Carbon Dots Hybrid Nanostructure-based Electrochemical Sensors: Applications in Determining Different Species in a Real Sample

Page: [31 - 46] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

This overview describes the synthesis, characterization, and application of different carbon dots hybrid nanostructures obtained by chemical interaction between nanomaterials or nanomaterials bonded to another material, i.e. silicon (SiO2/Carbon dots-N), reduced graphene oxide (rGO/Carbon dots), multiwalled carbon nanotubes (MWCNTs/Carbon dots), nano magnetite (Carbon dots/Fe3O4), reduced graphene oxide and gold nanoparticles (rGO/Carbon dots/AuNPs), copper oxide (CuO/Carbon dots), and Carbon dots/Metallic NPs that were employed in the development of electrochemical (bio)sensors. The formation of different carbon dots hybrid nanostructures has been characterized by X-ray diffraction (XRD), Raman and ultraviolet- visible spectroscopy, atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical techniques. These carbon dots hybrid nanostructures have been used to modify the surface of glassy carbon and screen-printed electrodes and to determine various analytes, i.e., dopamine, uric acid, paracetamol, ephynefrin, dihydroxybenzenes, pesticides, endocrine disruptors, NADH, and other substances in real samples.

Graphical Abstract

[1]
Zen, J.M.; Senthil Kumar, A.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13), 1073.
[http://dx.doi.org/10.1002/elan.200390130]
[2]
Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Analyt. Chem., 2016, 76, 15-29.
[http://dx.doi.org/10.1016/j.trac.2015.09.006]
[3]
Baig, N.; Sajid, M.; Saleh, T.A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends Analyt. Chem., 2019, 111, 47-61.
[http://dx.doi.org/10.1016/j.trac.2018.11.044]
[4]
Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114(14), 7150-7188.
[http://dx.doi.org/10.1021/cr500023c] [PMID: 24895834]
[5]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[6]
Wang, J. Nanomaterial-based electrochemical biosensors. Analyst, 2005, 130(4), 421-426.
[http://dx.doi.org/10.1039/b414248a] [PMID: 15846872]
[7]
Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Analyt. Chem., 2016, 79, 114-126.
[http://dx.doi.org/10.1016/j.trac.2016.01.032]
[8]
Lindsay, S. Introduction to nanoscience; Oxford University Press: Oxford, 2010.
[9]
Lahmani, M.; Bréchignac, C.; Houdy, P. Nanomaterials and nanochemistry; Berlin, Springer, 2007.
[10]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[11]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[12]
Cayuela, A.; Soriano, M.L.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun., 2016, 52(7), 1311-1326.
[http://dx.doi.org/10.1039/C5CC07754K] [PMID: 26671042]
[13]
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2), 355-381.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[14]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[15]
Chua, C.K.; Sofer, Z.; Šimek, P.; Jankovský, O.; Klímová, K.; Bakardjieva, S. Hrdličková K.Š.; Pumera, M. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano, 2015, 9(3), 2548-2555.
[http://dx.doi.org/10.1021/nn505639q] [PMID: 25761306]
[16]
Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale, 2013, 5(10), 4015-4039.
[http://dx.doi.org/10.1039/c3nr33849e] [PMID: 23579482]
[17]
Zhang, R.; Wang, L.; Ettoumi, F.; Javed, M.; Li, L.; Lin, X.; Xu, Y.; Lu, Y.; Shao, X.; Luo, Z. Ultrasonic-assisted green extraction of peach gum polysaccharide for blue-emitting carbon dots synthesis. Sustain. Chem. Pharm., 2021, 24, 100555.
[http://dx.doi.org/10.1016/j.scp.2021.100555]
[18]
Zhou, W.; Liu, C.; Fan, J.; Luo, J.; Liu, L.; Huang, J.; Liu, R.; Zhang, X. Red-emitting carbon dots as luminescent agent in wide-range water detection in organic solvents and polarity-selective zebrafish imaging. J. Alloys Compd., 2022, 920, 165963.
