Computational Analysis of Bacopa monnieri (L.) Wettst. Compounds for Drug Development against Neurodegenerative Disorders

Page: [24 - 36] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aim: With several experimental studies establishing the role of Bacopa monnieri as an effective neurological medication, less focus has been employed to explore how effectively Bacopa monnieri brings about this property. The current work focuses on understanding the molecular interaction of the phytochemicals of the plant against different neurotrophic factors to explore their role and potential as potent anti-neurodegenerative drugs.

Background: Neurotrophins play a crucial role in the development and regulation of neurons. Alterations in the functioning of these Neurotrophins lead to several Neurodegenerative Disorders. Albeit engineered medications are accessible for the treatment of Neurodegenerative Disorders, due to their numerous side effects, it becomes imperative to formulate and synthesize novel drug candidates.

Objective: This study aims to investigate the potential of Bacopa monnieri phytochemicals as potent antineurodegenerative drugs by inspecting the interactions between Neurotrophins and target proteins.

Methods: The current study employs molecular docking and molecular dynamic simulation studies to examine the molecular interactions of phytochemicals with respective Neurotrophins. Further inspection of the screened phytochemicals was performed to analyze the ADME-Tox properties in order to classify the screened phytochemicals as potent drug candidates.

Results: The phytochemicals of Bacopa monnieri were subjected to in-silico docking with the respective Neurotrophins. Vitamin E, Benzene propanoic acid, 3,5-bis (1,1- dimethylethyl)- 4hydroxy-, methyl ester (BPA), Stigmasterol, and Nonacosane showed an excellent binding affinity with their respective Neurotrophins (BDNF, NT3, NT4, NGF). Moreover, the molecular dynamic simulation studies revealed that BPA and Stigmasterol show a very stable interaction with NT3 and NT4, respectively, suggesting their potential role as a drug candidate. Nonacosane exhibited a fluctuating binding behavior with NGF which can be accounted for by its long linear structure. ADME-Tox studies further confirmed the potency of these phytochemicals as BPA violated no factors and Vitamin E, Stigmasterol and Nonacosane violated 1 factor for Lipinski’s rule. Moreover, their high human intestinal absorption and bioavailability score along with their classification as non-mutagen in the Ames test makes these compounds more reliable as potent antineurodegenerative drugs.

Conclusion: Our study provides an in-silico approach toward understanding the anti-neurodegenerative property of Bacopa monnieri phytochemicals and establishes the role of four major phytochemicals which can be utilized as a replacement for synthetic drugs against several neurodegenerative disorders.

