Insulin Signaling Pathway Model in Adipocyte Cells

Page: [37 - 47] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Worldwide, type 2 diabetes mellitus (T2DM) is one of the most pervasive and fastgrowing disorders, bringing long-term adverse effects. T2DM arises from pancreatic β-cells deficiency to produce enough insulin or when the body cannot effectively use the insulin produced by such cells. Accordingly, early diagnosis will decrease the long-term effects and high-healthcare costs of diabetes.

Objective: The objective is developing an integrated mathematical model of the insulin signaling network based on Brännmark's model, which can simulate the signaling events more comprehensively with the added key components.

Methods: In this study, a thorough mathematical model of the insulin signaling network was developed by expanding the previously validated model and incorporating the glycogen synthesis module. Parameters (69 parameters) of the integrated model were evaluated by a genetic algorithm by fitting the model predictions to eighty percent of experimental data from the literature. Twenty percent of the experimental data were used to evaluate the final optimized model.

Results: The time-response curves indicate that the GS phosphorylation reaches its maximum in response to 10-7 M insulin after 4 min, while the maximum phosphorylated GSK3 is attained within ~50 min. The doseresponse curves for the GSP and GSK3 of the insulin signaling intermediaries in response to the increased concentration of insulin, after 10 min, in the input from 0-100 nM exhibits a decreasing trend, whereas an increasing trend was observed for the GS and GSK3P. The GSK and GS phosphorylation sensitivity was enhanced by increasing the initial insulin concentration level from 0.001 to 100 nM. However, the sensitivity of GSK3 to insulin concentration changes (from 0.001 to 100 nM) was 3-fold higher than GS sensitivity.

Conclusion: Considerably, the trends of all signaling components simulated by the expanded model shows high compatibility with experimental data (R2 ≥ 0.9), which approves the accuracy of the proposed model. The proposed mathematical model can be used in many biological systems and combined with the whole-body model of the blood glucose regulation system for a better understanding of the causes and potential treatment of type 2 diabetes. Although, this model is not a complete description of insulin signaling, yet it can make profound contributions to improvements regarding other important components and signaling branches such as epidermal growth factor (EGF) signaling, as well as signaling in other cell types in the model structure of future works.