[http://dx.doi.org/10.1016/j.jallcom.2022.165963]
[19]
Pho, Q.H.; Lin, L.; Tran, N.N.; Tran, T.T.; Nguyen, A.H.; Losic, D.; Rebrov, E.V.; Hessel, V. Rational design for the microplasma synthesis from vitamin B9 to N-doped carbon quantum dots towards selected applications. Carbon, 2022, 198, 22-33.
[http://dx.doi.org/10.1016/j.carbon.2022.07.004]
[20]
Shen, L.; Zhou, S.; Huang, F.; Zhou, H.; Zhang, H.; Wang, S.; Zhou, S. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene. Nanotechnology, 2022, 33(11), 115602.
[http://dx.doi.org/10.1088/1361-6528/ac4069] [PMID: 34874289]
[21]
Tang, H.; Tang, Y.; Xiao, M.; Zhu, H.; Guo, M. Study on microwave synthesis mechanism of carbon dots based on NMR characterization. Colloids Surf. A Physicochem. Eng. Asp., 2022, 651, 129564.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129564]
[22]
Kurian, M.; Paul, A. Recent trends in the use of green sources for carbon dot synthesis-A short review. Carbon Trends, 2021, 3, 100032.
[http://dx.doi.org/10.1016/j.cartre.2021.100032]
[23]
Zhang, P.; Zhao, S.S.; Wang, J.J.; Liu, X.R. Nitrogen-doped carbon dots from Hutai-8 grape skin and their application in Hg2+ detection. Curr. Nanosci., 2021, 17(2), 338-347.
[http://dx.doi.org/10.2174/1573413716999200819201126]
[24]
Xie, F.; Yang, M.; Jiang, M.; Huang, X.J.; Liu, W.Q.; Xie, P.H. Carbon-based nanomaterials - A promising electrochemical sensor toward persistent toxic substance. Trends Analyt. Chem., 2019, 119, 115624.
[http://dx.doi.org/10.1016/j.trac.2019.115624]
[25]
Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sens., 2019, 4(7), 1732-1748.
[http://dx.doi.org/10.1021/acssensors.9b00514] [PMID: 31267734]
[26]
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603.
[http://dx.doi.org/10.1016/j.nantod.2014.09.004]
[27]
Amiri, M.; Imanzadeh, H.; Sefid-Sefidehkhan, Y. An overview on electrochemical sensors based on nanomaterials for the determination of drugs of abuse. Curr. Drug Deliv., 2021, 18(2), 162-183.
[http://dx.doi.org/10.2174/1567201817666200520084835] [PMID: 32433004]
[28]
Mansuriya, B.; Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors, 2020, 20(4), 1072.
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[29]
Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Carbon nanomaterial-based drug sensing platforms using state of the art electroanalytical techniques. Curr. Anal. Chem., 2022, 18(1), 79-101.
[http://dx.doi.org/10.2174/1573411016999200802024629]
[30]
Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B, 2021, 272, 115341.
[http://dx.doi.org/10.1016/j.mseb.2021.115341]
[31]
Fu, S.; Zhu, Y.; Zhang, Y.; Zhang, M.; Zhang, Y.; Qiao, L.; Yin, N.; Song, K.; Liu, M.; Wang, D. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem. J., 2021, 171, 106776.
[http://dx.doi.org/10.1016/j.microc.2021.106776]
[32]
Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Mamba, B.B.; Sherif, E.S.M.; Ebenso, E.E. Carbon-based quantum dots for electrochemical detection of monoamine neurotransmitters—review. Biosensors (Basel), 2020, 10(11), 162.
[http://dx.doi.org/10.3390/bios10110162] [PMID: 33142771]
[33]
Wang, X.; Feng, Y.; Dong, P.; Huang, J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front Chem., 2019, 7, 671.