[1]
Hempstead, B. Dissecting the diverse actions of pro- and mature neurotrophins. Curr. Alzheimer Res., 2006, 3(1), 19-24.
[http://dx.doi.org/10.2174/156720506775697061] [PMID: 16472198]
[2]
Leake, P.A.; Akil, O.; Lang, H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear. Res., 2020, 394, 107955.
[http://dx.doi.org/10.1016/j.heares.2020.107955] [PMID: 32331858]
[3]
Sahu, M. P.; Pazos-Boubeta, Y.; Pajanoja, C.; Rozov, S.; Panula, P.; Castrén, E. Neurotrophin receptor Ntrk2b function in the maintenance of dopamine and serotonin neurons in zebrafish. Sci. Reports, 2019, 9(1), 1-13.
[http://dx.doi.org/10.1038/s41598-019-39347-3]
[4]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[5]
Autry, A.E.; Bambah-Mukku, D. The role of brain-derived neurotrophic factor in neural circuit development and function. In: Synapse Development and Maturation; Pasko, R.; John, R.; Bin, C.; Kenneth, Y.K., Eds.; Elsevier Science: London, 2020; pp. 443-466.
[http://dx.doi.org/10.1016/B978-0-12-823672-7.00020-X]
[6]
Vilar, M.; Mira, H. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front. Neurosci., 2016, 10(FEB), 26.
[http://dx.doi.org/10.3389/fnins.2016.00026] [PMID: 26903794]
[7]
Sahay, A.; Kale, A.; Joshi, S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides, 2020, 83, 102075.
[http://dx.doi.org/10.1016/j.npep.2020.102075] [PMID: 32778339]
[8]
Konar, A.; Shah, N.; Singh, R.; Saxena, N.; Kaul, S.C.; Wadhwa, R.; Thakur, M.K. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One, 2011, 6(11), e27265.
[http://dx.doi.org/10.1371/journal.pone.0027265] [PMID: 22096544]
[9]
Tseng, P.T.; Chen, Y.W.; Tu, K.Y.; Wang, H.Y.; Chung, W.; Wu, C.K.; Hsu, S.P.; Kuo, H.C.; Lin, P.Y. State-dependent increase in the levels of neurotrophin-3 and neurotrophin-4/5 in patients with bipolar disorder: A meta-analysis. J. Psychiatr. Res., 2016, 79, 86-92.
[http://dx.doi.org/10.1016/j.jpsychires.2016.05.009] [PMID: 27214525]
[10]
Kim, Y.C. Neuroprotective phenolics in medicinal plants. Arch. Pharm. Res., 2010, 33(10), 1611-1632.
[http://dx.doi.org/10.1007/s12272-010-1011-x] [PMID: 21052937]
[11]
Gómez-Pineda, V.G.; Torres-Cruz, F.M.; Vivar-Cortés, C.I.; Hernández-Echeagaray, E. Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington’s disease. CNS Neurosci. Ther., 2018, 24(4), 353-363.
[http://dx.doi.org/10.1111/cns.12824] [PMID: 29453932]
[12]
Allen, S.J.; Dawbarn, D. Clinical relevance of the neurotrophins and their receptors. Clin. Sci. (Lond.), 2006, 110(2), 175-191.
[http://dx.doi.org/10.1042/CS20050161] [PMID: 16411894]
[13]
Cho, T.; Ryu, J.K.; Taghibiglou, C.; Ge, Y.; Chan, A.W.; Liu, L.; Lu, J.; McLarnon, J.G.; Wang, Y.T. Long-term potentiation promotes proliferation/survival and neuronal differentiation of neural stem/progenitor cells. PLoS One, 2013, 8(10), e76860.
[http://dx.doi.org/10.1371/journal.pone.0076860] [PMID: 24146937]
[14]
Fitzsimons, C.P.; van Bodegraven, E.; Schouten, M.; Lardenoije, R.; Kompotis, K.; Kenis, G.; van den Hurk, M.; Boks, M.P.; Biojone, C.; Joca, S.; Steinbusch, H.W.M.; Lunnon, K.; Mastroeni, D.F.; Mill, J.; Lucassen, P.J.; Coleman, P.D.; van den Hove, D.L.A.; Rutten, B.P.F. Epigenetic regulation of adult neural stem cells: Implications for Alzheimer’s disease. Mol. Neurodegener., 2014, 9(1), 25.
[http://dx.doi.org/10.1186/1750-1326-9-25] [PMID: 24964731]
[15]
Simmons, D.A. Modulating neurotrophin receptor signaling as a therapeutic strategy for huntington’s disease. J. Huntingtons Dis., 2017, 6(4), 303-325.
[http://dx.doi.org/10.3233/JHD-170275] [PMID: 29254102]
[16]
Meldolesi, J. Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol. Res., 2017, 121, 129-137.
[http://dx.doi.org/10.1016/j.phrs.2017.04.024] [PMID: 28438600]
[17]
Jiang, Y.; Fay, J.M.; Poon, C.D.; Vinod, N.; Zhao, Y.; Bullock, K.; Qin, S.; Manickam, D.S.; Yi, X.; Banks, W.A.; Kabanov, A.V. Nanoformulation of brain‐derived neurotrophic factor with target receptor‐triggered‐release in the central nervous system. Adv. Funct. Mater., 2018, 28(6), 1703982.
[http://dx.doi.org/10.1002/adfm.201703982] [PMID: 29785179]
[18]
Shamovsky, I.L.; Weaver, D.F.; Ross, G.M.; Riopelle, R.J. The interaction of neurotrophins with the p75NTR common neurotrophin receptor: A comprehensive molecular modeling study. Protein Sci., 1999, 8(11), 2223-2233.
[http://dx.doi.org/10.1110/ps.8.11.2223] [PMID: 10595525]
[19]
NGF induces apoptosis in a human neuroblastoma cell line expressing the neurotrophin receptor p75NTR. Available from: https://pubmed.ncbi.nlm.nih.gov/9822157/ (Accessed on: Jan 31, 2022).
[20]
Colquhoun, A.; Lawrance, G.M.; Shamovsky, I.L.; Riopelle, R.J.; Ross, G.M. Differential activity of the nerve growth factor (NGF) antagonist PD90780 [7-(benzolylamino)-4,9-dihydro-4-methyl-9-oxo-pyrazolo[5,1-b]quinazoline-2-carboxylic acid] suggests altered NGF-p75NTR interactions in the presence of TrkA. J. Pharmacol. Exp. Ther., 2004, 310(2), 505-511.
[http://dx.doi.org/10.1124/jpet.104.066225] [PMID: 15051797]
[21]