[1]
Roshandel M, Dorkoosh F. Cardiac tissue engineering, biomaterial scaffolds, and their fabrication techniques. Polym Adv Technol 2021; 32(6): 2290-305.
[http://dx.doi.org/10.1002/pat.5273]
[2]
Roshandel M, Sotudeh-Gharebagh R, Mirzakhanlouei S, Hajiaghaee R, Ghaffarzadegan R. Statistical optimization of production conditions of polycaprolactone-chitosan-curcumin particles. J Chem Pet Eng 2018; 52(2): 181-91.
[http://dx.doi.org/10.22059/JCHPE.2018.262918.1240]
[3]
Bousquet J, Dahl R, Khaltaev N. Global alliance against chronic respiratory diseases. Eur Respir J 2006; 29(2): 233-9.
[http://dx.doi.org/10.1183/09031936.00138606] [PMID: 17264322]
[4]
Loghmani ES. Diabetes Mellitis: Type 1 and Type 2. Guidelines for Adolescent Nutrition 2005; 167-82.
[5]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[6]
Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet 2008; 47(7): 417-48.
[http://dx.doi.org/10.2165/00003088-200847070-00001] [PMID: 18563953]
[7]
Centers for Disease Control and Prevention. National Diabetes Fact Sheet: National Estimates and General Information on Diabe-tes and Prediabetes in the United States. Dis Control Prev 2011; 201(1): 2568-9.
[8]
Gavi S, Hensley J, Lindvall B, Michels R, O’Connor P, Redmon B. Diagnosis and management of type 2 diabetes in adults: A review of the ICSI guideline. Geriatrics 2009; 64(6): 12.
[PMID: 19572762]
[9]
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: Insights into insulin action. Nat Rev Mol Cell Biol 2006; 7(2): 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[10]
Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193-205.
[http://dx.doi.org/10.1038/nrm2327] [PMID: 18200017]
[11]
Aili Fagerholm S. Insulin Signaling in Primary Adipocytes in Insulin Sensitive and Insulin Resistant States. Linköping University, Linköping 2013.
[12]
Laviola L, Perrini S, Cignarelli A, Giorgino F. Insulin signalling in human adipose tissue. Arch Physiol Biochem 2006; 112(2): 82-8.
[http://dx.doi.org/10.1080/13813450600736174] [PMID: 16931450]
[13]
Di Camillo B, Carlon A, Eduati F, Toffolo GM. A rule-based model of insulin signalling pathway. BMC Syst Biol 2016; 10(1): 38.
[http://dx.doi.org/10.1186/s12918-016-0281-4] [PMID: 27245161]
[14]
Sedaghat AR, Sherman A, Quon MJ. A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metab 2002; 283(5): E1084-101.
[http://dx.doi.org/10.1152/ajpendo.00571.2001] [PMID: 12376338]
[15]
Ho CK, Rahib L, Liao JC, Sriram G, Dipple KM. Mathematical modeling of the insulin signal transduction pathway for prediction of insulin sensitivity from expression data. Mol Genet Metab 2015; 114(1): 66-72.
[http://dx.doi.org/10.1016/j.ymgme.2014.11.003] [PMID: 25468647]
[16]
Dalle Pezze P, Sonntag AG, Thien A, et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 2012; 5(217): ra25.
[http://dx.doi.org/10.1126/scisignal.2002469] [PMID: 22457331]
[17]
Nyman E, Rajan MR, Fagerholm S. Brännmark C, Cedersund G, Strålfors P. A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes. J Biol Chem 2014; 289(48): 33215-30.
[http://dx.doi.org/10.1074/jbc.M114.608927] [PMID: 25320095]
[18]
Brännmark C, Nyman E, Fagerholm S, et al. Insulin signaling in type 2 diabetes: Experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes. J Biol Chem 2013; 288(14): 9867-80.
[http://dx.doi.org/10.1074/jbc.M112.432062] [PMID: 23400783]
[19]
Nyman E, Brännmark C, Palmér R, et al. A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis. J Biol Chem 2011; 286(29): 26028-41.
[http://dx.doi.org/10.1074/jbc.M110.188987] [PMID: 21572040]
[20]
Carlon A. Modeling and Simulation of Insulin Signaling. University of Padova 2013.
[21]
Bergqvist N, Nyman E, Cedersund G, Stenkula KG. A systems biology analysis connects insulin receptor signaling with glucose transporter translocation in rat adipocytes. J Biol Chem 2017; 292(27): 11206-17.
[http://dx.doi.org/10.1074/jbc.M117.787515] [PMID: 28495883]
[22]
Muniyappa R, Chen H, Montagnani M, Sherman A, Quon MJ. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: Insights from mechanistic modeling. Am J Physiol Endocrinol Metab 2020; 319(3): E629-46.
[http://dx.doi.org/10.1152/ajpendo.00247.2020] [PMID: 32776829]
[23]
Kubota T, Kubota N, Kadowaki T. Imbalanced insulin actions in obesity and type 2 diabetes: Key mouse models of insulin signaling pathway. Cell Metab 2017; 25(4): 797-810.
[http://dx.doi.org/10.1016/j.cmet.2017.03.004] [PMID: 28380373]
[24]
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414(6865): 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[25]
Ray A, Alalem M, Ray BK. Insulin signaling network in cancer. Indian J Biochem Biophys 2014; 51(6): 493-8.
[PMID: 25823221]
[26]
Bevan P. Insulin signalling. J Cell Sci 2001; 114(8): 1429-30.
[http://dx.doi.org/10.1242/jcs.114.8.1429] [PMID: 11282018]
[27]
Wu M, Yang X, Chan C. A dynamic analysis of IRS-PKR signaling in liver cells: A discrete modeling approach. PLoS One 2009; 4(12): e8040.
[http://dx.doi.org/10.1371/journal.pone.0008040] [PMID: 19956598]
[28]
Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87(1): 99-109.
[http://dx.doi.org/10.1016/j.biochi.2004.10.019] [PMID: 15733744]
[29]
White MF. Insulin signaling in health and disease. Science 2003; 302(5651): 1710-1.
[http://dx.doi.org/10.1126/science.1092952]
[30]
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6(1): a009191-1.
[http://dx.doi.org/10.1101/cshperspect.a009191] [PMID: 24384568]
