Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer’s Disease

Page: [787 - 807] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.

Graphical Abstract

[1]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[2]
Karran, E.; Mercken, M.; Strooper, B.D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[3]
Ow, S.Y.; Dunstan, D.E. A brief overview of amyloids and Alzheimer’s disease. Protein Sci., 2014, 23(10), 1315-1331.
[http://dx.doi.org/10.1002/pro.2524] [PMID: 25042050]
[4]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[5]
Zhao, L.N.; Long, H.W.; Mu, Y.; Chew, L.Y. The toxicity of amyloid ß oligomers. Int. J. Mol. Sci., 2012, 13(6), 7303-7327.
[http://dx.doi.org/10.3390/ijms13067303] [PMID: 22837695]
[6]
Lesné, S.; Koh, M.T.; Kotilinek, L.; Kayed, R.; Glabe, C.G.; Yang, A.; Gallagher, M.; Ashe, K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature, 2006, 440(7082), 352-357.
[http://dx.doi.org/10.1038/nature04533] [PMID: 16541076]
[7]
Cleary, J.P.; Walsh, D.M.; Hofmeister, J.J.; Shankar, G.M.; Kuskowski, M.A.; Selkoe, D.J.; Ashe, K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci., 2005, 8(1), 79-84.
[http://dx.doi.org/10.1038/nn1372] [PMID: 15608634]
[8]
Walsh, D.M.; Hartley, D.M.; Condron, M.M.; Selkoe, D.J.; Teplow, D.B. In vitro studies of amyloid β-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692→Gly) Alzheimer’s disease. Biochem. J., 2001, 355(3), 869-877.
[http://dx.doi.org/10.1042/bj3550869] [PMID: 11311152]
[9]
Bitan, G.; Kirkitadze, M.D.; Lomakin, A.; Vollers, S.S.; Benedek, G.B.; Teplow, D.B. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 330-335.
[http://dx.doi.org/10.1073/pnas.222681699] [PMID: 12506200]
[10]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J. Agric. Food Chem., 2010, 58(8), 4959-4969.
[http://dx.doi.org/10.1021/jf100128b] [PMID: 20302342]
[11]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.026] [PMID: 25213963]
[12]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[13]
Cieślik, E.; Gręda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem., 2006, 94(1), 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2004.11.015]
[14]
Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 2002, 36(11), 1199-1208.
[http://dx.doi.org/10.1080/1071576021000016463] [PMID: 12592672]
[15]
Royer, M.; Diouf, P.N.; Stevanovic, T. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts. Food Chem. Toxicol., 2011, 49(9), 2180-2188.
[http://dx.doi.org/10.1016/j.fct.2011.06.003] [PMID: 21683113]
[16]
Ghosh, D.; McGhie, T.K.; Zhang, J.; Adaim, A.; Skinner, M. Effects of anthocyanins and other phenolics of boysenberry and blackcurrant as inhibitors of oxidative stress and damage to cellular DNA in SH-SY5Y and HL-60 cells. J. Sci. Food Agric., 2006, 86(5), 678-686.
[http://dx.doi.org/10.1002/jsfa.2409]
[17]
Reboul, E.; Thap, S.; Tourniaire, F.; André, M.; Juhel, C.; Morange, S.; Amiot, M.J.; Lairon, D.; Borel, P. Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br. J. Nutr., 2007, 97(3), 440-446.
[http://dx.doi.org/10.1017/S0007114507352604] [PMID: 17313704]
[18]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[19]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[20]
Candiracci, M.; Piatti, E.; Dominguez-Barragán, M.; García-Antrás, D.; Morgado, B.; Ruano, D.; Gutiérrez, J.F.; Parrado, J.; Castaño, A. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J. Agric. Food Chem., 2012, 60(50), 12304-12311.
[http://dx.doi.org/10.1021/jf302468h] [PMID: 23176387]
[21]
Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell. Longev., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/8526438] [PMID: 29317985]
[22]
Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Res. Rev., 2012, 11(2), 329-345.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[23]
Zhou, Y.; Zheng, J.; Li, Y.; Xu, D-P.; Li, S.; Chen, Y-M.; Li, H-B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[24]
Velander, P.; Wu, L.; Henderson, F.; Zhang, S.; Bevan, D.R.; Xu, B. Natural product-based amyloid inhibitors. Biochem. Pharmacol., 2017, 139, 40-55.
[http://dx.doi.org/10.1016/j.bcp.2017.04.004] [PMID: 28390938]
[25]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87(1), 172-181.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[26]
Korshavn, K.J.; Jang, M.; Kwak, Y.J.; Kochi, A.; Vertuani, S.; Bhunia, A.; Manfredini, S.; Ramamoorthy, A.; Lim, M.H. Reactivity of metal-free and metal-associated amyloid-β with glycosylated polyphenols and their esterified derivatives. Sci. Rep., 2015, 5(1), 17842.
[http://dx.doi.org/10.1038/srep17842] [PMID: 26657338]
[27]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[28]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim. Biophys. Acta Mol. Basis Dis., 2004, 1690(3), 193-202.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.008] [PMID: 15511626]
[29]
Palhano, F.L.; Lee, J.; Grimster, N.P.; Kelly, J.W. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J. Am. Chem. Soc., 2013, 135(20), 7503-7510.
[http://dx.doi.org/10.1021/ja3115696] [PMID: 23611538]
[30]
Rivière, C.; Richard, T.; Quentin, L.; Krisa, S.; Mérillon, J.M.; Monti, J.P. Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg. Med. Chem., 2007, 15(2), 1160-1167.
[http://dx.doi.org/10.1016/j.bmc.2006.09.069] [PMID: 17049256]
[31]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[32]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[33]
Fernandes, L.; Cardim-Pires, T.R.; Foguel, D.; Palhano, F.L. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front. Neurosci., 2021, 15, 718188.
[http://dx.doi.org/10.3389/fnins.2021.718188] [PMID: 34594185]
[34]
Stromer, T.; Serpell, L.C. Structure and morphology of the Alzheimer’s amyloid fibril. Microsc. Res. Tech., 2005, 67(3-4), 210-217.
[http://dx.doi.org/10.1002/jemt.20190] [PMID: 16103997]
[35]
Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17342-17347.
[http://dx.doi.org/10.1073/pnas.0506723102] [PMID: 16293696]
[36]
Ross, C.A.; Poirier, M.A. What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol., 2005, 6(11), 891-898.
[http://dx.doi.org/10.1038/nrm1742] [PMID: 16167052]
[37]
Arimon, M.; Díez-Pérez, I.; Kogan, M.J.; Durany, N.; Giralt, E.; Sanz, F.; Fernández-Busquets, X. Fine structure study of Aβ 1–42 fibrillogenesis with atomic force microscopy. FASEB J., 2005, 19(10), 1344-1346.
[http://dx.doi.org/10.1096/fj.04-3137fje] [PMID: 15919759]
[38]
Kheterpal, I.; Lashuel, H.A.; Hartley, D.M.; Walz, T.; Lansbury, P.T., Jr; Wetzel, R. Abeta protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry, 2003, 42(48), 14092-14098.
[http://dx.doi.org/10.1021/bi0357816] [PMID: 14640676]
[39]
Williams, A.D.; Sega, M.; Chen, M.; Kheterpal, I.; Geva, M.; Berthelier, V.; Kaleta, D.T.; Cook, K.D.; Wetzel, R. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA, 2005, 102(20), 7115-7120.
[http://dx.doi.org/10.1073/pnas.0408582102] [PMID: 15883377]
[40]
Nicoll, A.J.; Panico, S.; Freir, D.B.; Wright, D.; Terry, C.; Risse, E.; Herron, C.E.; O’Malley, T.; Wadsworth, J.D.F.; Farrow, M.A.; Walsh, D.M.; Saibil, H.R.; Collinge, J. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat. Commun., 2013, 4(1), 2416.
[http://dx.doi.org/10.1038/ncomms3416] [PMID: 24022506]
[41]
Selkoe, D.J. Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol., 2004, 6(11), 1054-1061.
[http://dx.doi.org/10.1038/ncb1104-1054] [PMID: 15516999]
[42]
Müller-Hill, B.; Beyreuther, K. Molecular biology of Alzheimer’s disease. Annu. Rev. Biochem., 1989, 58, 287-307.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001443] [PMID: 2673012]
[43]
Chromy, B.A.; Nowak, R.J.; Lambert, M.P.; Viola, K.L.; Chang, L.; Velasco, P.T.; Jones, B.W.; Fernandez, S.J.; Lacor, P.N.; Horowitz, P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry, 2003, 42(44), 12749-12760.
[http://dx.doi.org/10.1021/bi030029q] [PMID: 14596589]
[44]
Klein, W.L.; Stine, W.B., Jr; Teplow, D.B. Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol. Aging, 2004, 25(5), 569-580.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.02.010] [PMID: 15172732]
[45]
Dahlgren, K.N.; Manelli, A.M.; Stine, W.B., Jr; Baker, L.K.; Krafft, G.A.; LaDu, M.J. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem., 2002, 277(35), 32046-32053.