[http://dx.doi.org/10.3389/fchem.2019.00671] [PMID: 31637234]
[34]
Nalwa, H.S., Ed.; Nanostructured materials and nanotechnology: concise edition; Amsterdam, Elsevier, 2001.
[35]
Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic-inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater., 2018, 28(27), 1704158.
[http://dx.doi.org/10.1002/adfm.201704158]
[36]
Ajala, O.J.; Tijani, J.O.; Bankole, M.T.; Abdulkareem, A.S. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100673.
[http://dx.doi.org/10.1016/j.enmm.2022.100673]
[37]
Walcarius, A. Silica-based electrochemical sensors and biosensors: Recent trends. Curr. Opin. Electrochem., 2018, 10, 88-97.
[http://dx.doi.org/10.1016/j.coelec.2018.03.017]
[38]
Miecznikowski, K.; Cox, J.A. Electroanalysis based on stand-alone matrices and electrode-modifying films with silica sol-gel frameworks: A review. J. Solid State Electrochem., 2020, 24(11-12), 2617-2631.
[http://dx.doi.org/10.1007/s10008-020-04697-w]
[39]
Li, W.; Wu, S.; Xu, X.; Zhuang, J.; Zhang, H.; Zhang, X.; Hu, C.; Lei, B.; Kaminski, C.F.; Liu, Y. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater., 2019, 31(23), 9887-9894.
[http://dx.doi.org/10.1021/acs.chemmater.9b04120]
[40]
Tan, L.; He, C. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf. B Biointerfaces, 2021, 199, 111508.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111508] [PMID: 33340932]
[41]
Messina, F.; Sciortino, L.; Buscarino, G.; Agnello, S.; Gelardi, F.; Cannas, M. Photoluminescence of carbon dots embedded in a SiO2 matrix. Mater. Today Proc., 2016, 3, S258-S265.
[http://dx.doi.org/10.1016/j.matpr.2016.02.043]
[42]
Zhan, Y.; Shang, B.; Chen, M.; Wu, L. One-;step synthesis of silica-;coated carbon dots with controllable solid-;state fluorescence for white light-;emitting diodes. Small, 2019, 15(24), 1901161.
[http://dx.doi.org/10.1002/smll.201901161] [PMID: 31045324]
[43]
Cesana, R.; Ferreira, J.H.; Gonçalves, J.M.; Gomes, D.; Nakamura, M.; Peres, R.M.; Toma, H.E.; Canevari, T.C. Fluorescent Cdots (N)-Silica composites: Direct synthesis and application as electrochemical sensor of fenitrothion pesticide. J. Mar. Sci. Eng., 2021, 267, 115084.
[http://dx.doi.org/10.1016/j.mseb.2021.115084]
[44]
Canevari, T.C.; Nakamura, M.; Cincotto, F.H.; de Melo, F.M.; Toma, H.E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta, 2016, 209(209), 464-470.
[http://dx.doi.org/10.1016/j.electacta.2016.05.108]
[45]
Sengupta, J.; Adhikari, A.; Hussain, C.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends, 2021, 4, 100072.
[http://dx.doi.org/10.1016/j.cartre.2021.100072]
[46]
Eigler, S.; Hirsch, A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew. Chem. Int. Ed., 2014, 53(30), 7720-7738.
[http://dx.doi.org/10.1002/anie.201402780] [PMID: 24962439]
[47]
Zhang, Z.; Schniepp, H.C.; Adamson, D.H. Characterization of graphene oxide: Variations in reported approaches. Carbon, 2019, 154, 510-521.
[http://dx.doi.org/10.1016/j.carbon.2019.07.103]
[48]
Han, S.; Li, W.; Xi, H.; Yuan, R.; Long, J.; Xu, C. Plasma-assisted in-situ preparation of graphene-Ag nanofiltration membranes for efficient removal of heavy metal ions. J. Hazard. Mater., 2022, 423(Pt A), 127012.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127012] [PMID: 34461540]
[49]
Huang, X.; Yu, G.; Zhang, Y.; Zhang, M.; Shao, G. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J., 2021, 426, 131894.
