SLN Mediate Active Delivery of Gefitinib into A549 Cell Line: Optimization, Biosafety and Cytotoxicity Studies

Page: [133 - 150] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Conventional administration of chemotherapeutic agents associated with low drug distribution to cancer cells with multiple systemic toxicities. Thus, enhancing the active delivery of chemotherapeutic agents to cancer cells increases drug distribution and internalization to targeted cells with minimal systemic toxicities.

Objective and Aim: The current study was designed to prepare and optimize solid lipid nanoparticles (SLN) containing stearic acid (SA) that mediate active delivery and uptake of gefitinib (GEF) to cancer cells.

Methods: The stability of the prepared Plain-SLN formulations was characterized for 90 days. The most stable formulations were loaded with GEF (GEF-SLN) and subjected to pharmaceutical characterization. In vitro dissolution of GEF-SLN formulations was studied using the dialysis method. Biosafety in the terms of hemocompatibility was investigated using fresh blood samples. Additionally, the cytotoxicity of GEF-SLN was examined against the lung cancer cell line (A549).

Results: The obtained results showed that the prepared formulations fall in the nanosize range from 114 to 411 nm with a negative zeta-potential value from -17 to -27 mV. The particle size of Plain- SLN formulations was increased when the GEF is incorporated during preparation. Besides, the crystallinity of SA was disordered following the incorporation of GEF. In addition, GEF entrapment efficiency into SLN was 88% with a sustained-release profile of about 75% in 24 h. Additionally, the present results revealed that using surfactants with high drug solubility negatively impacts the stability of SLN formulation. Furthermore, hemocompatibility results revealed that all SLN formulations showed insignificant hemolysis (1- 4%) at all concentrations. Moreover, cytotoxicity examinations revealed that SLN enhanced the antiprofilated activity of GEF compared to free GEF.

Conclusion: These data concluded that SLN is a hopeful approach to enhancing the selective deposition of GEF into cancer cells and reducing the lymphatic metastasis of lung cancer.

Graphical Abstract

[1]
Singhvi, G.; Rapalli, V.K.; Nagpal, S.; Dubey, S.K.; Saha, R.N. Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine; Springer, 2020; Vol. 1, pp. 51-88.
[http://dx.doi.org/10.1007/978-3-030-29207-2_2]
[2]
Dutta, B.; Barick, K.C.; Hassan, P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci., 2021, 296, 102509.
[http://dx.doi.org/10.1016/j.cis.2021.102509] [PMID: 34455211]
[3]
Sherif, A.Y.; Harisa, G.I.; Alanazi, F.K.; Youssof, A.M.E. Engineering of exosomes: steps towards green production of drug delivery system. Curr. Drug Targets, 2019, 20(15), 1537-1549.
[http://dx.doi.org/10.2174/1389450120666190715104100] [PMID: 31309889]
[4]
Li, J.; Li, Q.; Su, Z.; Sun, Q.; Zhao, Y.; Feng, T.; Jiang, J.; Zhang, F.; Ma, H. Lipid metabolism gene-wide profile and survival signature of lung adenocarcinoma. Lipids Health Dis., 2020, 19(1), 222.
[http://dx.doi.org/10.1186/s12944-020-01390-9] [PMID: 33050938]
[5]
Grunt, T.W.; Lemberger, L.; Colomer, R.; López-Rodríguez, M.L.; Wagner, R. The pharmacological or genetic blockade of endogenous de novo fatty acid synthesis does not increase the uptake of exogenous lipids in ovarian cancer cells. Front. Oncol., 2021, 11, 610885.
[http://dx.doi.org/10.3389/fonc.2021.610885] [PMID: 33928023]
[6]
Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev., 2020, 159, 245-293.
[http://dx.doi.org/10.1016/j.addr.2020.07.013] [PMID: 32711004]
[7]
Munir, R.; Lisec, J.; Swinnen, J.V.; Zaidi, N. Lipid metabolism in cancer cells under metabolic stress. Br. J. Cancer, 2019, 120(12), 1090-1098.
