wei, M.; Li, Y.; Wynn, R.; Burn, T.C.; Koblish, H.K.; Fridman, J.S.; Emm, T.; Scherle, P.A.; Metcalf, B.; Combs, A.P. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2, 3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med. Chem. Lett., 2017, 8(5), 486-491.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00391] [PMID: 28523098]
[83]
Fang, K.; Wu, S.; Dong, G.; Wu, Y.; Chen, S.; Liu, J.; Wang, W.; Sheng, C. Discovery of IDO1 and DNA dual targeting antitumor agents. Org. Biomol. Chem., 2017, 15(47), 9992-9995.
[http://dx.doi.org/10.1039/C7OB02529G] [PMID: 29177308]
[84]
Cheong, J.E.; Ekkati, A.; Sun, L. A patent review of IDO1 inhibitors for cancer. Expert Opin. Ther. Pat., 2018, 28(4), 317-330.
[http://dx.doi.org/10.1080/13543776.2018.1441290] [PMID: 29473428]
[85]
Feng, X.; Shen, P.; Wang, Y.; Li, Z.; Bian, J. Synthesis and in vivo antitumor evaluation of an orally active potent phosphonamidate derivative targeting IDO1/IDO2/TDO. Biochem. Pharmacol., 2019, 168, 214-223.
[http://dx.doi.org/10.1016/j.bcp.2019.07.011] [PMID: 31306643]
[86]
Serafini, M.; Torre, E.; Aprile, S.; Massarotti, A.; Fallarini, S.; Pirali, T. Synthesis, docking and biological evaluation of a novel class of imidazothiazoles as IDO1 inhibitors. Molecules, 2019, 24(10), 1874.
[http://dx.doi.org/10.3390/molecules24101874] [PMID: 31096672]
[87]
Tojo, S.; Kohno, T.; Tanaka, T.; Kamioka, S.; Ota, Y.; Ishii, T.; Kamimoto, K.; Asano, S.; Isobe, Y. Crystal structures and structure–activity relationships of imidazothiazole derivatives as IDO1 inhibitors. ACS Med. Chem. Lett., 2014, 5(10), 1119-1123.
[http://dx.doi.org/10.1021/ml500247w] [PMID: 25313323]
[88]
Peng, Y.H.; Liao, F.Y.; Tseng, C.T.; Kuppusamy, R.; Li, A.S.; Chen, C.H.; Fan, Y.S.; Wang, S.Y.; Wu, M.H.; Hsueh, C.C.; Chang, J.Y.; Lee, L.C.; Shih, C.; Shia, K.S.; Yeh, T.K.; Hung, M.S.; Kuo, C.C.; Song, J.S.; Wu, S.Y.; Ueng, S.H. Unique sulfur–aromatic interactions contribute to the binding of potent imidazothiazole indoleamine 2,3-Dioxygenase Inhibitors. J. Med. Chem., 2020, 63(4), 1642-1659.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01549] [PMID: 31961685]
[89]
Koppireddi, S.; Chilaka, D.R.K.; Avula, S.; Komsani, J.R.; Kotamraju, S.; Yadla, R. Synthesis and anticancer evaluation of 3-aryl-6-phenylimidazo[2,1-b]thiazoles. Bioorg. Med. Chem. Lett., 2014, 24(23), 5428-5431.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.030] [PMID: 25453802]
[90]
Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Balzarini, J.; Liekens, S.; Estévez, F. Design, synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1- b][1,3,4]thiadiazole and imidazo[2,1- b][1,3]thiazole scaffolds. Eur. J. Med. Chem., 2015, 101, 205-217.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.042] [PMID: 26141911]
[91]
Shareef, M.A.; Devi, G.P.; Rani Routhu, S.; Kumar, C.G.; Kamal, A.; Babu, B.N. New imidazo[2,1- b]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med. Chem., 2020, 11(10), 1178-1184.
[http://dx.doi.org/10.1039/D0MD00188K] [PMID: 33479622]
[92]
Karaman, B.; Ulusoy Güzeldemirci, N. Synthesis and biological evaluation of new imidazo[2,1-b]thiazole derivatives as anticancer agents. Med. Chem. Res., 2016, 25(11), 2471-2484.
[http://dx.doi.org/10.1007/s00044-016-1684-x]
[93]
Amino, N.; Ideyama, Y.; Yamano, M.; Kuromitsu, S.; Tajinda, K.; Samizu, K.; Matsuhisa, A.; Kudoh, M.; Shibasaki, M. YM-201627: An orally active antitumor agent with selective inhibition of vascular endothelial cell proliferation. Cancer Lett., 2006, 238(1), 119-127.