[http://dx.doi.org/10.1016/j.cej.2021.131894]
[50]
Lesiak, B.; Trykowski, G.; Tóth, J.; Biniak, S.; Kövér, L.; Rangam, N.; Stobinski, L.; Malolepszy, A. Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. J. Mater. Sci., 2021, 56(5), 3738-3754.
[http://dx.doi.org/10.1007/s10853-020-05461-1]
[51]
Canevari, T.C.; Rossi, M.V.; Alexiou, A.D.P. Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J. Electroanal. Chem., 2019, 832, 24-30.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.044]
[52]
Hu, S.; Huang, Q.; Lin, Y.; Wei, C.; Zhang, H.; Zhang, W.; Guo, Z.; Bao, X.; Shi, J.; Hao, A. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim. Acta, 2014, 130, 805-809.
[http://dx.doi.org/10.1016/j.electacta.2014.02.150]
[53]
Cesana, R.; Gonçalves, J.M.; Ignácio, R.M.; Nakamura, M.; Zamarion, V.M.; Toma, H.E.; Canevari, T.C. Synthesis and characterization of nanocomposite based on reduced graphene oxide-gold nanoparticles-carbon dots: Electroanalytical determination of dihydroxybenzene isomers simultaneously. J. Nanopart. Res., 2020, 22(10), 336.
[http://dx.doi.org/10.1007/s11051-020-05059-3]
[54]
Iijima, S. Synthesis of carbon nanotubes. Nature, 1991, 354, 56.
[http://dx.doi.org/10.1038/354056a0]
[55]
De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, 339(6119), 535-539.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[56]
Guldi, D.M.; Martin, N., Eds.; Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications; Wiley-Vch, 2010.
[http://dx.doi.org/10.1002/9783527629930]
[57]
Viswanathan, S.; Radecka, H.; Radecki, J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. Bioelectron., 2009, 24(9), 2772-2777.
[http://dx.doi.org/10.1016/j.bios.2009.01.044] [PMID: 19269805]
[58]
Kulakovskaya, S.I.; Kulikov, A.V.; Zyubina, T.S.; Zyubin, A.S.; Konev, D.V.; Sviridova, L.N.; Stenina, E.V.; Ryabenko, A.G; Zolotukhina, E.V. Role of non-covalent interactions at the oxidation of 2, 5-di-Me-pyrazine-di-N-oxide at glassy carbon, single-walled and multi-walled carbon nanotube paper electrodes. Carbon trends, 2021, 4, 100057.
[http://dx.doi.org/10.1016/j.cartre.2021.100057]
[59]
Canevari, T.C.; Cincotto, F.H.; Nakamura, M.; Machado, S.A.S.; Toma, H.E. Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal. Methods, 2016, 8(39), 7254-7259.
[http://dx.doi.org/10.1039/C6AY02178F]
[60]
Ganesan, M.; Ramadhass, K.D.; Chuang, H.C.; Gopalakrishnan, G. Synthesis of nitrogen-doped carbon quantum dots@Fe2O3/multiwall carbon nanotubes ternary nanocomposite for the simultaneous electrochemical detection of 5-fluorouracil, uric acid, and xanthine. J. Mol. Liq., 2021, 331, 115768.
[http://dx.doi.org/10.1016/j.molliq.2021.115768]
[61]
Muthusankar, G.; Sethupathi, M.; Chen, S.M.; Devi, R.K.; Vinoth, R.; Gopu, G.; Anandhan, N.; Sengottuvelan, N. N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: A hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Compos., Part B Eng., 2019, 174, 106973.
[http://dx.doi.org/10.1016/j.compositesb.2019.106973]
[62]
Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci., 2019, 54(2), 949-973.