[http://dx.doi.org/10.1074/jbc.M201750200] [PMID: 12058030]
[46]
Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Cullen, W.K.; Anwyl, R.; Wolfe, M.S.; Rowan, M.J.; Selkoe, D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416(6880), 535-539.
[http://dx.doi.org/10.1038/416535a] [PMID: 11932745]
[47]
Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Rowan, M.J.; Selkoe, D.J. Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans., 2002, 30(4), 552-557.
[http://dx.doi.org/10.1042/bst0300552] [PMID: 12196135]
[48]
Shea, D.; Daggett, V. Amyloid-β oligomers: multiple moving targets. Biophysica, 2022, 2(2), 91-110.
[http://dx.doi.org/10.3390/biophysica2020010]
[49]
Kagan, B.L.; Hirakura, Y.; Azimov, R.; Azimova, R.; Lin, M.C. The channel hypothesis of Alzheimer’s disease: current status. Peptides, 2002, 23(7), 1311-1315.
[http://dx.doi.org/10.1016/S0196-9781(02)00067-0] [PMID: 12128087]
[50]
Lashuel, H.A.; Hartley, D.; Petre, B.M.; Walz, T.; Lansbury, P.T. Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 2002, 418(6895), 291.
[http://dx.doi.org/10.1038/418291a] [PMID: 12124613]
[51]
Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R. Amyloid ion channels: A common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10427-10432.
[http://dx.doi.org/10.1073/pnas.0502066102] [PMID: 16020533]
[52]
Mattson, M.P.; Chan, S.L. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 2003, 34(4-5), 385-397.
[http://dx.doi.org/10.1016/S0143-4160(03)00128-3] [PMID: 12909083]
[53]
Le, Y.; Gong, W.; Tiffany, H.L.; Tumanov, A.; Nedospasov, S.; Shen, W.; Dunlop, N.M.; Gao, J.L.; Murphy, P.M.; Oppenheim, J.J.; Wang, J.M. Amyloid (β)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci., 2001, 21(2), RC123-RC123.
[http://dx.doi.org/10.1523/JNEUROSCI.21-02-j0003.2001] [PMID: 11160457]
[54]
Lazo, N.D.; Grant, M.A.; Condron, M.C.; Rigby, A.C.; Teplow, D.B. On the nucleation of amyloid β-protein monomer folding. Protein Sci., 2005, 14(6), 1581-1596.
[http://dx.doi.org/10.1110/ps.041292205] [PMID: 15930005]
[55]
Xu, Y.; Shen, J.; Luo, X.; Zhu, W.; Chen, K.; Ma, J.; Jiang, H. Conformational transition of amyloid β-peptide. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5403-5407.
[http://dx.doi.org/10.1073/pnas.0501218102] [PMID: 15800039]
[56]
Masters, C.L.; Selkoe, D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(6), a006262.
[http://dx.doi.org/10.1101/cshperspect.a006262] [PMID: 22675658]
[57]
Hayden, E.Y.; Teplow, D.B. Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res. Ther., 2013, 5(6), 60.
[http://dx.doi.org/10.1186/alzrt226] [PMID: 24289820]
[58]
Walsh, D.M.; Selkoe, D.J. A? Oligomers? a decade of discovery. J. Neurochem., 2007, 101(5), 1172-1184.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04426.x] [PMID: 17286590]
[59]
Wang, H.; Kulas, J.A.; Wang, C.; Holtzman, D.M.; Ferris, H.A.; Hansen, S.B. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc. Natl. Acad. Sci. USA, 2021, 118(33), e2102191118.
[http://dx.doi.org/10.1073/pnas.2102191118] [PMID: 34385305]
[60]
Townsend, M.; Shankar, G.M.; Mehta, T.; Walsh, D.M.; Selkoe, D.J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol., 2006, 572(2), 477-492.
[http://dx.doi.org/10.1113/jphysiol.2005.103754] [PMID: 16469784]
[61]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[62]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[63]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[64]
Mittendorf, K.F.; Deatherage, C.L.; Ohi, M.D.; Sanders, C.R. Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry, 2012, 51(28), 5541-5556.
[http://dx.doi.org/10.1021/bi3007065] [PMID: 22708632]
[65]
Wang, Y.; Liu, J.; Huang, B.; Xu, Y.M.; Li, J.; Huang, L.F.; Lin, J.; Zhang, J.; Min, Q.H.; Yang, W.M.; Wang, X.Z. Mechanism of alternative splicing and its regulation. Biomed. Rep., 2015, 3(2), 152-158.
[http://dx.doi.org/10.3892/br.2014.407] [PMID: 25798239]
[66]
Ren, P.; Lu, L.; Cai, S.; Chen, J.; Lin, W.; Han, F. Alternative splicing: A new cause and potential therapeutic target in autoimmune disease. Front. Immunol., 2021, 12, 713540.
[http://dx.doi.org/10.3389/fimmu.2021.713540] [PMID: 34484216]
[67]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[68]
Zhang, L.; Trushin, S.; Christensen, T.A.; Tripathi, U.; Hong, C.; Geroux, R.E.; Howell, K.G.; Poduslo, J.F.; Trushina, E. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol. Dis., 2018, 114, 1-16.
[http://dx.doi.org/10.1016/j.nbd.2018.02.003] [PMID: 29477640]
[69]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[70]
Bayer, T.A.; Wirths, O. Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol., 2014, 127(6), 787-801.
[http://dx.doi.org/10.1007/s00401-014-1287-x] [PMID: 24803226]
[71]
Wong, P.C.; Cai, H.; Borchelt, D.R.; Price, D.L. Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci., 2002, 5(7), 633-639.
[http://dx.doi.org/10.1038/nn0702-633] [PMID: 12085093]
[72]
Irie, K.; Murakami, K.; Masuda, Y.; Morimoto, A.; Ohigashi, H.; Ohashi, R.; Takegoshi, K.; Nagao, M.; Shimizu, T.; Shirasawa, T. Structure of β-amyloid fibrils and its relevance to their neurotoxicity: Implications for the pathogenesis of Alzheimer’s disease. J. Biosci. Bioeng., 2005, 99(5), 437-447.
[http://dx.doi.org/10.1263/jbb.99.437] [PMID: 16233815]
[73]
Murphy, M.P.; LeVine, H. III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[74]
Tamagno, E.; Guglielmotto, M.; Monteleone, D.; Manassero, G.; Vasciaveo, V.; Tabaton, M. The unexpected role of Aβ1-42 monomers in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1241-1245.
[http://dx.doi.org/10.3233/JAD-170581] [PMID: 29103036]
[75]
Michno, W.; Nyström, S.; Wehrli, P.; Lashley, T.; Brinkmalm, G.; Guerard, L.; Syvänen, S.; Sehlin, D.; Kaya, I.; Brinet, D.; Nilsson, K.P.R.; Hammarström, P.; Blennow, K.; Zetterberg, H.; Hanrieder, J. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1–40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology. J. Biol. Chem., 2019, 294(17), 6719-6732.
[http://dx.doi.org/10.1074/jbc.RA118.006604] [PMID: 30814252]
[76]
Zhang, X.; Fu, Z.; Meng, L.; He, M.; Zhang, Z. The early events that initiate β-amyloid aggregation in Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 359.
[http://dx.doi.org/10.3389/fnagi.2018.00359] [PMID: 30542277]
[77]
Stanford, P.M.; Shepherd, C.E.; Halliday, G.M.; Brooks, W.S.; Schofield, P.W.; Brodaty, H.; Martins, R.N.; Kwok, J.B.; Schofield, P.R. Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia. Brain, 2003, 126(4), 814-826.
[http://dx.doi.org/10.1093/brain/awg090] [PMID: 12615641]
[78]
Goedert, M.; Jakes, R. Mutations causing neurodegenerative tauopathies. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 240-250.
[http://dx.doi.org/10.1016/j.bbadis.2004.08.007] [PMID: 15615642]
[79]
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(1), 49-60.
[http://dx.doi.org/10.1038/nrn1007] [PMID: 12511861]
[80]
Roberson, E.D.; Mucke, L. 100 Years and counting: Prospects for defeating Alzheimer’s disease. Science, 2006, 314(5800), 781-784.
[http://dx.doi.org/10.1126/science.1132813] [PMID: 17082448]
[81]
Sciaccaluga, M.; Megaro, A.; Bellomo, G.; Ruffolo, G.; Romoli, M.; Palma, E.; Costa, C. An unbalanced synaptic transmission: Cause or consequence of the amyloid oligomers neurotoxicity? Int. J. Mol. Sci., 2021, 22(11), 5991.
[http://dx.doi.org/10.3390/ijms22115991] [PMID: 34206089]
[82]
Amin, L. Harris, D.A. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat. Commun., 2021, 12(1), 3451.
[http://dx.doi.org/10.1038/s41467-021-23507-z] [PMID: 34103486]
[83]
Moir, R.D.; Lathe, R.; Tanzi, R.E. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement., 2018, 14(12), 1602-1614.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3040] [PMID: 30314800]
[84]
Guerrero-Muñoz, M.J.; Gerson, J.; Castillo-Carranza, D.L. Tau oligomers: The toxic player at synapses in Alzheimer’s disease. Front. Cell. Neurosci., 2015, 9, 464.