[http://dx.doi.org/10.1016/j.canlet.2005.06.037] [PMID: 16095812]
[94]
Garcia-Horton, A.; Yee, K.W. Quizartinib for the treatment of acute myeloid leukemia. Expert Opin. Pharmacother., 2020, 21(17), 2077-2090.
[http://dx.doi.org/10.1080/14656566.2020.1801637] [PMID: 32772726]
[95]
Aikawa, T.; Togashi, N.; Iwanaga, K.; Okada, H.; Nishiya, Y.; Inoue, S.; Levis, M.J.; Isoyama, T. Quizartinib, a selective FLT3 inhibitor, maintains antileukemic activity in preclinical models of RAS-mediated midostaurin-resistant acute myeloid leukemia cells. Oncotarget, 2020, 11(11), 943-955.
[http://dx.doi.org/10.18632/oncotarget.27489] [PMID: 32215183]
[96]
Fletcher, L.; Joshi, S.K.; Traer, E. Profile JA DA, Pérez G, MM PE, JL BL, Martinelli G, Cerchione C. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. Minerva Med., 2020, 111(5), 427-442.
[97]
Fletcher, L.; Joshi, S.K.; Traer, E. of quizartinib for the treatment of adult patients with relapsed/refractory FLT3-ITD-positive acute myeloid leukemia: Evidence to date. Cancer Manag. Res., 2020, 12, 151-163.
[http://dx.doi.org/10.2147/CMAR.S196568] [PMID: 32021432]
[98]
Shimony, S.; Stone, R.M.; Stahl, M. Venetoclax combination therapy in acute myeloid leukemia and myelodysplastic syndromes. Curr. Opin. Hematol., 2022, 29(2), 63-73.
[http://dx.doi.org/10.1097/MOH.0000000000000698] [PMID: 34966123]
[99]
Alotaibi, S.; Niederwieser, D.; Ahmed, S.O.; Sanz, J.; Mohty, M.; Aljurf, M. Current Status of CPX-351 Therapy in acute myeloid leukemia and myelodysplastic syndrome. Clin. Lymphoma Myeloma Leuk., 2022, 22(8), 575-580.
[http://dx.doi.org/10.1016/j.clml.2022.02.008] [PMID: 35418351]
[100]
Yilmaz, M.; Kadia, T.; Ravandi, F. Identifying effective drug combinations for patients with acute myeloid leukemia. Expert Rev. Anticancer Ther., 2020, 20(7), 591-601.
[http://dx.doi.org/10.1080/14737140.2020.1782749] [PMID: 32552126]
[101]
Fu, M.; Tayebee, R.; Saberi, S.; Nourbakhsh, N.; Esmaeili, E.; Maleki, B.; Vatanpour, H.R. Studying adsorption and cellular toxicity of boron nitride nanostructure versus melphalan anti-ovarian cancer drug. Curr. Mol. Med., 2021, 21(8), 698-705.
[http://dx.doi.org/10.2174/1566524021666210111104428] [PMID: 33430730]
[102]
Liu, J.; Wang, J.; Esmaeili, E.; Mollania, N.; Atharifar, H.; Keywanlu, M.; Tayebee, R. Biosynthesized CuO as a green and efficient nanophotocatalyst in the solvent-free synthesis of some chromeno [4, 3-b] chromenes. studying anti-gastric cancer activity. Polycycl. Aromat. Compd., 2021, 10(42), 7071-7090.
[103]
Wang, R.; Abbaspour, S.; Vahabi, N.; Tayebee, R. NiO @ TPP-HPA as an efficient integrated nanocatalyst and anti-liver cancer agent. synthesis of 2-substituted indoles. Polycycl. Aromat. Compd., 2022, 1-18.
[http://dx.doi.org/10.1080/10406638.2022.2136215]
[104]
Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther., 2021, 15, 3289-3312.
[http://dx.doi.org/10.2147/DDDT.S307113] [PMID: 34354342]
[105]
Andrei, G.Ș.; Andrei, B.F.; Roxana, P.R. Imidazole derivatives and their antibacterial activity-a mini-review. Mini Rev. Med. Chem., 2021, 21(11), 1380-1392.
[http://dx.doi.org/10.2174/1389557520999201209213648] [PMID: 33302837]
[106]
Hu, F.; Zhang, L.; Nandakumar, K.S.; Cheng, K. Imidazole scaffold based compounds in the development of therapeutic drugs. Curr. Top. Med. Chem., 2021, 21(28), 2514-2528.
[http://dx.doi.org/10.2174/1568026621666210527103225] [PMID: 34047259]
[107]
Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem., 2019, 179, 779-790.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.003] [PMID: 31288127]