[http://dx.doi.org/10.1038/s41416-019-0451-4] [PMID: 31092908]
[8]
Fu, Y.; Zou, T.; Shen, X.; Nelson, P.J.; Li, J.; Wu, C.; Yang, J.; Zheng, Y.; Bruns, C.; Zhao, Y.; Qin, L.; Dong, Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm, 2021, 2(1), 27-59.
[http://dx.doi.org/10.1002/mco2.27] [PMID: 34766135]
[9]
Irby, D.; Du, C.; Li, F. Lipid–drug conjugate for enhancing drug delivery. Mol. Pharm., 2017, 14(5), 1325-1338.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01027] [PMID: 28080053]
[10]
Shao, Z.; Shao, J.; Tan, B.; Guan, S.; Liu, Z.; Zhao, Z.; He, F.; Zhao, J. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int. J. Nanomedicine, 2015, 10, 1223-1233.
[http://dx.doi.org/10.2147/IJN.S77837] [PMID: 25709444]
[11]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[12]
Harisa, G.I.; Badran, M.M.; Alanazi, F.K.; Attia, S.M. An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 669-679.
[http://dx.doi.org/10.1080/21691401.2017.1354301] [PMID: 28701048]
[13]
D’Souza, A.; Shegokar, R. Nanostructured Lipid Carriers (NLCs) for drug delivery: Role of liquid lipid (oil). Curr. Drug Deliv., 2021, 18(3), 249-270.
[http://dx.doi.org/10.2174/1567201817666200423083807] [PMID: 32324512]
[14]
Yang, M.; Gu, Y.; Tang, X.; Wang, T.; Liu, J. Advancement of lipid-based nanocarriers and combination application with physical penetration technique. Curr. Drug Deliv., 2019, 16(4), 312-324.
[http://dx.doi.org/10.2174/1567201816666190118125427] [PMID: 30657039]
[15]
Yang, Y.; Corona, A., III; Schubert, B.; Reeder, R.; Henson, M.A. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci., 2014, 418, 261-272.
[http://dx.doi.org/10.1016/j.jcis.2013.12.024] [PMID: 24461844]
[16]
Zielińska, A.; Ferreira, N.R.; Feliczak-Guzik, A.; Nowak, I.; Souto, E.B. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm. Dev. Technol., 2020, 25(7), 832-844.
[http://dx.doi.org/10.1080/10837450.2020.1744008] [PMID: 32204628]
[17]
Miyazawa, T.; Itaya, M.; Burdeos, G.C.; Nakagawa, K.; Miyazawa, T. A critical review of the use of surfactant-coated nanoparticles in nanomedicine and food nanotechnology. Int. J. Nanomedicine, 2021, 16, 3937-3999.
[http://dx.doi.org/10.2147/IJN.S298606] [PMID: 34140768]
[18]
Rodrigues, L.R. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J. Colloid Interface Sci., 2015, 449, 304-316.
[http://dx.doi.org/10.1016/j.jcis.2015.01.022] [PMID: 25655712]
[19]
Sherif, A.Y.; Harisa, G.I.; Alanazi, F.K.; Nasr, F.A.; Alqahtani, A.S. Engineered nanoscale lipid-based formulation as potential enhancer of gefitinib lymphatic delivery: cytotoxicity and apoptotic studies against the a549 cell line. AAPS PharmSciTech, 2022, 23(6), 183.
[http://dx.doi.org/10.1208/s12249-022-02332-7] [PMID: 35773422]
[20]
Shao, J.; Xu, Z.; Peng, X.; Chen, M.; Zhu, Y.; Xu, L.; Zhu, H.; Yang, B.; Luo, P.; He, Q. Gefitinib synergizes with irinotecan to suppress hepatocellular carcinoma via antagonizing Rad51-mediated DNA-repair. PLoS One, 2016, 11(1), e0146968.
[http://dx.doi.org/10.1371/journal.pone.0146968] [PMID: 26752698]
[21]
Makeen, H.A.; Mohan, S.; Al-Kasim, M.A.; Attafi, I.M.; Ahmed, R.A.; Syed, N.K.; Sultan, M.H.; Al-Bratty, M.; Alhazmi, H.A.; Safhi, M.M.; Ali, R.; Intakhab Alam, M. Gefitinib loaded nanostructured lipid carriers: characterization, evaluation and antihuman colon cancer activity in vitro. Drug Deliv., 2020, 27(1), 622-631.