[31]
Ijuin T, Takenawa T. Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1. Mol Cell Biol 2012; 32(17): 3570-84.
[http://dx.doi.org/10.1128/MCB.00636-12] [PMID: 22751929]
[32]
Öst A. Lipid Metabolism and Insulin Signalling in Adipocytes: Enhanced Autophagy in Type 2 Diabetes. Linköping University Electronic Press: Linköping 2009.
[33]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[34]
Showkat M, Beigh MA, Andrabi KI. mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions. Mol Biol Int 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/686984] [PMID: 25505994]
[35]
Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122(20): 3589-94.
[http://dx.doi.org/10.1242/jcs.051011] [PMID: 19812304]
[36]
Haar EV, Lee S, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9(3): 316-23.
[http://dx.doi.org/10.1038/ncb1547] [PMID: 17277771]
[37]
Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4(9): 648-57.
[http://dx.doi.org/10.1038/ncb839] [PMID: 12172553]
[38]
Huang J, Manning BD. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem J 2008; 412(2): 179-90.
[http://dx.doi.org/10.1042/BJ20080281] [PMID: 18466115]
[39]
Sonntag AG, Dalle Pezze P, Shanley DP, Thedieck K. A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS J 2012; 279(18): 3314-28.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08582.x] [PMID: 22452783]
[40]
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11(2): 230-41.
[http://dx.doi.org/10.1016/j.arr.2011.12.005] [PMID: 22186033]
[41]
Gould TD, Manji HK. Glycogen synthase kinase-3: A putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 2005; 30(7): 1223-37.
[http://dx.doi.org/10.1038/sj.npp.1300731] [PMID: 15827567]
[42]
Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR. Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol Cell Biol 2008; 28(20): 6314-28.
[http://dx.doi.org/10.1128/MCB.00763-08] [PMID: 18694957]
[43]
Jope RS, Johnson GVW. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29(2): 95-102.
[http://dx.doi.org/10.1016/j.tibs.2003.12.004] [PMID: 15102436]
[44]
Arfeen M, Bharatam P. Design of glycogen synthase kinase-3 inhibitors: An overview on recent advancements. Curr Pharm Des 2013; 19(26): 4755-75.
[http://dx.doi.org/10.2174/1381612811319260007] [PMID: 23260024]
[45]
Henriksen E, Dokken B. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 2006; 7(11): 1435-41.
[http://dx.doi.org/10.2174/1389450110607011435] [PMID: 17100583]
[46]
Eldar-Finkelman H, Ilouz R. Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and Type 2 diabetes treatment. Expert Opin Investig Drugs 2003; 12(9): 1511-9.
[http://dx.doi.org/10.1517/13543784.12.9.1511] [PMID: 12943495]
[47]
Patel S, Doble B, Woodgett JR. Glycogen synthase kinase-3 in insulin and Wnt signalling: A double-edged sword? Biochem Soc Trans 2004; 32(5): 803-8.
[http://dx.doi.org/10.1042/BST0320803] [PMID: 15494020]
[48]
Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3: A bifunctional role in cell death pathways. Int J Cell Biol 2012; 2012: 1-11.
[http://dx.doi.org/10.1155/2012/930710] [PMID: 22675363]
[49]
MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin Ther Targets 2008; 12(10): 1265-74.
[http://dx.doi.org/10.1517/14728222.12.10.1265] [PMID: 18781825]
[50]
Nyman E, Cedersund G. Strålfors P. Insulin signaling - mathematical modeling comes of age. Trends Endocrinol Metab 2012; 23(3): 107-15.
[http://dx.doi.org/10.1016/j.tem.2011.12.007] [PMID: 22285743]
[51]
Levenspiel O. Chemical reaction engineering. Ind Eng Chem Res 1999; 38(11): 4140-3.
[http://dx.doi.org/10.1021/ie990488g]
[52]
Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α The two sides of a coin. Diabetes 2006; 55(8): 2392-7.
[http://dx.doi.org/10.2337/db06-0391] [PMID: 16873706]
[53]
Rexhepi A, Maxhuni A, Dika A. Analysis of the impact of parameters values on the genetic algorithm for TSP. Int J Comput Sci Issues 2013; 10(1): 158.
[54]
Diaz-Gomez PA, Hougen DF. Initial population for genetic algorithms: A metric approach. Gem Citeseer. 2007; pp. 43-9.
[55]
Abdi H, Williams LJ. Coefficients of Correlation, Alienation and Determination. Encycl Meas Stat. Thousand Oaks, CA: Sage 2007.
[56]
Goirgetti S, Ballotti R, Kowalski-Chauvel A, Cormont M, Obberghen E. Insulin stimulates phosphatidylinositol-3-kinase activity in rat adipocytes. Eur J Biochem 1992; 207(2): 599-606.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17086.x] [PMID: 1321717]
[57]
Standaert ML, Bandyopadhyay G, Sajan MP, Cong L, Quon MJ, Farese RV. Okadaic acid activates atypical protein kinase C (ζ/λ) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport. J Biol Chem 1999; 274(20): 14074-8.
[http://dx.doi.org/10.1074/jbc.274.20.14074] [PMID: 10318822]
[58]
Man CD, Rizza RA, Cobelli C. Mixed Meal Simulation Model of Glucose-Insulin System. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. Conf Proc IEEE Eng Med Bio Soc 2006; 2006: 307-10.
[http://dx.doi.org/10.1109/IEMBS.2006.260810]
[59]
Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 2007; 54(10): 1740-9.
[http://dx.doi.org/10.1109/TBME.2007.893506] [PMID: 17926672]
[60]
Zielinski R, Przytycki PF, Zheng J, Zhang D, Przytycka TM, Capala J. The crosstalk between EGF, IGF, and insulin cell signaling pathways - computational and experimental analysis. BMC Syst Biol 2009; 3(1): 88.
[http://dx.doi.org/10.1186/1752-0509-3-88] [PMID: 19732446]