[http://dx.doi.org/10.3389/fncel.2015.00464] [PMID: 26696824]
[85]
Hector, A.; Brouillette, J. Hyperactivity induced by soluble amyloid-β oligomers in the early stages of Alzheimer’s disease. Front. Mol. Neurosci., 2021, 13, 600084.
[http://dx.doi.org/10.3389/fnmol.2020.600084] [PMID: 33488358]
[86]
Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med. Princ. Pract., 2015, 24(1), 1-10.
[http://dx.doi.org/10.1159/000369101] [PMID: 25471398]
[87]
Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun., 2017, 8(1), 1214.
[http://dx.doi.org/10.1038/s41467-017-01150-x] [PMID: 29089479]
[88]
Ferreira, S.T.; Lourenco, M.V.; Oliveira, M.M.; De Felice, F.G. Soluble amyloid-Î2 oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front. Cell. Neurosci., 2015, 9, 191.
[http://dx.doi.org/10.3389/fncel.2015.00191] [PMID: 26074767]
[89]
Esparza, T.J.; Wildburger, N.C.; Jiang, H.; Gangolli, M.; Cairns, N.J.; Bateman, R.J.; Brody, D.L. Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci. Rep., 2016, 6(1), 38187.
[http://dx.doi.org/10.1038/srep38187] [PMID: 27917876]
[90]
Sengupta, U.; Nilson, A.N.; Kayed, R. The role of amyloid-β Oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.035] [PMID: 27211547]
[91]
Noguchi, A.; Matsumura, S.; Dezawa, M.; Tada, M.; Yanazawa, M.; Ito, A.; Akioka, M.; Kikuchi, S.; Sato, M.; Ideno, S.; Noda, M.; Fukunari, A.; Muramatsu, S.; Itokazu, Y.; Sato, K.; Takahashi, H.; Teplow, D.B.; Nabeshima, Y.; Kakita, A.; Imahori, K.; Hoshi, M. Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Abeta) assembly from Alzheimer disease brains. J. Biol. Chem., 2009, 284(47), 32895-32905.
[http://dx.doi.org/10.1074/jbc.M109.000208] [PMID: 19759000]
[92]
Yan, S.D.; Stern, D.M. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-β peptide alcohol dehydrogenase (ABAD). Int. J. Exp. Pathol., 2005, 86(3), 161-171.
[http://dx.doi.org/10.1111/j.0959-9673.2005.00427.x] [PMID: 15910550]
[93]
Maynard, C.J.; Bush, A.I.; Masters, C.L.; Cappai, R.; Li, Q.X. Metals and amyloid-β in Alzheimer’s disease. Int. J. Exp. Pathol., 2005, 86(3), 147-159.
[http://dx.doi.org/10.1111/j.0959-9673.2005.00434.x] [PMID: 15910549]
[94]
Tomiyama, T.; Shimada, H. APP osaka mutation in familial Alzheimer’s disease—Its discovery, phenotypes, and mechanism of recessive inheritance. Int. J. Mol. Sci., 2020, 21(4), 1413.
[http://dx.doi.org/10.3390/ijms21041413] [PMID: 32093100]
[95]
Ding, Y.; Zhao, J.; Zhang, X.; Wang, S.; Viola, K.L.; Chow, F.E.; Zhang, Y.; Lippa, C.; Klein, W.L.; Gong, Y. Amyloid beta oligomers target to extracellular and intracellular neuronal synaptic proteins in Alzheimer’s disease. Front. Neurol., 2019, 10, 1140.
[http://dx.doi.org/10.3389/fneur.2019.01140] [PMID: 31736856]
[96]
Walsh, D.M.; Tseng, B.P.; Rydel, R.E.; Podlisny, M.B.; Selkoe, D.J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry, 2000, 39(35), 10831-10839.
[http://dx.doi.org/10.1021/bi001048s] [PMID: 10978169]
[97]
Teplow, D.B. Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid, 1998, 5(2), 121-142.
[http://dx.doi.org/10.3109/13506129808995290] [PMID: 9686307]
[98]
Caughey, B.; Lansbury, P.T. Jr Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci., 2003, 26(1), 267-298.
[http://dx.doi.org/10.1146/annurev.neuro.26.010302.081142] [PMID: 12704221]
[99]
Petkova, A.T.; Leapman, R.D.; Guo, Z.; Yau, W-M.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science, 2005, 307(5707), 262-265.
[http://dx.doi.org/10.1126/science.1105850] [PMID: 15653506]
[100]
Harper, J.D.; Lansbury, P.T. Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem., 1997, 66, 385-407.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.385] [PMID: 9242912]
[101]
O’Nuallain, B.; Williams, A.D.; Westermark, P.; Wetzel, R. Seeding specificity in amyloid growth induced by heterologous fibrils. J. Biol. Chem., 2004, 279(17), 17490-17499.
[http://dx.doi.org/10.1074/jbc.M311300200] [PMID: 14752113]
[102]
Harper, J.D.; Wong, S.S.; Lieber, C.M.; Lansbury, P.T. Jr Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol., 1997, 4(2), 119-125.
[http://dx.doi.org/10.1016/S1074-5521(97)90255-6] [PMID: 9190286]
[103]
Emendato, A.; Milordini, G.; Zacco, E.; Sicorello, A.; Dal Piaz, F.; Guerrini, R.; Thorogate, R.; Picone, D.; Pastore, A. Glycation affects fibril formation of Aβ peptides. J. Biol. Chem., 2018, 293(34), 13100-13111.
[http://dx.doi.org/10.1074/jbc.RA118.002275] [PMID: 29959224]
[104]
Abedin, F.; Kandel, N.; Tatulian, S.A. Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci. Rep., 2021, 11(1), 19262.
[http://dx.doi.org/10.1038/s41598-021-98644-y] [PMID: 34584131]
[105]
Hoshi, M.; Sato, M.; Matsumoto, S.; Noguchi, A.; Yasutake, K.; Yoshida, N.; Sato, K. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6370-6375.
[http://dx.doi.org/10.1073/pnas.1237107100] [PMID: 12750461]
[106]
Sahoo, B.; Nag, S.; Sengupta, P.; Maiti, S. On the stability of the soluble amyloid aggregates. Biophys. J., 2009, 97(5), 1454-1460.
[http://dx.doi.org/10.1016/j.bpj.2009.05.055] [PMID: 19720034]
[107]
Ranganathan, S.; Ghosh, D.; Maji, S.K.; Padinhateeri, R. A minimal conformational switching-dependent model for amyloid self-assembly. Sci. Rep., 2016, 6(1), 21103.
[http://dx.doi.org/10.1038/srep21103] [PMID: 26883720]
[108]
Ladiwala, A.R.A.; Litt, J.; Kane, R.S.; Aucoin, D.S.; Smith, S.O.; Ranjan, S.; Davis, J.; Van Nostrand, W.E.; Tessier, P.M. Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity. J. Biol. Chem., 2012, 287(29), 24765-24773.
[http://dx.doi.org/10.1074/jbc.M111.329763] [PMID: 22547072]
[109]
Quartey, M.O.; Nyarko, J.N.K.; Maley, J.M.; Barnes, J.R.; Bolanos, M.A.C.; Heistad, R.M.; Knudsen, K.J.; Pennington, P.R.; Buttigieg, J.; De Carvalho, C.E.; Leary, S.C.; Parsons, M.P.; Mousseau, D.D. The Aβ(1–38) peptide is a negative regulator of the Aβ(1–42) peptide implicated in Alzheimer disease progression. Sci. Rep., 2021, 11(1), 431.
[http://dx.doi.org/10.1038/s41598-020-80164-w] [PMID: 33432101]
[110]
Novo, M.; Freire, S.; Al-Soufi, W. Critical aggregation concentration for the formation of early Amyloid-β (1–42) oligomers. Sci. Rep., 2018, 8(1), 1783.
[http://dx.doi.org/10.1038/s41598-018-19961-3] [PMID: 29379133]
[111]
O’Nuallain, B.; Shivaprasad, S.; Kheterpal, I.; Wetzel, R. Thermodynamics of A β(1-40) amyloid fibril elongation. Biochemistry, 2005, 44(38), 12709-12718.
[http://dx.doi.org/10.1021/bi050927h] [PMID: 16171385]
[112]
Pallitto, M.M.; Murphy, R.M. A mathematical model of the kinetics of β-amyloid fibril growth from the denatured state. Biophys. J., 2001, 81(3), 1805-1822.
[http://dx.doi.org/10.1016/S0006-3495(01)75831-6] [PMID: 11509390]
[113]
Nasica-Labouze, J.; Nguyen, P.H.; Sterpone, F.; Berthoumieu, O.; Buchete, N.V.; Coté, S.; De Simone, A.; Doig, A.J.; Faller, P.; Garcia, A.; Laio, A.; Li, M.S.; Melchionna, S.; Mousseau, N.; Mu, Y.; Paravastu, A.; Pasquali, S.; Rosenman, D.J.; Strodel, B.; Tarus, B.; Viles, J.H.; Zhang, T.; Wang, C.; Derreumaux, P. Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chem. Rev., 2015, 115(9), 3518-3563.