Saraf, M.K.; Prabhakar, S.; Anand, A. Neuroprotective effect of Bacopa monniera on ischemia induced brain injury. Pharmacol. Biochem. Behav., 2010, 97(2), 192-197.
[http://dx.doi.org/10.1016/j.pbb.2010.07.017] [PMID: 20678517]
[22]
Stough, C.; Scholey, A.; Cropley, V.; Wesnes, K.; Zangara, A.; Pase, M.; Savage, K.; Nolidin, K.; Downey, L.; Downey, L. Examining the cognitive effects of a special extract of Bacopa monniera (CDRI08: Keenmnd): A review of ten years of research at Swinburne University. J. Pharm. Pharm. Sci., 2013, 16(2), 254-258.
[http://dx.doi.org/10.18433/J35G6M] [PMID: 23958194]
[23]
Bhattacharya, S.K.; Ghosal, S. Anxiolytic activity of a standardized extract of Bacopa monniera: An experimental study. Phytomedicine, 1998, 5(2), 77-82.
[http://dx.doi.org/10.1016/S0944-7113(98)80001-9] [PMID: 23195757]
[24]
Shinomol, G.K.; Mythri, R.B.; Srinivas Bharath, M.M.; Muralidhara Bacopa monnieri extract offsets rotenone-induced cytotoxicity in dopaminergic cells and oxidative impairments in mice brain. Cell. Mol. Neurobiol., 2012, 32(3), 455-465.
[http://dx.doi.org/10.1007/s10571-011-9776-0] [PMID: 22160863]
[25]
Sukumaran, N.P.; Amalraj, A.; Gopi, S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst-A review on its mechanistic aspects. Complement. Ther. Med., 2019, 44, 68-82.
[http://dx.doi.org/10.1016/j.ctim.2019.03.016] [PMID: 31126578]
[26]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine, 2005, 12(4), 305-317.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[27]
Kumar, S.S.; Saraswathi, P.; Vijayaraghavan, R. Effect of Bacopa monniera on cold stress induced neurodegeneration in hippocampus of wistar rats: A histomorphometric study. J. Clin. Diagn. Res., 2015, 9(1), AF05-AF07.
[http://dx.doi.org/10.7860/JCDR/2015/10199.5423] [PMID: 25737970]
[28]
Jain, P.; Sharma, H.P.; Basri, F.; Priya, K.; Singh, P. Phytochemical analysis of Bacopa monnieri (L.) wettst. and their anti-fungal activities. Indian J. Tradit. Knowl., 2017, 16(2), 310-318.
[29]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[30]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[31]
ChemOffice, 7.0.1. 2002. CambridgeSoft, Corporation, Cambridge, MA.
[32]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[33]
Schrodinger, LLC The PyMOL Molecular Graphics System, Version 1.8.4.0. 2010.
[34]
Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient unbound docking of rigid molecules. In: Algorithms in Bioinformatics. WABI 2002; Guigó, R.; Gusfield, D., Eds.; Lecture Notes in Computer ScienceSpringer: Berlin, Heidelberg, 2002; vol 2452, .
[http://dx.doi.org/10.1007/3-540-45784-4_14]
[35]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005. Web Server issue.
[http://dx.doi.org/10.1093/nar/gki481]
[36]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[37]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[38]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[39]
Das, S.K.; Mahanta, S.; Tanti, B.; Tag, H.; Hui, P.K. Identification of phytocompounds from Houttuynia cordata thunb. as potential inhibitors for sars-cov-2 replication proteins through GC-MS/LC-MS characterization, molecular docking and molecular dynamics simulation. Mol. Divers., 2021, 26(1), 365-388.
[http://dx.doi.org/10.1007/s11030-021-10226-2] [PMID: 33961167]
[40]
Hunter, J.D. Matplotlib. Comput. Sci. Eng., 2007, 9(3), 90-95.
[http://dx.doi.org/10.1109/MCSE.2007.55]
[41]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[42]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Reports, 2017, 7(1), 1-13.
[http://dx.doi.org/10.1038/srep42717]
[43]
The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. Available from: https://www.researchgate.net/publication/309311638
[44]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[45]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24(1), 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[46]
Salehi, A.H.; Roux, P.P.; Kubu, C.J.; Zeindler, C.; Bhakar, A.; Tannis, L.L.; Verdi, J.M.; Barker, P.A. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron, 2000, 27(2), 279-288.
[http://dx.doi.org/10.1016/S0896-6273(00)00036-2] [PMID: 10985348]
[47]
Roux, P.P.; Bhakar, A.L.; Kennedy, T.E.; Barker, P.A. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem., 2001, 276(25), 23097-23104.
[http://dx.doi.org/10.1074/jbc.M011520200] [PMID: 11312266]
[48]
Mamidipudi, V.; Li, X.; Wooten, M.W. Identification of interleukin 1 receptor-associated kinase as a conserved component in the p75-neurotrophin receptor activation of nuclear factor-kappa B. J. Biol. Chem., 2002, 277(31), 28010-28018.
[http://dx.doi.org/10.1074/jbc.M109730200] [PMID: 12034707]
[49]
Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive effect of nootropic drug Brahmi Bacopa monnieri in alzheimer’s disease. Ann. Neurosci., 2017, 24(2), 111-122.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[50]
Dhanasekaran, M.; Tharakan, B.; Holcomb, L.A.; Hitt, A.R.; Young, K.A.; Manyam, B.V. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother. Res., 2007, 21(10), 965-969.
[http://dx.doi.org/10.1002/ptr.2195] [PMID: 17604373]