The Impact of Mesenchymal Stromal Cells on Neutrophils: A Concise Review

Page: [878 - 891] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

This review describes the current state of knowledge concerning interactions between mesenchymal stromal cells (MSCs) and neutrophils. MSCs are known as somatic multipotent cells with regenerative and anti-inflammatory abilities and immunomodulatory effects over other immune cells. Several studies reported that MSCs could affect the function and viability of neutrophils in their recruitment, activation, activity, survival, production of reactive oxygen species, phagocytosis capacity, and apoptosis. Moreover, neutrophils could be involved in the pro-metastatic effects of MSCs. Inversally, only a few studies pointed to the possibility of the opposite effect of neutrophils on MSCs. Understanding the interactions between MSCs and neutrophils could help promote therapeutic strategies using stromal cell-based therapeutic approaches, especially for hyper-immune pathologies, immunodeficiencies, and infectious diseases. However, further in vitro and in vivo studies are essential to determine the complete mechanisms of MSCs and neutrophils interaction.

Graphical Abstract

[1]
Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 2019; 21(10): 1019-24.
[http://dx.doi.org/10.1016/j.jcyt.2019.08.002] [PMID: 31526643]
[2]
Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic properties of mesenchymal stromal/stem cells: The need of cell priming for cell-free therapies in regenerative medicine. Int J Mol Sci 2021; 22(2): 763.
[http://dx.doi.org/10.3390/ijms22020763] [PMID: 33466583]
[3]
Luz-Crawford P, Kurte M, Bravo-Alegría J, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 2013; 4(3): 65.
[http://dx.doi.org/10.1186/scrt216] [PMID: 23734780]
[4]
Ghannam S, Pène J, Torcy-Moquet G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 2010; 185(1): 302-12.
[http://dx.doi.org/10.4049/jimmunol.0902007] [PMID: 20511548]
[5]
Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019; 10: 1191.
[http://dx.doi.org/10.3389/fimmu.2019.01191] [PMID: 31214172]
[6]
Zachar L. Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 2016; 9: 231-40.
[http://dx.doi.org/10.2147/JIR.S121994] [PMID: 28008279]
[7]
English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 2008; 115(1): 50-8.
[http://dx.doi.org/10.1016/j.imlet.2007.10.002] [PMID: 18022251]
[8]
Luz-Crawford P, Jorgensen C, Djouad F. Mesenchymal stem cells direct the immunological fate of macrophages. Results Probl Cell Differ 2017; 62: 61-72.
[http://dx.doi.org/10.1007/978-3-319-54090-0_4] [PMID: 28455706]
[9]
Joel MDM, Yuan J, Wang J, et al. MSC: Immunoregulatory effects, roles on neutrophils and evolving clinical potentials. Am J Transl Res 2019; 11(6): 3890-904.
[PMID: 31312397]
[10]
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol 2014; 9(1): 181-218.
[http://dx.doi.org/10.1146/annurev-pathol-020712-164023] [PMID: 24050624]
[11]
Pillay J, den Braber I, Vrisekoop N, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 2010; 116(4): 625-7.
[http://dx.doi.org/10.1182/blood-2010-01-259028] [PMID: 20410504]
[12]
Wang X, Qiu L, Li Z, Wang XY, Yi H. Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases. Front Immunol 2018; 9: 2456.
[http://dx.doi.org/10.3389/fimmu.2018.02456] [PMID: 30473691]
[13]
Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol 2002; 14(1): 136-45.
[http://dx.doi.org/10.1016/S0952-7915(01)00309-0] [PMID: 11790544]
[14]
Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 2003; 5(14): 1317-27.
[http://dx.doi.org/10.1016/j.micinf.2003.09.008] [PMID: 14613775]
[15]
Klebanoff SJ. Myeloperoxidase: Friend and foe. J Leukoc Biol 2005; 77(5): 598-625.
[http://dx.doi.org/10.1189/jlb.1204697] [PMID: 15689384]
[16]
Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol 2005; 78(6): 1408-18.
[http://dx.doi.org/10.1189/jlb.0605289] [PMID: 16204629]
[17]
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: Comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76(4): 760-81.
[http://dx.doi.org/10.1189/jlb.0404216] [PMID: 15240752]
[18]
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009; 16(3): 183-94.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[19]
Rogers T, DeBerardinis RJ. Metabolic plasticity of neutrophils: Relevance to pathogen responses and cancer. Trends Cancer 2021; 7(8): 700-13.