[http://dx.doi.org/10.1007/s10853-018-2961-5]
[63]
Wu, H.; Xiao, K.; Ouyang, T.; Wang, Z.; Chen, Y.; Li, N.; Liu, Z.Q. Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. J. Colloid Interface Sci., 2021, 585, 605-613.
[http://dx.doi.org/10.1016/j.jcis.2020.10.040] [PMID: 33139019]
[64]
Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors, 2021, 21(7), 2494.
[http://dx.doi.org/10.3390/s21072494] [PMID: 33916680]
[65]
Gushikem, Y.; Rosatto, S.S. Metal oxide thin films grafted on silica gel surfaces: Recent advances on the analytical application of these materials. J. Braz. Chem. Soc., 2001, 12(6), 695.
[http://dx.doi.org/10.1590/S0103-50532001000600002]
[66]
Şerban, I.; Enesca, A. Metal oxides-based semiconductors for biosensors applications. Front Chem., 2020, 8, 354.
[http://dx.doi.org/10.3389/fchem.2020.00354] [PMID: 32509722]
[67]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[68]
Canevari, T.C.; Cincotto, F.H.; Gomes, D.; Landers, R.; Toma, H.E. Magnetite nanoparticles bonded carbon quantum dots magnetically confined onto screen printed carbon electrodes and their performance as electrochemical sensor for NADH. Electroanalysis, 2017, 29(8), 1968-1975.
[http://dx.doi.org/10.1002/elan.201700167]
[69]
Cincotto, F.H.; Carvalho, D.A.S.; Canevari, T.C.; Toma, H.E.; Fatibello-Filho, O.; Moraes, F.C. A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Advances, 2018, 8(25), 14040-14047.
[http://dx.doi.org/10.1039/C8RA01857J] [PMID: 35539351]
[70]
Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sens. Biosensing Res., 2020, 29, 100317.
[http://dx.doi.org/10.1016/j.sbsr.2019.100317]
[71]
Zhan, T.; Ding, G.; Cao, W.; Li, J.; She, X.; Teng, H. Amperometric sensing of catechol by using a nanocomposite prepared from Ag/Ag2O nanoparticles and N,S-doped carbon quantum dots. Mikrochim. Acta, 2019, 186(11), 743.
[http://dx.doi.org/10.1007/s00604-019-3848-0] [PMID: 31686218]
[72]
El-Shamy, A.G. New nano-composite based on carbon dots (CDots) decorated magnesium oxide (MgO) nano-particles (CDots@MgO) sensor for high H2S gas sensitivity performance. Sens. Actuators B Chem., 2021, 329, 129154.
[http://dx.doi.org/10.1016/j.snb.2020.129154]
[73]
Lu, Z.; Du, X.; Sun, M.; Zhang, Y.; Li, Y.; Wang, X.; Wang, Y.; Du, H.; Yin, H.; Rao, H. Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe2O4/CoFe2O4/NCDs nanospheres: Fabrication, application and DFT theoretical study. Biosens. Bioelectron., 2021, 190, 113408.
[http://dx.doi.org/10.1016/j.bios.2021.113408] [PMID: 34126330]
[74]
Devi, R.K.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Liu, X.; Ali, M.A.; Almutairi, S.M.; Sethupathi, M. Surface engineering of gadolinium oxide nanoseeds with nitrogen-doped carbon quantum dots: an efficient nanocomposite for precise detection of antibiotic drug clioquinol. New J. Chem., 2022, 46(9), 4090-4102.
[http://dx.doi.org/10.1039/D1NJ05243H]
[75]
Feng, X.; Han, G.; Cai, J.; Wang, X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J. Colloid Interface Sci., 2022, 607(Pt 2), 1313-1322.
[http://dx.doi.org/10.1016/j.jcis.2021.09.036] [PMID: 34583036]
[76]
Zhan, X.; Hu, S.; Wang, J.; Chen, H.; Chen, X.; Yang, J.; Yang, H.; Su, Z. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sens. Actuators B Chem., 2021, 346, 130499.