[http://dx.doi.org/10.1080/10717544.2020.1754526] [PMID: 32329374]
[22]
Nayek, S.; Raghavendra, N.M.; Sajeev Kumar, B. Development of novel S PC-3 gefitinib lipid nanoparticles for effective drug delivery in breast cancer. Tissue distribution studies and cell cytotoxicity analysis. J. Drug Deliv. Sci. Technol., 2021, 61, 102073.
[http://dx.doi.org/10.1016/j.jddst.2020.102073]
[23]
Liu, W.; Liu, W.; Ye, A.; Peng, S.; Wei, F.; Liu, C.; Han, J. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chem., 2016, 196, 396-404.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.050] [PMID: 26593507]
[24]
Zhao, C.; Han, S-Y.; Li, P-P. Pharmacokinetics of gefitinib: roles of drug metabolizing enzymes and transporters. Curr. Drug Deliv., 2017, 14(2), 282-288.
[PMID: 27396387]
[25]
Liu, G.; Lin, Q.; Huang, Y.; Guan, G.; Jiang, Y. Tailoring the particle microstructures of gefitinib by supercritical CO2 anti-solvent process. J. CO2 Utilization, 2017, 20, 43-51.
[26]
Wang, J.; Wang, F.; Li, X.; Zhou, Y.; Wang, H.; Zhang, Y. Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly(lactic-co-glycolic acid) nano-vehicles for facilitated oral delivery of gefitinib, a poorly soluble antitumor compound. Colloids Surf. B Biointerfaces, 2019, 177, 425-432.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.028] [PMID: 30798063]
[27]
Taiwade, C.; Fulfager, A.; Bhargave, H.; Soni, G.; Yadav, K. Erlotinib hydrochloride novel drug delivery systems: a mini review unravelling the role of micro- and nanocarriers. Drug Deliv. Lett., 2021, 11(4), 295-306.
[http://dx.doi.org/10.2174/2210303111666210827094543]
[28]
Alshetaili, A.S. Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines. Saudi J. Biol. Sci., 2021, 28(9), 5065-5073.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.025] [PMID: 34466084]
[29]
Pang, J.; Li, Z.; Li, S.; Lin, S.; Wang, H.; Xie, Q.; Jiang, Y. Folate-conjugated zein/Fe3O4 nanocomplexes for the enhancement of cellular uptake and cytotoxicity of gefitinib. J. Mater. Sci., 2018, 53(21), 14907-14921.
[http://dx.doi.org/10.1007/s10853-018-2684-7]
[30]
Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid Lipid Nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010.
[http://dx.doi.org/10.1080/03639045.2017.1291666] [PMID: 28161984]
[31]
Patel, P.; Patel, M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: In vitro, cell line and in vivo evaluation. Eur. J. Pharm. Sci., 2021, 159, 105715.
[http://dx.doi.org/10.1016/j.ejps.2021.105715] [PMID: 33453388]
[32]
Harisa, G.I.; Badran, M.M. Simvastatin nanolipid carriers decreased hypercholesterolemia induced cholesterol inclusion and phosphatidylserine exposure on human erythrocytes. J. Mol. Liq., 2015, 208, 202-210.
[http://dx.doi.org/10.1016/j.molliq.2015.04.005]
[33]
Nasr, M.; Abdel-Hamid, S.; Moftah, N.H.; Fadel, M.; Alyoussef, A.A. Jojoba oil soft colloidal nanocarrier of a synthetic retinoid: preparation, characterization and clinical efficacy in psoriatic patients. Curr. Drug Deliv., 2017, 14(3), 426-432.
[http://dx.doi.org/10.2174/1567201813666160513132321] [PMID: 27174314]
[34]
Sherif, A.Y.; Harisa, G.I.; Alanazi, F.K.; Nasr, F.A.; Alqahtani, A.S. PEGylated SLN as a promising approach for lymphatic delivery of gefitinib to lung cancer. Int. J. Nanomedicine, 2022, 17, 3287-3311.