[http://dx.doi.org/10.1016/j.trecan.2021.04.007] [PMID: 34023325]
[20]
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: From mechanisms to disease. Annu Rev Immunol 2012; 30(1): 459-89.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074942] [PMID: 22224774]
[21]
Khan I, Zhang L, Mohammed M, et al. Effects of Wharton’s jelly-derived mesenchymal stem cells on neonatal neutrophils. J Inflamm Res 2014; 8: 1-8.
[PMID: 25678809]
[22]
Taghavi-Farahabadi M, Mahmoudi M, Mahdaviani SA, et al. Improving the function of neutrophils from chronic granulomatous disease patients using mesenchymal stem cells’ exosomes. Hum Immunol 2020; 81(10-11): 614-24.
[http://dx.doi.org/10.1016/j.humimm.2020.05.009] [PMID: 32891471]
[23]
Taghavi-Farahabadi M, Mahmoudi M, Hashemi SM, Rezaei N. Evaluation of the effects of mesenchymal stem cells on neutrophils isolated from severe congenital neutropenia patients. Int Immunopharmacol 2020; 83: 106463.
[http://dx.doi.org/10.1016/j.intimp.2020.106463] [PMID: 32251962]
[24]
Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014.
[http://dx.doi.org/10.18632/aging.102314] [PMID: 31575829]
[25]
Munir H, Luu NT, Clarke LSC, Nash GB, McGettrick HM. Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium. PLoS One 2016; 11(5): e0155161.
[http://dx.doi.org/10.1371/journal.pone.0155161] [PMID: 27171357]
[26]
Wang C, Börger V, Sardari M, et al. Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke 2020; 51(6): 1825-34.
[http://dx.doi.org/10.1161/STROKEAHA.119.028012] [PMID: 32312217]
[27]
Raffaghello L, Bianchi G, Bertolotto M, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: A model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26(1): 151-62.
[http://dx.doi.org/10.1634/stemcells.2007-0416] [PMID: 17932421]
[28]
Maqbool M, Vidyadaran S, George E, Ramasamy R. Human mesenchymal stem cells protect neutrophils from serum-deprived cell death. Cell Biol Int 2011; 35(12): 1247-51.
[http://dx.doi.org/10.1042/CBI20110070] [PMID: 21649586]
[29]
Cassatella MA, Mosna F, Micheletti A, et al. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 2011; 29(6): 1001-11.
[http://dx.doi.org/10.1002/stem.651] [PMID: 21563279]
[30]
Zhang Z, Tian H, Yang C, et al. Mesenchymal stem cells promote the resolution of cardiac inflammation after ischemia reperfusion via enhancing efferocytosis of neutrophils. J Am Heart Assoc 2020; 9(5): e014397.
[http://dx.doi.org/10.1161/JAHA.119.014397] [PMID: 32079474]
[31]
Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 2012; 3: 359.
[http://dx.doi.org/10.3389/fphys.2012.00359] [PMID: 22973239]
[32]
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12(1): 260.
[http://dx.doi.org/10.1186/s12967-014-0260-8] [PMID: 25304688]
[33]
Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013; 6(6): e26631.
[http://dx.doi.org/10.4161/cib.26631] [PMID: 24567776]
[34]
Janockova J, Matejova J, Moravek M, et al. Small extracellular vesicles derived from human chorionic MSCs as modern perspective towards cell-free therapy. Int J Mol Sci 2021; 22(24): 13581.
[http://dx.doi.org/10.3390/ijms222413581] [PMID: 34948379]
[35]
Kelly K, Rasko JEJ. Mesenchymal stromal cells for the treatment of graft versus host disease. Front Immunol 2021; 12: 761616.
[http://dx.doi.org/10.3389/fimmu.2021.761616] [PMID: 34764962]
[36]
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13(6): 568-93.
[http://dx.doi.org/10.4252/wjsc.v13.i6.568] [PMID: 34249228]
[37]
Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: A friend or foe in immune-mediated diseases. Stem Cell Rev 2015; 11(2): 280-7.
[http://dx.doi.org/10.1007/s12015-014-9583-3] [PMID: 25592610]
[38]
Mittal SK, Mashaghi A, Amouzegar A, et al. Mesenchymal stromal cells inhibit neutrophil effector functions in a murine model of ocular inflammation. Invest Ophthalmol Vis Sci 2018; 59(3): 1191-8.