[http://dx.doi.org/10.1016/j.snb.2021.130499]
[77]
Yang, X.; Yan, Z.; Huang, R.; Wang, J.; Cui, Y.; Liu, Y. An enzyme-free glucose electrochemical sensor for detection of the glucose in serum based on nickel nanoparticle/carbon quantum dots. Int. J. Electrochem. Sci., 2021, 16, 210528.
[http://dx.doi.org/10.20964/2021.05.57]
[78]
Louleb, M.; Latrous, L.; Ríos, Á.; Zougagh, M.; Rodríguez-Castellón, E.; Algarra, M.; Soto, J. Detection of dopamine in human fluids using N-doped carbon dots. ACS Appl. Nano Mater., 2020, 3(8), 8004-8011.
[http://dx.doi.org/10.1021/acsanm.0c01461]
[79]
Ali, S.; Ma, Y.; Parajuli, R.; Balogun, Y.; Lai, W. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79(6), 2583-2587.
[http://dx.doi.org/10.1021/ac062068o]
[80]
Adekunle, A.; Agboola, B.; Pillay, J.; Ozoemena, K. Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sens. Actuators B Chem., 2010, 148(1), 93-102.
[http://dx.doi.org/10.1016/j.snb.2010.03.088]
[81]
Li, W.; Ding, L.; Wang, Q.; Su, B. Differential pulse voltammetry detection of dopamine and ascorbic acid by permselective silica mesochannels vertically attached to the electrode surface. Analyst, 2014, 139(16), 3926-3931.
[http://dx.doi.org/10.1039/C4AN00605D] [PMID: 24949496]
[82]
Wang, K.; Liu, P.; Ye, Y.; Li, J.; Zhao, W.; Huang, X. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens. Actuators B Chem., 2014, 197, 292-299.
[http://dx.doi.org/10.1016/j.snb.2014.03.002]
[83]
del Barrio, M.; Rana, M.; Vilatela, J.J.; Lorenzo, E.; De Lacey, A.L.; Pita, M. Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochim. Acta, 2021, 377, 138071.
[http://dx.doi.org/10.1016/j.electacta.2021.138071]
[84]
Zhang, Y.; Bo, X.; Nsabimana, A.; Luhana, C.; Wang, G.; Wang, H.; Li, M.; Guo, L. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron., 2014, 53, 250-256.
[http://dx.doi.org/10.1016/j.bios.2013.10.001] [PMID: 24144555]
[85]
Rębiś T.; Kuznowicz, M.; Jędrzak, A.; Milczarek, G.; Jesionowski, T. Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim. Acta, 2021, 386, 138384.
[http://dx.doi.org/10.1016/j.electacta.2021.138384]
[86]
Manusha, P.; Yadav, S.; Satija, J.; Senthilkumar, S. Designing electrochemical NADH sensor using silver nanoparticles/phenothiazine nanohybrid and investigation on the shape dependent sensing behavior. Sens. Actuators B Chem., 2021, 347, 130649.
[http://dx.doi.org/10.1016/j.snb.2021.130649]
[87]
Li, X.; Kan, X. A boronic acid carbon nanodots/poly(thionine) sensing platform for the accurate and reliable detection of NADH. Bioelectrochemistry, 2019, 130, 107344.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107344] [PMID: 31404808]
[88]
Wei, C.; Huang, Q.; Hu, S.; Zhang, H.; Zhang, W.; Wang, Z.; Zhu, M.; Dai, P.; Huang, L. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim. Acta, 2014, 149, 237-244.
[http://dx.doi.org/10.1016/j.electacta.2014.10.051]
[89]
Xu, G.; Li, B.; Luo, X. Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens. Actuators B Chem., 2013, 176, 69-74.