[http://dx.doi.org/10.2147/IJN.S365974] [PMID: 35924261]
[35]
Kola Srinivas, N.S.; Verma, R.; Pai Kulyadi, G.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int. J. Nanomedicine, 2016, 12, 15-28.
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[36]
Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-phytosome: a developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets, 2018, 19(2), 170-180.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[37]
Alshehri, S.; Alanazi, A.; Elzayat, E.M.; Altamimi, M.A.; Imam, S.S.; Hussain, A.; Alqahtani, F.; Shakeel, F. Formulation, in vitro and in vivo evaluation of gefitinib solid dispersions prepared using different techniques. Processes, 2021, 9(7), 1210.
[http://dx.doi.org/10.3390/pr9071210]
[38]
Mao, Y.; Chen, Y.; Liu, C.; He, X.; Zheng, Y.; Chen, X.; Wang, Y.; Chen, W.; Wu, Y.; Shen, Y.; Yang, H.; Ma, S. Cefquinome sulfate oily nanosuspension designed for improving its bioavailability in the treatment of veterinary infections. Int. J. Nanomedicine, 2022, 17, 2535-2553.
[http://dx.doi.org/10.2147/IJN.S348822] [PMID: 35677677]
[39]
Rohilla, S.; Awasthi, R.; Mehta, M.; Chellappan, D.K.; Gupta, G.; Gulati, M.; Singh, S.K.; Anand, K.; Oliver, B.G.; Dua, K.; Dureja, H. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. Bionanoscience, 2022, 12(1), 241-255.
[http://dx.doi.org/10.1007/s12668-022-00938-6]
[40]
Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid Lipid Nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 2021, 13(8), 1183.
[http://dx.doi.org/10.3390/pharmaceutics13081183] [PMID: 34452143]
[41]
Alanazi, S.A.; Harisa, G.I.; Badran, M.M.; Alanazi, F.K.; Elzayat, E.; Alomrani, A.H.; Al Meanazel, O.T.; Al Meanazel, A.T. Crosstalk of low density lipoprotein and liposome as a paradigm for targeting of 5-fluorouracil into hepatic cells: cytotoxicity and liver deposition. Bioengineered, 2021, 12(1), 914-926.
[http://dx.doi.org/10.1080/21655979.2021.1896202] [PMID: 33678142]
[42]
Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Fotaki, N. Impact of magnesium stearate presence and variability on drug apparent solubility based on drug physicochemical properties. AAPS J., 2020, 22(4), 75.
[http://dx.doi.org/10.1208/s12248-020-00449-w] [PMID: 32440810]
[43]
Dhairyasheel, G.; Adhikrao, Y.; Varsha, G. Design and development of solid self-microemulsifying drug delivery of gefitinib. As. J. Pharm. Technol., 2018, 8(4), 193-199.
[http://dx.doi.org/10.5958/2231-5713.2018.00031.4]
[44]
Sharma, M.; Gupta, N.; Gupta, S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Advances, 2016, 6(80), 76621-76631.
[http://dx.doi.org/10.1039/C6RA12841F]
[45]
Qushawy, M.; Prabahar, K.; Abd-Alhaseeb, M.; Swidan, S.; Nasr, A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice. Molecules, 2019, 24(21), 3971.
[http://dx.doi.org/10.3390/molecules24213971] [PMID: 31684021]
[46]
Nasiri, M.; Azadi, A.; Zanjani, M.R.S.; Hamidi, M. Indinavir-loaded nanostructured lipid carriers to brain drug delivery: optimization, characterization and neuropharmacokinetic evaluation. Curr. Drug Deliv., 2019, 16(4), 341-354.
[http://dx.doi.org/10.2174/1567201816666190123124429] [PMID: 30674257]
[47]
Date, A.A.; Nagarsenker, M.S. Single-step and low-energy method to prepare solid lipid nanoparticles and nanostructured lipid carriers using biocompatible solvents. Eur. J. Pharm. Res, 2019, 1(1), 12-19.