[http://dx.doi.org/10.1167/iovs.17-23067] [PMID: 29625439]
[39]
Mahmoudi M, Taghavi-Farahabadi M, Namaki S, et al. Exosomes derived from mesenchymal stem cells improved function and survival of neutrophils from severe congenital neutropenia patients in vitro. Hum Immunol 2019; 80(12): 990-8.
[http://dx.doi.org/10.1016/j.humimm.2019.10.006] [PMID: 31706743]
[40]
Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol 2019; 74: 105689.
[http://dx.doi.org/10.1016/j.intimp.2019.105689] [PMID: 31207404]
[41]
Antunes MA, Abreu SC, Cruz FF, et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 2014; 15(1): 118.
[http://dx.doi.org/10.1186/s12931-014-0118-x] [PMID: 25272959]
[42]
Poggio HA, Antunes MA, Rocha NN, et al. Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Res Ther 2018; 9(1): 296.
[http://dx.doi.org/10.1186/s13287-018-1043-6] [PMID: 30409216]
[43]
Monsel A, Zhu Y, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 2015; 192(3): 324-36.
[http://dx.doi.org/10.1164/rccm.201410-1765OC] [PMID: 26067592]
[44]
Brandau S, Jakob M, Bruderek K, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS One 2014; 9(9): e106903.
[http://dx.doi.org/10.1371/journal.pone.0106903] [PMID: 25238158]
[45]
Hu X, Zhou Y, Dong K, et al. Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells. Cell Physiol Biochem 2014; 33(6): 1802-14.
[http://dx.doi.org/10.1159/000362959] [PMID: 24923759]
[46]
Chen CP, Chen YY, Huang JP, Wu YH. The effect of conditioned medium derived from human placental multipotent mesenchymal stromal cells on neutrophils: Possible implications for placental infection. Mol Hum Reprod 2014; 20(11): 1117-25.
[http://dx.doi.org/10.1093/molehr/gau062] [PMID: 25140001]
[47]
Taghavi-Farahabadi M, Mahmoudi M, Rezaei N, Hashemi SM. Wharton’s jelly mesenchymal stem cells exosomes and conditioned media increased neutrophil lifespan and phagocytosis capacity. Immunol Invest 2021; 50(8): 1042-57.
[http://dx.doi.org/10.1080/08820139.2020.1801720] [PMID: 32777963]
[48]
Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2018; 22(1): 261-76.
[http://dx.doi.org/10.1111/jcmm.13316] [PMID: 28805297]
[49]
Brandau S, Jakob M, Hemeda H, et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 2010; 88(5): 1005-15.
[http://dx.doi.org/10.1189/jlb.0410207] [PMID: 20682625]
[50]
Li J, Wei L, Han Z, Chen Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852: 68-76.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.022] [PMID: 30682335]
[51]
Su VYF, Lin CS, Hung SC, Yang KY. Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition of the NF-κb pathway in endotoxin-induced acute lung injury. Int J Mol Sci 2019; 20(9): 2208.
[http://dx.doi.org/10.3390/ijms20092208] [PMID: 31060326]
[52]
Fialkow L, Fochesatto Filho L, Bozzetti MC, et al. Neutrophil apoptosis: A marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Crit Care 2006; 10(6): R155.
[http://dx.doi.org/10.1186/cc5090] [PMID: 17092345]
[53]
Whyte MK, Meagher LC, MacDermot J, Haslett C. Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 1993; 150(11): 5124-34.
[PMID: 8388425]
[54]
Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev 2016; 273(1): 357-70.
[http://dx.doi.org/10.1111/imr.12453] [PMID: 27558346]
[55]
Hackel A, Aksamit A, Bruderek K, Lang S, Brandau S. TNF‐α and IL‐1β sensitize human MSC for IFN‐γ signaling and enhance neutrophil recruitment. Eur J Immunol 2021; 51(2): 319-30.
[http://dx.doi.org/10.1002/eji.201948336] [PMID: 32845509]
[56]
Chen XY, Chen YY, Lin W, et al. Therapeutic potential of human umbilical cord-derived mesenchymal stem cells in recovering from murine pulmonary emphysema under cigarette smoke exposure. Front Med 2021; 8: 713824.
[http://dx.doi.org/10.3389/fmed.2021.713824] [PMID: 34646841]
[57]
Gong R, Rifai A, Dworkin LD. Hepatocyte growth factor suppresses acute renal inflammation by inhibition of endothelial E-selectin. Kidney Int 2006; 69(7): 1166-74.