[http://dx.doi.org/10.1016/j.snb.2012.09.001]
[90]
Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater., 2016, 318, 117-124.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.049] [PMID: 27420383]
[91]
Liu, Z.; Liao, D.; Yu, J.; Jiang, X. An electrochemical sensor based on oxygen-vacancy cobalt-aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchem. J., 2022, 175, 107216.
[http://dx.doi.org/10.1016/j.microc.2022.107216]
[92]
Lou, C.; Jing, T.; Zhou, J.; Tian, J.; Zheng, Y.; Wang, C.; Zhao, Z.; Lin, J.; Liu, H.; Zhao, C.; Guo, Z. Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. Int. J. Biol. Macromol., 2020, 149, 1130-1138.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.248] [PMID: 32001285]
[93]
Özcan, A. Topçuoğulları D.; Atılır Özcan, A. Fenitrothion sensing with reduced graphene oxide decorated fumed silica nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem., 2019, 284, 179-185.
[http://dx.doi.org/10.1016/j.snb.2018.12.122]
[94]
Kokulnathan, T.; Wang, T.J.; Duraisamy, N.; Kumar, E.A. Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion. J. Hazard. Mater., 2021, 412, 125257.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125257] [PMID: 33548779]
[95]
Jangid, K.; Sahu, R.P.; Pandey, R.; Chen, R.; Zhitomirsky, I.; Puri, I.K. Multiwalled carbon nanotubes coated with nitrogen-sulfur co-doped activated carbon for detecting fenitrothion. ACS Appl. Nano Mater., 2021, 4(5), 4781-4789.
[http://dx.doi.org/10.1021/acsanm.1c00376]
[96]
Kumaravel, A.; Murugananthan, M. Electrochemical detection of fenitrothion usingnanosilver/dodecane modified glassy carbon electrode. Sens. Actuators B Chem., 2021, 331, 129467.
[http://dx.doi.org/10.1016/j.snb.2021.129467]
[97]
Kilele, J.C.; Chokkareddy, R.; Redhi, G.G. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@CoFe2O4NPs@MWCNTs nanocomposite. Microchem. J., 2021, 164, 106012.
[http://dx.doi.org/10.1016/j.microc.2021.106012]
[98]
Chen, W.; Wang, H.; Tang, H.; Yang, C.; Guan, X.; Li, Y. Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Mikrochim. Acta, 2019, 186(6), 350.
[http://dx.doi.org/10.1007/s00604-019-3486-6]
[99]
Villa-Manso, A.M.; Revenga-Parra, M.; Vera-Hidalgo, M.; Vázquez Sulleiro, M.; Pérez, E.M.; Lorenzo, E.; Pariente, F. II 2D MoS2 nanosheets and hematein complexes deposited on screen-printed graphene electrodes as an efficient electrocatalytic sensor for detecting hydrazine. Sens. Actuators B Chem., 2021, 345, 130385.
[http://dx.doi.org/10.1016/j.snb.2021.130385]
[100]
Singht, M.; Bhardiya, S.; Asati, A.; Sheshma, H.; Rai, A.; Rai, V. Design of a sensitive electrochemical sensor based on ferrocene-;reduced graphene oxide/Mn-;spinel for hydrazine detection. Electroanalysis, 2021, 33(2), 464-472.
[http://dx.doi.org/10.1002/elan.202060345]
[101]
Chiani, E.; Azizi, S.; Ghasemi, S. Superior electrocatalyst based on mesoporous silica nanoparticles/carbon nanotubes modified by platinum-copper bimetallic nanoparticles for amperometric detection of hydrazine. Int. J. Hydrogen Energy, 2022, 47(46), 20087-20102.
[http://dx.doi.org/10.1016/j.ijhydene.2022.04.118]
[102]
Mohammad, A.; Ehtisham Khan, M.; Alarifi, I.M.; Hwan Cho, M.; Yoon, T. A sensitive electrochemical detection of hydrazine based on SnO2/CeO2 nanostructured oxide. Microchem. J., 2021, 171, 106784.