[http://dx.doi.org/10.34154/2019-EJPR.01(01).pp-12-19/euraass]
[48]
Rapalli, V.K.; Sharma, S.; Roy, A.; Alexander, A.; Singhvi, G. Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: In vitro, ex vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J. Drug Deliv. Sci. Technol., 2021, 63, 102442.
[http://dx.doi.org/10.1016/j.jddst.2021.102442]
[49]
Kumar, S.; Narayan, R.; Ahammed, V.; Nayak, Y.; Naha, A.; Nayak, U.Y. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J. Drug Deliv. Sci. Technol., 2018, 44, 181-189.
[http://dx.doi.org/10.1016/j.jddst.2017.12.014]
[50]
Wang, C.; Cui, B.; Guo, L.; Wang, A.; Zhao, X.; Wang, Y.; Sun, C.; Zeng, Z.; Zhi, H.; Chen, H.; Liu, G.; Cui, H. Fabrication and evaluation of lambda-cyhalothrin nanosuspension by one-step melt emulsification technique. Nanomaterials, 2019, 9(2), 145.
[http://dx.doi.org/10.3390/nano9020145] [PMID: 30678132]
[51]
Akhoond Zardini, A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J. Food Sci. Technol., 2018, 55(1), 287-298.
[http://dx.doi.org/10.1007/s13197-017-2937-5] [PMID: 29358821]
[52]
Mahajan, A.; Kaur, S.; Kaur, S. Design, formulation, and characterization of stearic acid-based solid lipid nanoparticles of candesartan cilexetil to augment its oral bioavailability. Asian J. Pharm. Clin. Res., 2018, 11(4), 344-350.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i4.23849]
[53]
Rigon, R.B.; Gonçalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces, 2018, 171, 501-505.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.065] [PMID: 30081382]
[54]
Atarian, M.; Rajaei, A.; Tabatabaei, M.; Mohsenifar, A.; Bodaghi, H. Formulation of pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydr. Polym., 2019, 210, 47-55.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.008] [PMID: 30732780]
[55]
Bhattacharyya, S.; Reddy, P. Effect of surfactant on azithromycin dihydrate loaded stearic acid solid lipid nanoparticles. Turkish J. Pharm. Sci., 2019, 16(4), 425-431.
[http://dx.doi.org/10.4274/tjps.galenos.2018.82160] [PMID: 32454745]
[56]
Chai, G.H.; Xu, Y.; Chen, S.Q.; Cheng, B.; Hu, F.Q.; You, J.; Du, Y.Z.; Yuan, H. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS Appl. Mater. Interfaces, 2016, 8(9), 5929-5940.
[http://dx.doi.org/10.1021/acsami.6b00821] [PMID: 26860241]
[57]
Ahmad, J.; Kohli, K.; Mir, S.R.; Amin, S. Lipid based nanocarriers for oral delivery of cancer chemotherapeutics: an insight in the intestinal lymphatic transport. Drug Deliv. Lett., 2013, 3(1), 38-46.
[http://dx.doi.org/10.2174/2210304x11303010006]
[58]
Aji Alex, M.R.; Chacko, A.J.; Jose, S.; Souto, E.B. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci., 2011, 42(1-2), 11-18.
[http://dx.doi.org/10.1016/j.ejps.2010.10.002] [PMID: 20971188]
[59]
Yasir, M.; Gaur, P.K.; Puri, D.; Preeti, S.; Kumar, S.S. Solid lipid nanoparticles approach for lymphatic targeting through intraduodenal delivery of quetiapine fumarate. Curr. Drug Deliv., 2018, 15(6), 818-828.
[http://dx.doi.org/10.2174/1567201814666170525121049] [PMID: 28545354]
[60]
Ryu, S.; Jin, M.; Lee, H.K.; Wang, M.H.; Baek, J.S.; Cho, C.W. Effects of lipid nanoparticles on physicochemical properties, cellular uptake, and lymphatic uptake of 6-methoxflavone. J. Pharm. Investig., 2022, 52(2), 233-241.