[http://dx.doi.org/10.1038/sj.ki.5000246] [PMID: 16501492]
[58]
Mizuno S, Nakamura T. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys. Am J Pathol 2005; 166(6): 1895-905.
[http://dx.doi.org/10.1016/S0002-9440(10)62498-4] [PMID: 15920173]
[59]
Zhong L, Yang M, Zou X, Du T, Xu H, Sun J. Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemia-reperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress. Stem Cell Res Ther 2020; 11(1): 294.
[http://dx.doi.org/10.1186/s13287-020-01813-5] [PMID: 32680554]
[60]
Hall SRR, Tsoyi K, Ith B, et al. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells 2013; 31(2): 397-407.
[http://dx.doi.org/10.1002/stem.1270] [PMID: 23132816]
[61]
Kwon MY, Ghanta S, Ng J, et al. Expression of stromal cell-derived factor-1 by mesenchymal stromal cells impacts neutrophil function during sepsis. Crit Care Med 2020; 48(5): e409-17.
[http://dx.doi.org/10.1097/CCM.0000000000004244] [PMID: 32167490]
[62]
Hsu SC, Wang LT, Yao CL, et al. Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology 2013; 218(1): 90-5.
[http://dx.doi.org/10.1016/j.imbio.2012.02.007] [PMID: 22464815]
[63]
Zheng Z, Li Y, Jia S, et al. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3. Nat Commun 2021; 12(1): 6202.
[http://dx.doi.org/10.1038/s41467-021-26460-z] [PMID: 34707103]
[64]
Salami F, Tavassoli A, Mehrzad J, Parham A. Immunomodulatory effects of mesenchymal stem cells on leukocytes with emphasis on neutrophils. Immunobiology 2018; 223(12): 786-91.
[http://dx.doi.org/10.1016/j.imbio.2018.08.002] [PMID: 30119931]
[65]
Jiang D, Muschhammer J, Qi Y, et al. Suppression of neutrophil-mediated tissue damage-a novel skill of mesenchymal stem cells. Stem Cells 2016; 34(9): 2393-406.
[http://dx.doi.org/10.1002/stem.2417] [PMID: 27299700]
[66]
Li Y, Qiu W, Zhang L, Fung J, Lin F. Painting factor H onto mesenchymal stem cells protects the cells from complement- and neutrophil-mediated damage. Biomaterials 2016; 102: 209-19.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.055] [PMID: 27343468]
[67]
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic Mesenchymal Stromal Cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[68]
Al-Hakami A, Alqhatani SQ, Shaik S, et al. Cytokine physiognomies of MSCs from varied sources confirm the regenerative commitment post‐coculture with activated neutrophils. J Cell Physiol 2020; 235(11): 8691-701.
[http://dx.doi.org/10.1002/jcp.29713] [PMID: 32385929]
[69]
Zhang J, Ji C, Li W, et al. Tumor-educated neutrophils activate mesenchymal stem cells to promote gastric cancer growth and metastasis. Front Cell Dev Biol 2020; 8: 788.
[http://dx.doi.org/10.3389/fcell.2020.00788] [PMID: 32903528]
[70]
Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol 2020; 2020: 6283796.
[http://dx.doi.org/10.1155/2020/6283796] [PMID: 32377504]
[71]
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: Neutral no more. Nat Rev Cancer 2016; 16(7): 431-46.
[http://dx.doi.org/10.1038/nrc.2016.52] [PMID: 27282249]
[72]
Lei Y, Li Y, Hu Q, Wang J, Sui A. Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: A systematic review and meta-analysis. World J Surg Oncol 2019; 17(1): 152.
[http://dx.doi.org/10.1186/s12957-019-1686-5] [PMID: 31472673]
[73]
Koh YW, Choi JH, Ahn MS, Choi YW, Lee HW. Baseline neutrophil-lymphocyte ratio is associated with baseline and subsequent presence of brain metastases in advanced non-small-cell lung cancer. Sci Rep 2016; 6(1): 38585.
[http://dx.doi.org/10.1038/srep38585] [PMID: 27924837]
[74]
Hong YM, Yoon KT, Hwang TH, Heo J, Woo HY, Cho M. Changes in the neutrophil-to-lymphocyte ratio predict the prognosis of patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Gastroenterol Hepatol 2019; 31(10): 1250-5.
[http://dx.doi.org/10.1097/MEG.0000000000001405] [PMID: 30925530]
[75]
Chua W, Charles KA, Baracos VE, Clarke SJ. Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. Br J Cancer 2011; 104(8): 1288-95.