[http://dx.doi.org/10.1016/j.microc.2021.106784]
[103]
Rajesh, K.; Kumar, D.; Bhargav, P.; Manigandan, R.; Ahmed, N.; Balaji, C.; Shim, J. Carbon dot-V2O5 layered nanoporous architectures for electrochemical detection of Bisphenol A: An analytical approach. J. Environ. Chem. Eng., 2022, 10(5), 108206.
[http://dx.doi.org/10.1016/j.jece.2022.108206]
[104]
Bas, S.Z.; Yuncu, N.; Atacan, K.; Ozmen, M. A comparison study of MFe2O4 (M: Ni, Cu, Zn)-reduced graphene oxide nanocomposite for electrochemical detection of bisphenol A. Electrochim. Acta, 2021, 386, 138519.
[http://dx.doi.org/10.1016/j.electacta.2021.138519]
[105]
Chen, Y.; Li, W.; Li, J.; Zhuo, S.; Jiao, S.; Wang, S.; Sun, J.; Li, Q.; Zheng, T. Stable three-dimensional porous silicon-carbon-gold composite film for enrichment and directly electrochemical detection of bisphenol A. Microchem. J., 2021, 171, 106881.
[http://dx.doi.org/10.1016/j.microc.2021.106881]
[106]
Baghayeri, M.; Amiri, A.; Fayazi, M.; Nodehi, M.; Esmaeelnia, A. Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys., 2021, 261, 124247.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124247]
[107]
Ali, M.Y.; Alam, A.U.; Howlader, M.M.R. Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuators B Chem., 2020, 320, 128319.
[http://dx.doi.org/10.1016/j.snb.2020.128319]
[108]
Luhana, C.; Moyo, I.; Tshenkeng, K.; Mashazi, P. In-sera selectivity detection of catecholamine neurotransmitters using covalent composite of cobalt phthalocyanine and aminated graphene quantum dots. Microchem. J., 2022, 180, 107605.
[http://dx.doi.org/10.1016/j.microc.2022.107605]
[109]
Boopathy, G.; Keerthi, M.; Chen, S.M.; Umapathy, M.J.; Kumar, B.N. Highly porous nickel molybdate@graphene oxide nanocomposite for the ultrasensitive electrochemical detection of environmental toxic pollutant catechol. Mater. Chem. Phys., 2020, 239, 121982.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121982]
[110]
Kaleeswarran, P.; Sakthi Priya, T.; Chen, T.W.; Chen, S.M.; Kokulnathan, T.; Arumugam, A. Construction of a copper bismuthate/graphene nanocomposite for electrochemical detection of catechol. Langmuir, 2022, 38(33), 10162-10172.
[http://dx.doi.org/10.1021/acs.langmuir.2c01151] [PMID: 35939572]
[111]
Kunpatee, K.; Traipop, S.; Chailapakul, O.; Chuanuwatanakul, S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators B Chem., 2020, 314, 128059.
[http://dx.doi.org/10.1016/j.snb.2020.128059]
[112]
Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep., 2020, 10(1), 10607.
[http://dx.doi.org/10.1038/s41598-020-67394-8] [PMID: 32606291]
[113]
Fukuda, T.; Muguruma, H.; Iwasa, H.; Tanaka, T.; Hiratsuka, A.; Shimizu, T.; Tsuji, K.; Kishimoto, T. Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube/carboxymethylcellulose electrode. Anal. Biochem., 2020, 590, 113533.
[http://dx.doi.org/10.1016/j.ab.2019.113533] [PMID: 31836385]
[114]
Reddy, V.M.Y.; Sravani, B.; Agarwal, S.; Gupta, V.K.; Madhavi, G. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J. Electroanal. Chem. (Lausanne), 2018, 820, 168-175.
[http://dx.doi.org/10.1016/j.jelechem.2018.04.059]