[http://dx.doi.org/10.1021/cr500638n] [PMID: 25789869]
[114]
König, A.S.; Rösener, N.S.; Gremer, L.; Tusche, M.; Flender, D.; Reinartz, E.; Hoyer, W.; Neudecker, P.; Willbold, D.; Heise, H. Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J. Biol. Chem., 2021, 296, 100499.
[http://dx.doi.org/10.1016/j.jbc.2021.100499] [PMID: 33667547]
[115]
Mastrangelo, I.A.; Ahmed, M.; Sato, T.; Liu, W.; Wang, C.; Hough, P.; Smith, S.O. High-resolution atomic force microscopy of soluble Abeta42 oligomers. J. Mol. Biol., 2006, 358(1), 106-119.
[http://dx.doi.org/10.1016/j.jmb.2006.01.042] [PMID: 16499926]
[116]
Kirkitadze, M.D.; Condron, M.M.; Teplow, D.B. Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis11Edited by F. Cohen. J. Mol. Biol., 2001, 312(5), 1103-1119.
[http://dx.doi.org/10.1006/jmbi.2001.4970] [PMID: 11580253]
[117]
Naldi, M.; Fiori, J.; Pistolozzi, M.; Drake, A.F.; Bertucci, C.; Wu, R.; Mlynarczyk, K.; Filipek, S.; De Simone, A.; Andrisano, V. Amyloid β-peptide 25-35 self-assembly and its inhibition: a model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer’s disease process and treatment. ACS Chem. Neurosci., 2012, 3(11), 952-962.
[http://dx.doi.org/10.1021/cn3000982] [PMID: 23173074]
[118]
Tew, D.J.; Bottomley, S.P.; Smith, D.P.; Ciccotosto, G.D.; Babon, J.; Hinds, M.G.; Masters, C.L.; Cappai, R.; Barnham, K.J. Stabilization of neurotoxic soluble β-sheet-rich conformations of the Alzheimer’s disease amyloid-β peptide. Biophys. J., 2008, 94(7), 2752-2766.
[http://dx.doi.org/10.1529/biophysj.107.119909] [PMID: 18065467]
[119]
Shea, D. Hsu, C.C.; Bi, T.M.; Paranjapye, N.; Childers, M.C.; Cochran, J.; Tomberlin, C.P.; Wang, L.; Paris, D.; Zonderman, J.; Varani, G.; Link, C.D.; Mullan, M.; Daggett, V. α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2019, 116(18), 8895-8900.
[http://dx.doi.org/10.1073/pnas.1820585116] [PMID: 31004062]
[120]
Iannuzzi, C.; Maritato, R.; Irace, G.; Sirangelo, I. Misfolding and amyloid aggregation of apomyoglobin. Int. J. Mol. Sci., 2013, 14(7), 14287-14300.
[http://dx.doi.org/10.3390/ijms140714287] [PMID: 23839096]
[121]
Ban, T.; Hoshino, M.; Takahashi, S.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of Abeta amyloid fibril growth and inhibition. J. Mol. Biol., 2004, 344(3), 757-767.
[http://dx.doi.org/10.1016/j.jmb.2004.09.078] [PMID: 15533443]
[122]
Carulla, N.; Caddy, G.L.; Hall, D.R.; Zurdo, J.; Gairí, M.; Feliz, M.; Giralt, E.; Robinson, C.V.; Dobson, C.M. Molecular recycling within amyloid fibrils. Nature, 2005, 436(7050), 554-558.
[http://dx.doi.org/10.1038/nature03986] [PMID: 16049488]
[123]
O’sullivan, M.J.; Lindsay, A.J. The endosomal recycling pathway-at the crossroads of the cell. Int. J. Mol. Sci., 2020, 21(17), 6074.
[http://dx.doi.org/10.3390/ijms21176074] [PMID: 32842549]
[124]
Kaether, C.; Schmitt, S.; Willem, M.; Haass, C. Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic, 2006, 7(4), 408-415.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00396.x] [PMID: 16536739]
[125]
Tancini, B.; Buratta, S.; Delo, F.; Sagini, K.; Chiaradia, E.; Pellegrino, R.M.; Emiliani, C.; Urbanelli, L. Lysosomal exocytosis: The extracellular role of an intracellular organelle. Membranes (Basel), 2020, 10(12), 406.
[http://dx.doi.org/10.3390/membranes10120406] [PMID: 33316913]
[126]
Baker, H.F.; Ridley, R.M.; Duchen, L.W.; Crow, T.J.; Bruton, C.J. Experimental induction of β-amyloid plaques and cerebral angiopathy in primates. Ann. N. Y. Acad. Sci., 1993, 695(1), 228-231.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23057.x] [PMID: 8239287]
[127]
Bückig, A.; Tikkanen, R.; Herzog, V.; Schmitz, A. Cytosolic and nuclear aggregation of the amyloid β-peptide following its expression in the endoplasmic reticulum. Histochem. Cell Biol., 2002, 118(5), 353-360.
[http://dx.doi.org/10.1007/s00418-002-0459-2] [PMID: 12432446]
[128]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[129]
Bharadwaj, P.R. Dubey, A.K.; Masters, C.L.; Martins, R.N.; Macreadie, I.G. Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J. Cell. Mol. Med., 2009, 13(3), 412-421.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00609.x] [PMID: 19374683]
[130]
Kondratyuk, T.P.; Pezzuto, J.M. Natural product polyphenols of relevance to human health. Pharma. Biol., 2009, 42(sup1), 46-63.
[http://dx.doi.org/10.3109/13880200490893519]
[131]
Spencer, J.P.E.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br. J. Nutr., 2008, 99(1), 12-22.
[http://dx.doi.org/10.1017/S0007114507798938] [PMID: 17666146]
[132]
Sova, M.; Saso, L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients, 2020, 12(8), 2190.
[http://dx.doi.org/10.3390/nu12082190] [PMID: 32717940]
[133]
Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules, 2017, 22(1), 281.
[http://dx.doi.org/10.3390/molecules22020281] [PMID: 28208818]
[134]
El-Seedi, H.R.; Taher, E.A.; Sheikh, B.Y.; Anjum, S.; Saeed, A.; AlAjmi, M.F.; Moustafa, M.S.; Al-Mousawi, S.M.; Farag, M.A.; Hegazy, M-E.F.; Khalifa, S.A.M.; Göransson, U. Hydroxycinnamic acids: Natural sources, biosynthesis, possible biological activities, and roles in islamic medicine. Stud. Nat. Prod. Chem., 2018, 55, 269-292.
[http://dx.doi.org/10.1016/B978-0-444-64068-0.00008-5]
[135]
Silveira, A.C.; Dias, J.P.; Santos, V.M.; Oliveira, P.F.; Alves, M.G.; Rato, L.; Silva, B.M. The Action of polyphenols in diabetes mellitus and Alzheimer’s disease: A common agent for overlapping pathologies. Curr. Neuropharmacol., 2019, 17(7), 590-613.
[http://dx.doi.org/10.2174/1570159X16666180803162059] [PMID: 30081787]
[136]
Tomás-Barberán, F.A.; Clifford, M.N. Dietary hydroxybenzoic acid derivatives – nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, 80, 1024-1032.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1024:AID-JSFA567>3.0.CO;2-S]
[137]
Sarker, U.; Oba, S. Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Sci. Rep., 2020, 10(1), 18287.
[http://dx.doi.org/10.1038/s41598-020-71727-y] [PMID: 33106544]
[138]
Bernatoniene, J.; Kopustinskiene, D.M. The role of catechins in cellular responses to oxidative stress. Molecules, 2018, 23(4), 965.
[http://dx.doi.org/10.3390/molecules23040965] [PMID: 29677167]
[139]
Arts, I.C.W.; van de Putte, B.; Hollman, P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem., 2000, 48(5), 1752-1757.
[http://dx.doi.org/10.1021/jf000026+] [PMID: 10820090]
[140]
Márquez-Rodríguez, A.S.; Grajeda-Iglesias, C.; Sánchez-Bojorge, N.A.; Figueroa-Espinoza, M. -.C.; Rodríguez-Valdez, L-.M.; Fuentes-Montero, M.E.; Salas, E. Theoretical characterization by density functional theory (DFT) of delphinidin 3-O-sambubioside and its esters obtained by chemical lipophilization. Molecules, 2018, 23(7), 1587.
[http://dx.doi.org/10.3390/molecules23071587] [PMID: 29966272]
[141]
Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem., 2005, 53(7), 2589-2599.
[http://dx.doi.org/10.1021/jf048068b] [PMID: 15796599]
[142]
Almeida, S.; Alves, M.G.; Sousa, M.; Oliveira, P.F.; Silva, B.M. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration? Neurotox. Res., 2016, 30(3), 345-366.
[http://dx.doi.org/10.1007/s12640-015-9590-4] [PMID: 26745969]
[143]
Hesperidin and naringenin. In: A Centum of Valuable Plant Bioactives; 1st Ed.; Elsevier Academic, 2021; p. 403-429.