[http://dx.doi.org/10.1007/s40005-021-00557-5]
[61]
Gambhire, V.M. Enhanced oral delivery of asenapine maleate from solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. As. J. Pharm. (AJP), 2018, 12(03), 1-10.
[62]
Miao, Y.B.; Lin, Y.J.; Chen, K.H.; Luo, P.K.; Chuang, S.H.; Yu, Y.T.; Tai, H.M.; Chen, C.T.; Lin, K.J.; Sung, H.W. Engineering nano‐ and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater., 2021, 33(51), 2104139.
[http://dx.doi.org/10.1002/adma.202104139] [PMID: 34596293]
[63]
Aboti, P.; Shah, P.; Patel, D.; Dalwadi, S. Quetiapine fumarate loaded solid lipid nanoparticles for improved oral bioavailability. Drug Deliv. Lett., 2014, 4(2), 170-184.
[http://dx.doi.org/10.2174/221030310402140805105127]
[64]
Ćirin, D.; Krstonošić, V.; Poša, M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. J. Ind. Eng. Chem., 2017, 47, 194-201.
[http://dx.doi.org/10.1016/j.jiec.2016.11.032]
[65]
Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon, 2017, 3(8), e00390.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00390] [PMID: 28920092]
[66]
Taylor, J.M.; Scale, K.; Arrowsmith, S.; Sharp, A.; Flynn, S.; Rannard, S.; McDonald, T.O. Using pyrene to probe the effects of poloxamer stabilisers on internal lipid microenvironments in solid lipid nanoparticles. Nanoscale Adv., 2020, 2(12), 5572-5577.
[http://dx.doi.org/10.1039/D0NA00582G] [PMID: 36133871]
[67]
Alanazi, A.; Alshehri, S.; Altamimi, M.; Shakeel, F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: Experimental and computational approaches. J. Mol. Liq., 2020, 299, 112211.
[http://dx.doi.org/10.1016/j.molliq.2019.112211]
[68]
Thorat, S.H.; Sahu, S.K.; Patwadkar, M.V.; Badiger, M.V.; Gonnade, R.G. Drug–drug molecular salt hydrate of an anticancer drug gefitinib and a loop diuretic drug furosemide: an alternative for multidrug treatment. J. Pharm. Sci., 2015, 104(12), 4207-4216.
[http://dx.doi.org/10.1002/jps.24651] [PMID: 26413799]
[69]
Chemmalar, S.; Intan-Shameha, A.R.; Abdullah, C.A.C.; Ab Razak, N.A.; Yusof, L.M.; Ajat, M.; Gowthaman, N.S.K.; Bakar, M.Z.A. Synthesis and characterization of gefitinib and paclitaxel mono and dual drug-loaded blood cockle shells (Anadara granosa)-derived aragonite CaCO3 nanoparticles. Nanomaterials (Basel), 2021, 11(8), 1988.
[http://dx.doi.org/10.3390/nano11081988] [PMID: 34443820]
[70]
Pawar, A.A.; Chen, D.R.; Venkataraman, C. Influence of precursor solvent properties on matrix crystallinity and drug release rates from nanoparticle aerosol lipid matrices. Int. J. Pharm., 2012, 430(1-2), 228-237.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.030] [PMID: 22469694]
[71]
Kumar, S.; Randhawa, J.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Advances, 2015, 5(84), 68743-68750.
[http://dx.doi.org/10.1039/C5RA10642G]
[72]
Garg, A.; Singh, S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf. B Biointerfaces, 2011, 87(2), 280-288.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.030] [PMID: 21689909]
[73]
Dantas, I.L.; Bastos, K.T.S.; Machado, M.; Galvão, J.G.; Lima, A.D.; Gonsalves, J.K.M.C.; Almeida, E.D.P.; Araújo, A.A.S.; de Meneses, C.T.; Sarmento, V.H.V.; Nunes, R.S.; Lira, A.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J. Therm. Anal. Calorim., 2018, 132(3), 1557-1566.