[http://dx.doi.org/10.1038/bjc.2011.100] [PMID: 21448173]
[76]
Yu PF, Huang Y, Han YY, et al. TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene 2017; 36(4): 482-90.
[http://dx.doi.org/10.1038/onc.2016.217] [PMID: 27375023]
[77]
Nwabo Kamdje AH, Seke Etet PF, Simo Tagne R, Vecchio L, Lukong KE, Krampera M. Tumor microenvironment uses a reversible reprogramming of mesenchymal stromal cells to mediate pro-tumorigenic effects. Front Cell Dev Biol 2020; 8: 545126.
[http://dx.doi.org/10.3389/fcell.2020.545126] [PMID: 33330442]
[78]
Zheng Z, Xu Y, Shi Y, Shao C. Neutrophils in the tumor microenvironment and their functional modulation by mesenchymal stromal cells. Cell Immunol 2022; 379: 104576.
[http://dx.doi.org/10.1016/j.cellimm.2022.104576] [PMID: 35797932]
[79]
Shang Q, Chu Y, Li Y, et al. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea. Cell Death Dis 2020; 11(8): 707.
[http://dx.doi.org/10.1038/s41419-020-02914-y] [PMID: 32848141]
[80]
Lai TS, Wang ZH, Cai SX. Mesenchymal stem cell attenuates neutrophil-predominant inflammation and acute lung injury in an in vivo rat model of ventilator-induced lung injury. Chin Med J 2015; 128(3): 361-7.
[http://dx.doi.org/10.4103/0366-6999.150106] [PMID: 25635432]
[81]
Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ 2018; 25(7): 1209-23.
[http://dx.doi.org/10.1038/s41418-017-0006-2] [PMID: 29238069]
[82]
Alves VBF, de Sousa BC, Fonseca MTC, et al. A single administration of human adipose tissue-derived mesenchymal stromal cells (MSC) induces durable and sustained long-term regulation of inflammatory response in experimental colitis. Clin Exp Immunol 2019; 196(2): 139-54.
[http://dx.doi.org/10.1111/cei.13262] [PMID: 30663040]
[83]
Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology 2015; 149(1): 163-176.e20.
[http://dx.doi.org/10.1053/j.gastro.2015.03.013] [PMID: 25790743]
[84]
Wang C, Börger V, Mohamud Yusuf A, et al. Postischemic neuroprotection associated with anti-inflammatory effects by mesenchymal stromal cell-derived small extracellular vesicles in aged mice. Stroke 2022; 53(1): e14-8.
[http://dx.doi.org/10.1161/STROKEAHA.121.035821] [PMID: 34847707]
[85]
Johnson V, Chow L, Harrison J, Soontararak S, Dow S. Activated mesenchymal stromal cell therapy for treatment of multi-drug resistant bacterial infections in dogs. Front Vet Sci 2022; 9: 925701.
[http://dx.doi.org/10.3389/fvets.2022.925701] [PMID: 35812842]
[86]
Park KS, Svennerholm K, Shelke GV, et al. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10(1): 231.
[http://dx.doi.org/10.1186/s13287-019-1352-4] [PMID: 31370884]
[87]
Zhu Y, Xu L, Collins JJP, et al. Human umbilical cord mesenchymal stromal cells improve survival and bacterial clearance in neonatal sepsis in rats. Stem Cells Dev 2017; 26(14): 1054-64.
[http://dx.doi.org/10.1089/scd.2016.0329] [PMID: 28401804]
[88]
Ciccocioppo R, Gibellini D, Astori G, et al. The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Res Ther 2021; 12(1): 316.
[http://dx.doi.org/10.1186/s13287-021-02376-9] [PMID: 34078447]
[89]
Rebelatto CLK, Senegaglia AC, Franck CL, et al. Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: A randomized clinical trial. Stem Cell Res Ther 2022; 13(1): 122.
[http://dx.doi.org/10.1186/s13287-022-02796-1] [PMID: 35313959]
[90]
Zhu R, Yan T, Feng Y, et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31(12): 1244-62.
[http://dx.doi.org/10.1038/s41422-021-00573-y] [PMID: 34702946]
[91]
Wu P, Tang Y, Jin C, et al. Neutrophil membrane engineered HucMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting. J Nanobiotechnol 2022; 20(1): 353.
[http://dx.doi.org/10.1186/s12951-022-01574-8] [PMID: 35918718]