[http://dx.doi.org/10.1016/B978-0-12-822923-1.00027-3]
[144]
Matsumoto, H.; Ikoma, Y.; Sugiura, M.; Yano, M.; Hasegawa, Y. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. J. Agric. Food Chem., 2004, 52(21), 6653-6659.
[http://dx.doi.org/10.1021/jf0491411] [PMID: 15479036]
[145]
Wei, J.; Bhatt, S.; Chang, L.M.; Sampson, H.A.; Masilamani, M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One, 2012, 7(10), e47979.
[http://dx.doi.org/10.1371/journal.pone.0047979] [PMID: 23110148]
[146]
Pan, W.; Ikeda, K.; Takebe, M.; Yamori, Y. Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. J. Nutr., 2001, 131(4), 1154-1158.
[http://dx.doi.org/10.1093/jn/131.4.1154] [PMID: 11285318]
[147]
Poschner, S.; Maier-Salamon, A.; Zehl, M.; Wackerlig, J.; Dobusch, D.; Pachmann, B.; Sterlini, K.L.; Jäger, W. The impacts of genistein and daidzein on estrogen conjugations in human breast cancer cells: a targeted metabolomics approach. Front. Pharmacol., 2017, 8, 699.
[http://dx.doi.org/10.3389/fphar.2017.00699] [PMID: 29051735]
[148]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[149]
Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[150]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[151]
Buchner, N.; Krumbein, A.; Rohn, S.; Kroh, L.W. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun. Mass Spectrom., 2006, 20(21), 3229-3235.
[http://dx.doi.org/10.1002/rcm.2720] [PMID: 17016866]
[152]
Suprun, A.R.; Dubrovina, A.S.; Tyunin, A.P.; Kiselev, K.V. Profile of stilbenes and other phenolics in fanagoria white and red russian wines. Metabolites, 2021, 11(4), 231.
[http://dx.doi.org/10.3390/metabo11040231] [PMID: 33918825]
[153]
Błaszczyk, A.; Sady, S.; Sielicka, M. The stilbene profile in edible berries. Phytochem. Rev., 2019, 18(1), 37-67.
[http://dx.doi.org/10.1007/s11101-018-9580-2]
[154]
Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules, 2019, 24(5), 917.
[http://dx.doi.org/10.3390/molecules24050917] [PMID: 30845651]
[155]
Milder, I.E.J.; Kuijsten, A.; Arts, I.C.W.; Feskens, E.J.M.; Kampman, E.; Hollman, P.C.H.; Van ’t Veer, P. Relation between plasma enterodiol and enterolactone and dietary intake of lignans in a Dutch endoscopy-based population. J. Nutr., 2007, 137(5), 1266-1271.
[http://dx.doi.org/10.1093/jn/137.5.1266] [PMID: 17449591]
[156]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[157]
Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.F.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: An overview. Rev. Fish. Sci., 2020, 29(4), 478-511.
[http://dx.doi.org/10.1080/23308249.2020.1818689]
[158]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[159]
Pandey, K.; Rizvi, S. Current understanding of dietary polyphenols and their role in health and disease. Curr. Nutr. Food Sci., 2009, 5(4), 249-263.
[http://dx.doi.org/10.2174/157340109790218058]
[160]
Diniz, C.; Suliburska, J.; Ferreira, I.M.P.L.V.O. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol. Nutr. Food Res., 2017, 61(6), 1600912.
[http://dx.doi.org/10.1002/mnfr.201600912] [PMID: 27981783]
[161]
Adlercreutz, H.; Mazur, W. Phyto-oestrogens and western diseases. Ann. Med., 1997, 29(2), 95-120.
[http://dx.doi.org/10.3109/07853899709113696] [PMID: 9187225]
[162]
Shahidi, F.; Yeo, J.D. Insoluble-bound phenolics in food. Molecules, 2016, 21(9), 1216.
[http://dx.doi.org/10.3390/molecules21091216] [PMID: 27626402]
[163]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[164]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[165]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[166]
Bibi, N.; Shah, M.H.; Khan, N.; Al-Hashimi, A.; Elshikh, M.S.; Iqbal, A.; Ahmad, S.; Abbasi, A.M. Variations in total phenolic, total flavonoid contents, and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants, 2022, 11(7), 950.
[http://dx.doi.org/10.3390/plants11070950] [PMID: 35406930]
[167]
Mansoor, S.; Sharma, V.; Mir, M.A.; Mir, J.I. un Nabi, S.; Ahmed, N.; Alkahtani, J.; Alwahibi, M.S.; Masoodi, K.Z. Quantification of polyphenolic compounds and relative gene expression studies of phenylpropanoid pathway in apple (Malus domestica Borkh) in response to Venturia inaequalis infection. Saudi J. Biol. Sci., 2020, 27(12), 3397-3404.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.007] [PMID: 33304148]
[168]
Wang, Q.; Cao, Y.; Zhou, L.; Jiang, C.Z.; Feng, Y.; Wei, S. Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chem., 2015, 169, 246-254.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.011] [PMID: 25236223]
[169]
Arfaoui, L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules, 2021, 26(10), 2959.
[http://dx.doi.org/10.3390/molecules26102959] [PMID: 34065743]
[170]
Kondakova, V.; Tsvetkov, I.; Batchvarova, R.; Badjakov, I.; Dzhambazova, T.; Slavov, S. Phenol compounds-qualitative index in small fruits. Biotechnol. Biotechnol. Equip., 2014, 23(4), 1444-1448.
[http://dx.doi.org/10.2478/V10133-009-0024-4]
[171]
Ravichandran, K.; Ahmed, A.R.; Knorr, D.; Smetanska, I. The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Res. Int., 2012, 48(1), 16-20.
[http://dx.doi.org/10.1016/j.foodres.2012.01.011]
[172]
Bar-Ya’akov, I.; Tian, L.; Amir, R.; Holland, D. Primary metabolites, anthocyanins, and hydrolyzable tannins in the pomegranate fruit. Front. Plant Sci., 2019, 10, 620.
[http://dx.doi.org/10.3389/fpls.2019.00620] [PMID: 31164897]
[173]
Hartman, R.E.; Shah, A.; Fagan, A.M.; Schwetye, K.E.; Parsadanian, M.; Schulman, R.N.; Finn, M.B.; Holtzman, D.M. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2006, 24(3), 506-515.
[http://dx.doi.org/10.1016/j.nbd.2006.08.006] [PMID: 17010630]
[174]
Miguel, G.; Fontes, C.; Antunes, D.; Neves, A.; Martins, D. Anthocyanin concentration of “Assaria” pomegranate fruits during different cold storage conditions. J. Biomed. Biotechnol., 2004, 2004(5), 338-342.
[http://dx.doi.org/10.1155/S1110724304403076] [PMID: 15577199]
[175]
Menard, C.; Bastianetto, S.; Quirion, R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front. Cell. Neurosci., 2013, 7, 281.
[http://dx.doi.org/10.3389/fncel.2013.00281] [PMID: 24421757]
[176]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[177]
Joseph, J.A.; Denisova, N.A.; Arendash, G.; Gordon, M.; Diamond, D.; Shukitt-Hale, B.; Morgan, D. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr. Neurosci., 2013, 6(3), 153-162.
[http://dx.doi.org/10.1080/1028415031000111282] [PMID: 12793519]
[178]
Peng, Q.L. Buz’Zard, A.R.; Lau, B.H.S. Pycnogenol® protects neurons from amyloid-β peptide-induced apoptosis. Brain Res. Mol. Brain Res., 2002, 104(1), 55-65.
[http://dx.doi.org/10.1016/S0169-328X(02)00263-2] [PMID: 12117551]
[179]
Maimoona, A.; Naeem, I.; Saddiqe, Z.; Jameel, K. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J. Ethnopharmacol., 2011, 133(2), 261-277.
[http://dx.doi.org/10.1016/j.jep.2010.10.041] [PMID: 21044675]
[180]
Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem., 2005, 53(10), 3902-3908.
[http://dx.doi.org/10.1021/jf050145v] [PMID: 15884815]
[181]
Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. Fast access of some grape pigments to the brain. J. Agric. Food Chem., 2005, 53(18), 7029-7034.
[http://dx.doi.org/10.1021/jf050565k] [PMID: 16131107]
[182]
Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; Hiltunen, M. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2013, 24(1), 360-370.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[183]
Yamakawa, M.Y.; Uchino, K.; Watanabe, Y.; Adachi, T.; Nakanishi, M.; Ichino, H.; Hongo, K.; Mizobata, T.; Kobayashi, S.; Nakashima, K.; Kawata, Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci., 2016, 19(1), 32-42.
[http://dx.doi.org/10.1179/1476830515Y.0000000042] [PMID: 26304685]
[184]
Essa, M.M.; Braidy, N.; Awlad-Thani, K.; Vaishnav, R.; Al-Asmi, A.; Guillemin, G.J.; Al-Adawi, S.; Subash, S. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease. J. Ayurveda Integr. Med., 2015, 6(2), 111-120.