[http://dx.doi.org/10.1007/s10973-018-7072-7]
[74]
Omwoyo, W.N.; Ogutu, B.; Oloo, F.; Swai, H.; Kalombo, L.; Melariri, P.; Mahanga, G.M.; Gathirwa, J.W. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2014, 9, 3865-3874.
[PMID: 25143734]
[75]
Jourghanian, P.; Ghaffari, S.; Ardjmand, M.; Haghighat, S.; Mohammadnejad, M. Sustained release curcumin loaded solid lipid nanoparticles. Adv. Pharm. Bull., 2016, 6(1), 17-21.
[http://dx.doi.org/10.15171/apb.2016.04] [PMID: 27123413]
[76]
Pizzol, C.; Filippin-Monteiro, F.; Restrepo, J.; Pittella, F.; Silva, A.; Alves de Souza, P.; Machado de Campos, A.; Creczynski-Pasa, T. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int. J. Environ. Res. Public Health, 2014, 11(8), 8581-8596.
[http://dx.doi.org/10.3390/ijerph110808581] [PMID: 25141003]
[77]
Barman, R.K.; Iwao, Y.; Islam, M.R.; Funakoshi, Y.; Noguchi, S.; Wahed, M.I.I.; Itai, S. In vivo pharmacokinetic and hemocompatible evaluation of lyophilization induced nifedipine solid-lipid nanoparticle. Pharmacol. Pharm., 2014, 2014, 455-461.
[78]
Bhattacharya, S. Genotoxicity and in vitro investigation of Gefitinib-loaded polycaprolactone fabricated nanoparticles for anticancer activity against NCI-H460 cell lines. J. Exp. Nanosci., 2022, 17(1), 214-246.
[http://dx.doi.org/10.1080/17458080.2022.2060501]
[79]
Alomrani, A.; Badran, M.; Harisa, G.I. ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J., 2019, 27(5), 603-611.
[http://dx.doi.org/10.1016/j.jsps.2019.02.008] [PMID: 31297013]
[80]
Faris, T.; Harisa, G.I.; Alanazi, F.K.; Badran, M.M.; Alotaibi, A.M.; Almanea, H.; Alqahtani, A.S.; Samy, A.M. Cytotoxicity of chitosan ultrafine nanoshuttles on the MCF-7 cell line as a surrogate model for breast cancer. Curr. Drug Deliv., 2021, 18(1), 19-30.
[http://dx.doi.org/10.2174/1567201817666200719005440] [PMID: 32682379]
[81]
Jaramillo, A.C.; Al Saig, F.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist., 2018, 1(1), 6-29.
[http://dx.doi.org/10.20517/cdr.2018.02]
[82]
Li, H.; Qu, X.; Qian, W.; Song, Y.; Wang, C.; Liu, W. Andrographolide‐loaded solid lipid nanoparticles enhance anti‐cancer activity against head and neck cancer and precancerous cells. Oral Dis., 2022, 28(1), 142-149.
[http://dx.doi.org/10.1111/odi.13751] [PMID: 33295090]
[83]
Shah, P.; Chavda, K.; Vyas, B.; Patel, S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv. Transl. Res., 2021, 11(3), 1166-1185.
[http://dx.doi.org/10.1007/s13346-020-00839-9] [PMID: 32804301]
[84]
Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.037] [PMID: 30921680]
[85]
Soni, G.; Yadav, K.S.; Gupta, M.K. Design of experiments (DoE) approach to optimize the sustained release microparticles of gefitinib. Curr. Drug Deliv., 2019, 16(4), 364-374.
[http://dx.doi.org/10.2174/1567201816666181227114109] [PMID: 30588883]
[86]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[87]
Mahmoud, K.; Swidan, S.; El-Nabarawi, M.; Teaima, M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J. Nanobiotechnology, 2022, 20(1), 109.
[http://dx.doi.org/10.1186/s12951-022-01309-9] [PMID: 35248080]
[88]
Wang, J.; Zhu, R.; Sun, X.; Wang, T.; Liu, H.; Wang, S.L. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int. J. Nanomedicine, 2014, 9, 3987-3998.
[http://dx.doi.org/10.2147/IJN.S64103] [PMID: 25187702]