[http://dx.doi.org/10.4103/0975-9476.159073] [PMID: 26167001]
[185]
Afzal, M.; Redha, A.; AlHasan, R. Anthocyanins potentially contribute to defense against Alzheimer’s disease. Molecules, 2019, 24(23), 4255.
[http://dx.doi.org/10.3390/molecules24234255] [PMID: 31766696]
[186]
Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 7915-7922.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[187]
Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr., 2016, 7(1), 44-65.
[http://dx.doi.org/10.3945/an.115.009639] [PMID: 26773014]
[188]
Fernando, W.M.A.D.B.; Somaratne, G.; Goozee, K.G.; Williams, S.; Singh, H.; Martins, R.N. Diabetes and Alzheimer’s disease: can tea phytochemicals play a role in prevention? J. Alzheimers Dis., 2017, 59(2), 481-501.
[http://dx.doi.org/10.3233/JAD-161200] [PMID: 28582855]
[189]
Vitaglione, P.; Donnarumma, G.; Napolitano, A.; Galvano, F.; Gallo, A.; Scalfi, L.; Fogliano, V. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J. Nutr., 2007, 137(9), 2043-2048.
[http://dx.doi.org/10.1093/jn/137.9.2043] [PMID: 17709440]
[190]
Belkacemi, A.; Ramassamy, C. Innovative anthocyanin/anthocyanidin formulation protects SK-N-SH cells against the amyloid-β peptide-induced toxicity: Relevance to Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem., 2015, 16(1), 37-49.
[http://dx.doi.org/10.2174/1871524915666150730125532] [PMID: 26238538]
[191]
Isaak, C.K.; Petkau, J.C.; Blewett, H.; Karmin, O.; Siow, Y.L. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis. Can. J. Physiol. Pharmacol., 2017, 95(8), 904-910.
[http://dx.doi.org/10.1139/cjpp-2016-0667] [PMID: 28384410]
[192]
Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of Anthocyanins against Amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem. Int., 2015, 80, 51-59.
[http://dx.doi.org/10.1016/j.neuint.2014.10.009] [PMID: 25451757]
[193]
Wu, Y.; Chen, M.; Jiang, J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 2019, 49, 35-45.
[http://dx.doi.org/10.1016/j.mito.2019.07.003] [PMID: 31288090]
[194]
Pacheco, S.M.; Soares, M.S.P.; Gutierres, J.M.; Gerzson, M.F.B.; Carvalho, F.B.; Azambuja, J.H.; Schetinger, M.R.C.; Stefanello, F.M.; Spanevello, R.M. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J. Nutr. Biochem., 2018, 56, 193-204.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.014] [PMID: 29587242]
[195]
Gutierres, J.M.; Carvalho, F.B.; Schetinger, M.R.C.; Marisco, P.; Agostinho, P.; Rodrigues, M.; Rubin, M.A.; Schmatz, R.; da Silva, C.R. de P Cognato, G.; Farias, J.G.; Signor, C.; Morsch, V.M.; Mazzanti, C.M.; Bogo, M.; Bonan, C.D.; Spanevello, R. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sci., 2014, 96(1-2), 7-17.
[http://dx.doi.org/10.1016/j.lfs.2013.11.014] [PMID: 24291256]
[196]
Shih, P.H.; Wu, C.H.; Yeh, C.T.; Yen, G.C. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. J. Agric. Food Chem., 2011, 59(5), 1683-1689.
[http://dx.doi.org/10.1021/jf103822h] [PMID: 21302893]
[197]
Fraige, K.; Pereira-Filho, E.R.; Carrilho, E. Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC–DAD–MS and exploratory analysis by principal component analysis. Food Chem., 2014, 145, 395-403.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.066] [PMID: 24128494]
[198]
Sun, Q.; Jia, N.; Li, X.; Yang, J.; Chen, G. Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3β-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer’s disease. Aging (Albany NY), 2019, 11(12), 4107-4124.
[http://dx.doi.org/10.18632/aging.102041] [PMID: 31232699]
[199]
Galvano, F.; La Fauci, L.; Lazzarino, G.; Fogliano, V.; Ritieni, A.; Ciappellano, S.; Battistini, N.C.; Tavazzi, B.; Galvano, G. Cyanidins: metabolism and biological properties. J. Nutr. Biochem., 2004, 15(1), 2-11.
[http://dx.doi.org/10.1016/j.jnutbio.2003.07.004] [PMID: 14711454]
[200]
Celik, E.; Sanlier, N. Effects of nutrient and bioactive food components on Alzheimer’s disease and epigenetic. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 102-113.
[http://dx.doi.org/10.1080/10408398.2017.1359488] [PMID: 28799782]
[201]
Afzal, M.; Safer, A.M.; Menon, M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology, 2015, 23(4), 151-161.
[http://dx.doi.org/10.1007/s10787-015-0236-1] [PMID: 26164000]
[202]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[203]
Sagi, S.A.; Weggen, S.; Eriksen, J.; Golde, T.E.; Koo, E.H. The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of κB kinase, and NFκB, do not reduce amyloid β42 production. J. Biol. Chem., 2003, 278(34), 31825-31830.
[http://dx.doi.org/10.1074/jbc.M303588200] [PMID: 12805355]
[204]
Liu, H.; Li, Z.; Qiu, D.; Gu, Q.; Lei, Q.; Mao, L. The inhibitory effects of different curcuminoids on β-amyloid protein, β-amyloid precursor protein and β-site amyloid precursor protein cleaving enzyme 1 in swAPP HEK293 cells. Neurosci. Lett., 2010, 485(2), 83-88.
[http://dx.doi.org/10.1016/j.neulet.2010.08.035] [PMID: 20727383]
[205]
Wang, X.; Kim, J.R.; Lee, S.B.; Kim, Y.J.; Jung, M.Y.; Kwon, H.W.; Ahn, Y.J. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement. Altern. Med., 2014, 14(1), 88.
[http://dx.doi.org/10.1186/1472-6882-14-88] [PMID: 24597901]
[206]
Zhang, X.; Yin, W.; Shi, X.; Li, Y. Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur. J. Pharm. Sci., 2011, 42(5), 540-546.
[http://dx.doi.org/10.1016/j.ejps.2011.02.009] [PMID: 21352912]
[207]
Parr, C.; Mirzaei, N.; Christian, M.; Sastre, M. Activation of the Wnt/β‐catenin pathway represses the transcription of the β‐amyloid precursor protein cleaving enzyme (BACE1) via binding of T‐cell factor‐4 to BACE1 promoter. FASEB J., 2015, 29(2), 623-635.
[http://dx.doi.org/10.1096/fj.14-253211] [PMID: 25384422]
[208]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[209]
Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M.; Sedaghat, M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16953-16965.
[http://dx.doi.org/10.1002/jcp.28411] [PMID: 30847942]
[210]
Reinke, A.A.; Gestwicki, J.E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem. Biol. Drug Des., 2007, 70(3), 206-215.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00557.x] [PMID: 17718715]
[211]
Rao, P.P.N.; Mohamed, T.; Teckwani, K.; Tin, G. Curcumin binding to beta amyloid: A computational study. Chem. Biol. Drug Des., 2015, 86(4), 813-820.
[http://dx.doi.org/10.1111/cbdd.12552] [PMID: 25776887]
[212]
Kundaikar, H.S.; Degani, M.S. Insights into the interaction mechanism of ligands with A β 42 based on molecular dynamics simulations and mechanics: Implications of role of common binding site in drug design for Alzheimer’s disease. Chem. Biol. Drug Des., 2015, 86(4), 805-812.
[http://dx.doi.org/10.1111/cbdd.12555] [PMID: 25763767]
[213]
Perrone, L.; Mothes, E.; Vignes, M.; Mockel, A.; Figueroa, C.; Miquel, M.C.; Maddelein, M.L.; Faller, P. Copper transfer from Cu-Abeta to human serum albumin inhibits aggregation, radical production and reduces Abeta toxicity. ChemBioChem, 2010, 11(1), 110-118.
[http://dx.doi.org/10.1002/cbic.200900474] [PMID: 19937895]
[214]
Banerjee, P.; Sahoo, A.; Anand, S.; Ganguly, A.; Righi, G.; Bovicelli, P.; Saso, L.; Chakrabarti, S. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein. Neuromol. Med., 2014, 16(4), 787-798.
[http://dx.doi.org/10.1007/s12017-014-8328-4] [PMID: 25249289]
[215]
Kozmon, S.; Tvaroška, I. Molecular dynamic studies of amyloid-beta interactions with curcumin and Cu2+ ions. Chem. Pap., 2015, 69(9), 1262-1276.
[http://dx.doi.org/10.1515/chempap-2015-0134]
[216]
Kolli, N.; Lu, M.; Maiti, P.; Rossignol, J.; Dunbar, G.L. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem. Int., 2018, 112, 187-196.
[http://dx.doi.org/10.1016/j.neuint.2017.07.007] [PMID: 28732771]
[217]
Valera, E.; Dargusch, R.; Maher, P.A.; Schubert, D. Modulation of 5-lipoxygenase in proteotoxicity and Alzheimer’s disease. J. Neurosci., 2013, 33(25), 10512-10525.
[http://dx.doi.org/10.1523/JNEUROSCI.5183-12.2013] [PMID: 23785163]
[218]
Kuriyama, S.; Hozawa, A.; Ohmori, K.; Shimazu, T.; Matsui, T.; Ebihara, S.; Awata, S.; Nagatomi, R.; Arai, H.; Tsuji, I. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project. Am. J. Clin. Nutr., 2006, 83(2), 355-361.
[http://dx.doi.org/10.1093/ajcn/83.2.355] [PMID: 16469995]
[219]
Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.J.; Brighenti, F.; Crozier, A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem., 2004, 52(10), 2807-2815.
[http://dx.doi.org/10.1021/jf0354848] [PMID: 15137818]
[220]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[221]
Weinreb, O.; Mandel, S.; Amit, T.; Youdim, M.B.H. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J. Nutr. Biochem., 2004, 15(9), 506-516.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[222]
Mandel, S.A.; Amit, T.; Weinreb, O.; Reznichenko, L.; Youdim, M.B.H. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci. Ther., 2008, 14(4), 352-365.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00060.x] [PMID: 19040558]
[223]
Ide, K.; Yamada, H. Clinical benefits of green tea consumption for cognitive dysfunction. PharmaNutrition, 2015, 3(4), 136-145.
[http://dx.doi.org/10.1016/j.phanu.2015.07.001]
[224]
Ali, B.; Jamal, Q.M.; Shams, S.; Al-Wabel, N.A.; Siddiqui, M.U.; Alzohairy, M.A.; Al Karaawi, M.A.; Kesari, K.K.; Mushtaq, G.; Kamal, M.A. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol. Disord. Drug Targets, 2016, 15(5), 624-628.
[http://dx.doi.org/10.2174/1871527315666160321110607] [PMID: 26996169]
[225]
Bennett, S.; Grant, M.M.; Aldred, S. Oxidative stress in vascular dementia and Alzheimer’s disease: a common pathology. J. Alzheimers Dis., 2008, 17(2), 245-257.
[http://dx.doi.org/10.3233/JAD-2009-1041] [PMID: 19221412]
[226]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[227]
Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann. N. Y. Acad. Sci., 2008, 1147(1), 70-78.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[228]
Haque, A.M.; Hashimoto, M.; Katakura, M.; Hara, Y.; Shido, O. Green tea catechins prevent cognitive deficits caused by Aβ1–40 in rats. J. Nutr. Biochem., 2008, 19(9), 619-626.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.008] [PMID: 18280729]
[229]
Biasibetti, R.; Tramontina, A.C.; Costa, A.P.; Dutra, M.F.; Quincozes-Santos, A.; Nardin, P.; Bernardi, C.L.; Wartchow, K.M.; Lunardi, P.S.; Gonçalves, C.A. Green tea (−)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res., 2013, 236(1), 186-193.
[http://dx.doi.org/10.1016/j.bbr.2012.08.039] [PMID: 22964138]
[230]
Sang, S.; Tian, S.; Wang, H.; Stark, R.E.; Rosen, R.T.; Yang, C.S.; Ho, C.T. Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals. Bioorg. Med. Chem., 2003, 11(16), 3371-3378.
[http://dx.doi.org/10.1016/S0968-0896(03)00367-5] [PMID: 12878131]
[231]
Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem., 2006, 54(5), 1599-1603.
[http://dx.doi.org/10.1021/jf052857r] [PMID: 16506807]
[232]
Mandel, S.; Youdim, M.B.H. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic. Biol. Med., 2004, 37(3), 304-317.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.012] [PMID: 15223064]
[233]
Weinreb, O.; Amit, T.; Mandel, S.; Youdim, M.B.H. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr., 2009, 4(4), 283-296.
[http://dx.doi.org/10.1007/s12263-009-0143-4] [PMID: 19756809]
[234]
Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol., 2014, 13(10), 1045-1060.
[http://dx.doi.org/10.1016/S1474-4422(14)70117-6] [PMID: 25231526]
[235]
Morales, I.; Guzmán-Martínez, L.; Cerda-Troncoso, C.; Farías, G.A.; Maccioni, R.B. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci., 2014, 8, 112.
[http://dx.doi.org/10.3389/fncel.2014.00112] [PMID: 24795567]
[236]
Lee, Y.J.; Choi, D.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem., 2013, 24(1), 298-310.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.011] [PMID: 22959056]
[237]
Wu, K.J.; Hsieh, M.T.; Wu, C.R.; Wood, W.G.; Chen, Y.F. Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/163106] [PMID: 22919410]
[238]
Alkon, D.L.; Sun, M.K.; Nelson, T.J. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol. Sci., 2007, 28(2), 51-60.
[http://dx.doi.org/10.1016/j.tips.2006.12.002] [PMID: 17218018]
[239]
Levites, Y.; Amit, T.; Mandel, S.; Youdim, M.B.H. Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (‐)‐epigallocatechin‐3‐gallate. FASEB J., 2003, 17(8), 1-23.
[http://dx.doi.org/10.1096/fj.02-0881fje] [PMID: 12670874]
[240]
Kaur, T.; Pathak, C.M.; Pandhi, P.; Khanduja, K.L. Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn., 2008, 67(1), 25-30.
[http://dx.doi.org/10.1016/j.bandc.2007.10.003] [PMID: 18078701]
[241]
Kim, H.K.; Kim, M.; Kim, S.; Kim, M.; Chung, J.H. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci. Biotechnol. Biochem., 2004, 68(9), 1977-1979.
[http://dx.doi.org/10.1271/bbb.68.1977] [PMID: 15388975]
[242]
Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of Red Wine Consumption to Human Health Protection. Molecules, 2018, 23(7), 1684.
[http://dx.doi.org/10.3390/molecules23071684] [PMID: 29997312]
[243]
Wang, J.; Ho, L.; Zhao, Z.; Seror, I.; Humala, N.; Dickstein, D.L.; Thiyagarajan, M.; Percival, S.S.; Talcott, S.T.; Maria Pasinetti, G. Moderate consumption of Cabernet Sauvignon attenuates A neuropathology in a mouse model of Alzheimer’s disease. FASEB J., 2006, 20(13), 2313-2320.
[http://dx.doi.org/10.1096/fj.06-6281com] [PMID: 17077308]
[244]
Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front. Neurosci., 2019, 13, 869.
[http://dx.doi.org/10.3389/fnins.2019.00869] [PMID: 31481869]
[245]
Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and Alzheimer’s disease. Nutrients, 2019, 11(7), 1558.
[http://dx.doi.org/10.3390/nu11071558] [PMID: 31295866]
[246]
Silva, P.; Vauzour, D. Wine polyphenols and neurodegenerative diseases: An update on the molecular mechanisms underpinning their protective effects. Beverages, 2018, 4(4), 96.
[http://dx.doi.org/10.3390/beverages4040096]
[247]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[248]
Han, Y.S.; Zheng, W.H.; Bastianetto, S.; Chabot, J.G.; Quirion, R. Neuroprotective effects of resveratrol against β -amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br. J. Pharmacol., 2004, 141(6), 997-1005.
[http://dx.doi.org/10.1038/sj.bjp.0705688] [PMID: 15028639]
[249]
Luchsinger, J.A.; Tang, M.X.; Siddiqui, M.; Shea, S.; Mayeux, R. Alcohol intake and risk of dementia. J. Am. Geriatr. Soc., 2004, 52(4), 540-546.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52159.x] [PMID: 15066068]
[250]
Kim, H.; Park, B.S.; Lee, K.G.; Choi, C.Y.; Jang, S.S.; Kim, Y.H.; Lee, S.E. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J. Agric. Food Chem., 2005, 53(22), 8537-8541.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[251]
Jagota, S.; Rajadas, J. Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans. Neurochem. Res., 2012, 37(1), 40-48.
[http://dx.doi.org/10.1007/s11064-011-0580-5] [PMID: 21858698]
[252]
Jiménez-Aliaga, K.; Bermejo-Bescós, P.; Benedí, J.; Martín-Aragón, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci., 2011, 89(25-26), 939-945.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[253]
Ho, L.; Ferruzzi, M.G.; Janle, E.M.; Wang, J.; Gong, B.; Chen, T.Y.; Lobo, J.; Cooper, B.; Wu, Q.L.; Talcott, S.T.; Percival, S.S.; Simon, J.E.; Pasinetti, G.M. Identification of brain‐targeted bioactive dietary quercetin‐3‐ O ‐glucuronide as a novel intervention for Alzheimer’s disease. FASEB J., 2013, 27(2), 769-781.
[http://dx.doi.org/10.1096/fj.12-212118] [PMID: 23097297]
[254]
Caruana, M.; Cauchi, R.; Vassallo, N. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease. Front. Nutr., 2016, 3, 31.
[http://dx.doi.org/10.3389/fnut.2016.00031] [PMID: 27570766]
[255]
Ho, L.; Chen, L.H.; Wang, J.; Zhao, W.; Talcott, S.T.; Ono, K.; Teplow, D.; Humala, N.; Cheng, A.; Percival, S.S.; Ferruzzi, M.; Janle, E.; Dickstein, D.L.; Pasinetti, G.M. Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J. Alzheimers Dis., 2009, 16(1), 59-72.
[http://dx.doi.org/10.3233/JAD-2009-0916] [PMID: 19158422]
[256]
Feng, Y.; Wang, X.; Yang, S.; Wang, Y.; Zhang, X.; Du, X.; Sun, X.; Zhao, M.; Huang, L.; Liu, R. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology, 2009, 30(6), 986-995.
[http://dx.doi.org/10.1016/j.neuro.2009.08.013] [PMID: 19744518]
[257]
Richard, T.; Poupard, P.; Nassra, M.; Papastamoulis, Y.; Iglésias, M.L.; Krisa, S.; Waffo-Teguo, P.; Mérillon, J.M.; Monti, J.P. Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg. Med. Chem., 2011, 19(10), 3152-3155.
[http://dx.doi.org/10.1016/j.bmc.2011.04.001] [PMID: 21524590]
[258]
Feng, Y.; Yang, S.; Du, X.; Zhang, X.; Sun, X.; Zhao, M.; Sun, G.; Liu, R. Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity. Biochem. Biophys. Res. Commun., 2009, 390(4), 1250-1254.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.130] [PMID: 19878655]
[259]
Ono, K.; Condron, M.M.; Ho, L.; Wang, J.; Zhao, W.; Pasinetti, G.M.; Teplow, D.B. Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J. Biol. Chem., 2008, 283(47), 32176-32187.
[http://dx.doi.org/10.1074/jbc.M806154200] [PMID: 18815129]
[260]
Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.; Humala, N.; Teplow, D.B.; Pasinetti, G.M. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J. Neurosci., 2008, 28(25), 6388-6392.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-08.2008] [PMID: 18562609]
[261]
Hayden, E.Y.; Yamin, G.; Beroukhim, S.; Chen, B.; Kibalchenko, M.; Jiang, L.; Ho, L.; Wang, J.; Pasinetti, G.M.; Teplow, D.B. Inhibiting amyloid β-protein assembly: Size-activity relationships among grape seed-derived polyphenols. J. Neurochem., 2015, 135(2), 416-430.
[http://dx.doi.org/10.1111/jnc.13270] [PMID: 26228682]
[262]
Ho, L.; Yemul, S.; Wang, J.; Pasinetti, G.M. Grape seed polyphenolic extract as a potential novel therapeutic agent in tauopathies. J. Alzheimers Dis., 2009, 16(2), 433-439.
[http://dx.doi.org/10.3233/JAD-2009-0969] [PMID: 19221432]
[263]
Santa-Maria, I.; Diaz-Ruiz, C.; Ksiezak-Reding, H.; Chen, A.; Ho, L.; Wang, J.; Pasinetti, G.M. GSPE interferes with tau aggregation in vivo: implication for treating tauopathy. Neurobiol. Aging, 2012, 33(9), 2072-2081.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.027] [PMID: 22054871]
[264]
Wang, J.; Bi, W.; Cheng, A.; Freire, D.; Vempati, P.; Zhao, W.; Gong, B.; Janle, E.M.; Chen, T.Y.; Ferruzzi, M.G.; Schmeidler, J.; Ho, L.; Pasinetti, G.M. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Front. Aging Neurosci., 2014, 6, 42.
[http://dx.doi.org/10.3389/fnagi.2014.00042] [PMID: 24672477]
[265]
Choi, Y.T.; Jung, C.H.; Lee, S.R.; Bae, J.H.; Baek, W.K.; Suh, M.H.; Park, J.; Park, C.W.; Suh, S.I. The green tea polyphenol (−)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci., 2001, 70(5), 603-614.
[http://dx.doi.org/10.1016/S0024-3205(01)01438-2] [PMID: 11811904]
[266]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J., 2015, 15(1), 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[267]
Mori, T.; Koyama, N.; Yokoo, T.; Segawa, T.; Maeda, M.; Sawmiller, D.; Tan, J.; Town, T. Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J. Biol. Chem., 2020, 295(48), 16251-16266.
[http://dx.doi.org/10.1074/jbc.RA119.012330] [PMID: 32913125]
[268]
Ryu, E.K.; Choe, Y.S.; Lee, K.H.; Choi, Y.; Kim, B.T. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for β-amyloid plaque imaging. J. Med. Chem., 2006, 49(20), 6111-6119.
[http://dx.doi.org/10.1021/jm0607193] [PMID: 17004725]
[269]
Cohen, A.; Ikonomovic, M.; Abrahamson, E.; Paljug, W.; DeKosky, S.; Lefterov, I.; Koldamova, R.; Shao, L.; Debnath, M.; Mason, N.; Mathis, C.; Klunk, W. Anti-amyloid effects of small molecule Aβ-binding agents in PS1/APP mice. Lett. Drug Des. Discov., 2009, 6(6), 437-444.
[http://dx.doi.org/10.2174/157018009789057526] [PMID: 20119496]
[270]
Zhang, K.; Chen, M.; Du, Z-Y.; Zheng, X.; Li, D-L.; Zhou, R-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 742-752.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[271]
Nakagami, Y.; Nishimura, S.; Murasugi, T.; Kaneko, I.; Meguro, M.; Marumoto, S.; Kogen, H.; Koyama, K.; Oda, T. A novel β -sheet breaker, RS-0406, reverses amyloid β -induced cytotoxicity and impairment of long-term potentiation in vitro. Br. J. Pharmacol., 2002, 137(5), 676-682.
[http://dx.doi.org/10.1038/sj.bjp.0704911] [PMID: 12381681]
[272]
Moss, M.A.; Varvel, N.H.; Nichols, M.R.; Reed, D.K.; Rosenberry, T.L. Nordihydroguaiaretic acid does not disaggregate beta-Amyloid(1-40) protofibrils but does inhibit growth arising from direct protofibril association. Mol. Pharmacol., 2004, 66(3), 592-600.
[http://dx.doi.org/10.1124/mol.66.3] [PMID: 15322251]
[273]
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry, 2006, 45(19), 6085-6094.
[http://dx.doi.org/10.1021/bi0600749] [PMID: 16681381]
[274]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[275]
Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2006, 67(1), 27-37.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00318.x] [PMID: 16492146]
[276]
Lee, K.H.; Shin, B.H.; Shin, K.J.; Kim, D.J.; Yu, J. A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by β-amyloid (1–42). Biochem. Biophys. Res. Commun., 2005, 328(4), 816-823.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.030] [PMID: 15707952]
[277]
Kung, H.F.; Lee, C.W.; Zhuang, Z.P.; Kung, M.P.; Hou, C.; Plössl, K. Novel stilbenes as probes for amyloid plaques. J. Am. Chem. Soc., 2001, 123(50), 12740-12741.
[http://dx.doi.org/10.1021/ja0167147] [PMID: 11741464]
[278]
Necula, M.; Kayed, R.; Milton, S.; Glabe, C.G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem., 2007, 282(14), 10311-10324.
[http://dx.doi.org/10.1074/jbc.M608207200] [PMID: 17284452]
[279]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against Amyloid-ß in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[280]
Griner, S.L.; Seidler, P.; Bowler, J.; Murray, K.A.; Yang, T.P.; Sahay, S.; Sawaya, M.R.; Cascio, D.; Rodriguez, J.A.; Philipp, S.; Sosna, J.; Glabe, C.G.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of amyloid beta core suggest a common interface with tau. eLife, 2019, 8, e46924.
[http://dx.doi.org/10.7554/eLife.46924] [PMID: 31612856]
[281]
Pandey, K.B.; Rizvi, S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem., 2011, 4(3), 293-298.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.049]
[282]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[283]
Zong, Y.; Sun, L.; Liu, B.; Deng, Y.S.; Zhan, D.; Chen, Y.L.; He, Y.; Liu, J.; Zhang, Z.J.; Sun, J.; Lu, D. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One, 2012, 7(8), e44107.
[http://dx.doi.org/10.1371/journal.pone.0044107] [PMID: 22952890]
[284]
Kim, D-O.; Lee, C.Y. Comprehensive study on Vitamin C Equivalent Antioxidant Capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr., 2004, 44(4), 253-273.
[http://dx.doi.org/10.1080/10408690490464960] [PMID: 15462129]
[285]
Savaskan, E.; Olivieri, G.; Meier, F.; Seifritz, E.; Wirz-Justice, A.; Müller-Spahn, F. Red wine ingredient resveratrol protects from β-amyloid neurotoxicity. Gerontology, 2003, 49(6), 380-383.
[http://dx.doi.org/10.1159/000073766] [PMID: 14624067]
[286]
Lançon, A.; Delma, D.; Osman, H.; Thénot, J.P.; Latruffe, B.J.N.; Latruffe, N. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process. Biochem. Biophys. Res. Commun., 2004, 316(4), 1132-1137.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.164] [PMID: 15044102]
[287]
Conte, A.; Pellegrini, S.; Tagliazucchi, D. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin. Brain Res. Bull., 2003, 62(1), 29-38.
[http://dx.doi.org/10.1016/j.brainresbull.2003.08.001] [PMID: 14596889]